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Abstract

Congenital muscular dystrophy type 1A (MDC1A), the most common congenital muscular dystrophy in Western countries, is
caused by recessive mutations in LAMA2, the gene encoding laminin alpha 2. Currently, no cure or disease modifying
therapy has been successfully developed for MDC1A. Examination of patient muscle biopsies revealed altered distribution of
lysosomes. We hypothesized that this redistribution was a novel and potentially druggable aspect of disease pathogenesis.
We explored this hypothesis using candyfloss (caf ), a zebrafish model of MDC1A. We found that lysosome distribution in caf
zebrafish was also abnormal. This altered localization was significantly associated with fiber detachment and could be
prevented by blocking myofiber detachment. Overexpression of transcription factor EB, a transcription factor that promotes
lysosomal biogenesis, led to increased lysosome content and decreased fiber detachment. We conclude that genetic
manipulation of the lysosomal compartment is able to alter the caf zebrafish disease process, suggesting that lysosome
function may be a target for disease modification.

Introduction
Congenital muscular dystrophies (CMDs) are a group of congen-
ital onset genetic diseases that share the common features of
neonatal hypotonia, extremity muscle weakness and develop-
mental motor dysfunction (1–5). As a group, CMDs are associated
with severe lifelong disabilities, often including both ventila-
tor and wheelchair dependence (6). Improvements in general
care management, including physical, respiratory, speech and
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occupational therapies, together with corrective eye and cardiac
surgeries, result in increased survival and longevity in patients
with CMD (7–9). Recently, biomarkers and several therapeutic
approaches have been established in preclinical models for some
CMDs (5,10,11). However, there is currently no cure, nor any
disease modifying therapy, for any CMD subtype; thus, there is
a critical need to identify new treatment strategies for these
devastating disorders.
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CMDs are clinically and genetically diverse disorders (12,13).
The three most common subtypes are merosin-deficient con-
genital muscular dystrophy (MDC1A), collagen VI-related CMD
and the dystroglycanopathies (12,14). Mutations that cause these
disorders arise in genes that encode components of the muscle
attachment apparatus, which normally performs the functions
of linking the myofiber cytoskeleton to the extracellular matrix
(ECM) and providing mechanical stability to the muscle during
contraction (12).

MDC1A is the most common form of CMD (15–17). It is
caused by recessive mutations in laminin-α2 (LAMA2), which
leads to the loss of laminin-211 expression (18), the primary
laminin isoform found in the basal lamina of skeletal muscle and
Schwann cells (18–21). Laminin-211 regulates muscle membrane
stability and mediates cell signaling through interactions with
the cell surface receptors α-dystroglycan and α7β1-integrin,
both of which play a role in muscle force-production (22,23). α-
dystroglycan is specifically implicated in mediating attachment
between ECM and the actin cytoskeleton (24,25), while α7β1-
integrin has been implicated in cell signaling pathways
(26,27).

While the primary pathomechanism of MDC1A in skeletal
muscle is detachment of muscle fibers from the basal membrane
(28,29), dystrophic fibers in this condition maintain their sar-
colemmal integrity (30) and are long-lived, undergoing remodel-
ing before initiating a delayed cell death process (29) that leads
to muscle wasting. Vertebrate models of the disease have sug-
gested that abnormalities in degradation pathways contribute
to the disease pathology. For example, increased activity of the
ubiquitin-proteasome system (UPS), increased apoptosis and
aberrant autophagy have been observed in mouse models of
MDC1A, and these seem to exacerbate the dystrophic pathol-
ogy (31–33). Furthermore, inhibiting these pathways provides
partial improvement of the murine disease phenotype (32–37).
Of note, while UPS and autophagy are distinct processes, there
is considerable crosstalk between them, particularly in relation
to muscle wasting, an important component of MDC1A (33,38–
41). Lysosomes are critical common downstream mediators for
aspects of these pathways (42,43) and have been implicated in
membrane repair in various muscle disorders (44–46), making
them an attractive subcellular compartment for drug targeting.

Zebrafish offer unique advantages for the study of MDC1A
(47). The optical clarity of the zebrafish, along with the ease of
genetic manipulation, enables the assessment of pathways in
live embryos (48). Zebrafish also readily absorb small molecules
and are thus ideal for testing the effects of chemical modifiers
(49). Lastly, zebrafish have proven to accurately model the key
features of MDC1A (50–52). The main zebrafish model of MDC1A
is candyflossteg15a (caf), which harbors a mutation in the lama2
gene that leads to a premature stop codon and absence of LAMA2
expression (50). In this model, muscle fibers detach and retract
from the myosepta beginning at 2 days post-fertilization (dpf),
followed thereafter by progressive myofiber detachment and
impaired motor function that ultimately leads to death between
9 and 14 dpf (50).

In this study, we explored roles for lysosome biogenesis and
its regulatory mechanisms in identifying potential new ther-
apeutic strategies for MDC1A. We observed alterations in the
expression and distribution of lysosomes in muscle biopsies
from MDC1A patients. We validated the altered localization in
the caf zebrafish model for MDC1A and tested the impact of
modulation of lysosomal function on the zebrafish phenotype.
We observed significant changes in caf muscle fiber detach-
ment with expression of the lysosomal biogenesis-promoting
transcription factor EB (TFEB). On the other hand, we did not

Figure 1. Lysosome distribution in muscle biopsies. Cross section of muscle

samples from control and MDC1A patients, stained with antibody against Lamp1.

Compared with the control sample, lysosomes appear to redistribute within

muscle fibers and congregate at the membrane (n = 3 for each).

detect improvement in dystrophic changes or overall motor
function with chemical manipulation of lysosomes. We also
showed that, similar to mammalian models of MDC1A, the UPS is
significantly upregulated in caf mutants (32) and confirmed the
ability of the UPS inhibitor MG-132 to modify the MDC1A phe-
notype. In all, we identified lysosomal redistribution as a novel
feature of MDC1A pathology and provide data showing that
increasing lysosomal number can improve an MDC1A phenotype
in a pre-clinical model of the disease.

Results
Abnormal distribution of lysosomes in muscle biopsies
from MDC1A patients

We examined lysosomal distribution in muscle biopsies from
muscular dystrophy patients using an antibody to the endo-
lysosomal protein Lamp1. In non-dystrophic biopsy samples,
as well as in cases of muscular dystrophy not associated with
LAMA2 mutation, we observed the typical sparse punctate
expression of Lamp1. However, in a subset of fibers from MDC1A
biopsies, we saw a clear re-distribution of Lamp1 staining around
the myofiber membrane (Fig. 1).

Abnormal distribution of lysosomes in a zebrafish
model of MDC1A

We next sought to validate the observed change in lysosome
expression in a zebrafish model of MDC1A (candyfloss or caf ),
which harbors a recessive mutation in lama2. To visualize
lysosomes, we used a heat shock-inducible Lamp1-RFP cDNA
construct injected into one-cell stage embryos. We performed
live image analysis to examine the lysosome distribution at 3
and 5 dpf (Fig. 2). At both time points, wild-type (WT) clutch
mates demonstrated a punctate pattern of Lamp1 expression
consistent with the predicted cytoplasmic distribution of
lysosomes (Fig. 2A and B). In caf mutants, however, we observed
expression as large puncta both in the cytoplasm and at the
myoseptal membrane (Fig. 2C–F). Membrane localization of
lysosomes was detected in caf mutants starting at 3 dpf and
became more pronounced by 5 dpf. The intensity of Lamp1-RFP
at the myosepta was significantly higher in caf mutants than
WT embryos (Fig. 2G and H). It was also seen in both attached
and detached fibers (Fig. 2C–F).

In order to determine whether or not lysosome mislocaliza-
tion to the myosepta is dependent upon muscle fiber detach-
ment in caf mutants, we repeated Lamp1-RFP visualization in
caf embryos immobilized in N-benzyl-p-toluene sulphonamide
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Figure 2. Lysosome distribution in caf mutants. (A–B) Lamp1-RFP expression in WT embryos shows that lysosomes are distributed throughout the cytoplasm in

myofibers but not at myosepta (white arrows) at 3 and 5 dpf. (C–F) Lysosomes redistribute partially to the myosepta (white arrows) in caf mutants at 3 dpf (n = 10 fibers)

and 5 dpf (n = 25 fibers), in both attached and detached fibers. Yellow arrows indicate where fibers have detached from the myosepta. (G–H) Lamp1-RFP fluorescence

intensity at the myosepta was significantly increased in caf mutants at 3 dpf (∗, P = 0.035) and 5 dpf (∗∗∗∗, P < 0.0001). Bars represent mean ± SEM.

(BTS), an inhibitor of myosin ATPase and actin-myosin inter-
action (53), which has been shown previously to delay muscle
fiber detachment and degeneration (50). We first verified that
we prevented myofiber detachment by examining muscle bire-
fringence (a measure of myofiber organization) and found, as
previously reported (50), that immobilized caf zebrafish muscle
resembles that of WTs (data not shown). We then heat shocked
embryos at 3 dpf to induce Lamp1-RFP expression and allowed
for a 24-h recovery period. After heat shock induction, we found
no significant difference in Lamp1-RFP localization in immo-
bilized caf larvae as compared with WT, with little RFP signal
detected at the myosepta (Fig. 3A and B). We quantified Lamp1-
RFP expression at the myosepta from immobilized larvae and
found no statistical difference in expression in immobilized caf
mutants compared with their WT siblings (Fig. 3C). This sug-
gests that the redistribution of lysosomes to the myosepta is
dependent on muscle fiber detachment.

Lysosome re-distribution to myosepta is not observed
in a dystrophin-deficient zebrafish model

In order to determine whether lysosome redistribution is a fea-
ture common to muscular dystrophies, we injected Lamp1-RFP

in sapje (sap) embryos, a zebrafish model of Duchenne muscular
dystrophy (54,55). After manual dechorionation at 24 h post-
fertilization (hpf), larvae were heat shocked at 3 dpf and left to
recover for 24 h. At 4 dpf, after the onset of fiber detachment
in sap mutants, we observed Lamp1-positive staining in large
cytoplasmic puncta, with increased aggregation in the detached
fibers (Fig. 4), similar to caf mutants. However, we did not observe
a redistribution of lysosomes to the myosepta (Fig. 4B and C).
Consistent with this observation, we also did not detect a differ-
ence in the intensity of Lamp1-RFP at myosepta in sap myofibers
(Fig. 4D), implying that the altered expression and localization
seen in caf mutants is not a feature common to other muscular
dystrophy zebrafish models.

There is an overall increase in lysosome number
in caf mutants

In addition to localization, we wanted to see if the overall lyso-
some abundance was increased in caf larval muscle. We there-
fore quantified Lamp1-RFP expression in the entire myofiber
(Fig. 5). There is an increase in overall Lamp1-RFP expression
in muscle fibers of caf mutants at 3 and 5 dpf, which is sig-
nificant at 5 dpf (Fig. 5A). However, there is no difference in



736 Human Molecular Genetics, 2022, Vol. 31, No. 5

Figure 3. Lysosome distribution in immobilized caf mutants. (A–B) Lysosome

distribution in BTS-immobilized WT and caf embryos is similar; lysosomes do

not redistribute to the myosepta in paralyzed caf mutants. White arrows indicate

the side of the fiber attached to the myosepta. (C) Lamp1-RFP fluorescence

intensity at the myosepta was not significantly different in immobilized caf

mutants at 4 dpf (P = 0.2591, n = 36 fibers) compared with WT. Bars represent

mean ± SEM.

whole-fiber lysosome abundance in immobilized caf mutants
compared with their WT siblings, although overall expression is
upregulated in immobilized embryos (Fig. 5B). This suggests that,
in addition to a redistribution of lysosomes to the myosepta,
there is an overall upregulation of lysosome biogenesis in caf
mutants.

Increased lysosomal biogenesis moderately protects
against myofiber detachment in caf zebrafish

Given our observation of altered lysosome expression, we
hypothesized that increasing the amount of lysosomes would
be protective for myofibers in caf mutants by preventing
detachment, via membrane repair. To increase lysosomal
quantity, we over-expressed TFEB (56,57). Using co-expression
with Lamp1-RFP, we first determined that TFEB expression in
myofibers increased the number of lysosomes in caf myofibers
(Fig. 6A). We then examined whether this increase led to a
protection from myofiber detachment by expressing in skeletal
muscle either TFEB-GFP or GFP attached to a fragment of
phospholipase Cδ (PLCδ-PH-GFP) as control, along with the
membrane marker mcherry-CAAX (58) to mark myofibers. We
then counted detached versus undetached fibers expressing
GFP (Fig. 6B and C). In WT embryos, the number of detached
fibers was very minimal and was similar under both conditions
(Supplementary Material, Table S1). In caf mutant embryos, after
counting more than 250 fibers across 15 embryos from each
experimental group, we found that the proportion of detached
fibers was lower in mutant embryos expressing TFEB-GFP
(33.9%) compared with those expressing PLCδ-PH-GFP (45.4%).
This difference between the two experimental groups was
significant (P = 0.0065) as indicated by a chi-square test (Table 1).
These results suggest that increasing lysosomal biogenesis
has a protective effect on caf myofibers. Of note, swimming
behavior was not improved in TFEB-expressing caf embryos,
likely because of the relatively small number of fibers with
positive TFEB expression (Supplementary Material, Fig. S1).

Figure 4. Lysosome distribution in sap mutants. (A) Lamp1-RFP expression in

WT embryos shows that lysosomes are distributed throughout the cytoplasm

in myofibers but not at myosepta (white arrows) at 4 dpf. (B–C) There is no

significant redistribution of lysosomes to the myosepta (white arrows) in sap

mutants at 4 dpf (n = 14 fibers), in either attached nor detached fibers. Yellow

arrows indicate where fibers have detached from the myosepta. (D) Lamp1-RFP

fluorescence intensity at the myosepta was not significantly different in sap

mutants at 4 dpf (P = 0.6814, n = 14 fibers) compared with WT. Bars represent

mean ± SEM.

Treatment with the lysosomal agonist MLSA1
marginally improves swimming behavior but does not
alter the dystrophic phenotype of caf mutants

We next wanted to chemically target lysosomes in order to
determine whether we could improve or exacerbate the MDC1A
zebrafish phenotype. Mucolipin synthetic activator 1 (MLSA1) is
an activator of the lysosomal transient potential receptor mucol-
ipin 1 (ML1) channel (43,59,60), which is a Ca2+ channel localized
primarily on the lysosome membrane (61,62). ML1 is involved
in lysosomal Ca2+ release, an important source of intracellular
Ca2+, in addition to the sarcoplasmic reticulum (60,63), and was
shown to mediate the Ca2+-dependent membrane delivery to
damaged sarcolemma (46). Recently, it was shown that ML1
KO mice develop an early-onset muscular dystrophy due to a
reduction in sarcolemma repair and that overexpressing the
channel in a DMD mouse model (mdx) reduces its dystrophic
phenotype (43). We treated zebrafish embryos with increasing

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab278#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab278#supplementary-data
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Table 1. Increasing lysosomal biogenesis protects against myofiber detachment. Number of fibers expressing the GFP constructs were counted
and data were analyzed for Chi-square with Yates’ correction (Chi-square = 7.402; P = 0.0065)

caf mutant Detached fibers Undetached fibers Total

TFEB-GFP 103 201 304
PLCδ-PH-GFP 122 147 269
Total 225 348 573

Figure 5. Mean overall Lamp1-RFP fluorescence intensity in muscle fibers. (A)

There is an overall increase in Lamp1-RFP expression at 3 dpf (n = 10 fibers)

and 5 dpf (n = 25 fibers) in caf mutants compared with WT siblings that is not

significant at 3dpf (P = 0.4431) but it is significant at 5 dpf (P = 0.0026). (B) There

is no overall difference in Lamp1-RFP expression in immobilized caf mutants

compared with immobilized WT siblings (P = 0.3164, n = 36 fibers), nor in sap

mutants compared with their WT siblings (P = 0.789, n = 14 fibers). Bars represent

mean ± SEM.

concentrations of MLSA1 and found that 8 μM MLSA1 is the
maximum concentration that is not toxic. We added the drug
at two different developmental times (24 hpf and at 3 dpf) and
then assessed the swimming behavior at 3 dpf (Supplemen-
tary Material, Fig. S2) and 5 dpf (Fig. 7). At 3 dpf, we did not
observe significant differences between treated and untreated
caf mutants. We observed, however, a significant decrease in
distance traveled by WT-treated compared with WT-untreated
embryos (Supplementary Material, Fig. S2B). At 5 dpf, we did
observe a positive change with MLSA1 in swim behavior of caf
mutants. Specifically, treatment of caf mutants with 8 μM MLSA1
significantly increased their time spent moving (Fig. 7A). There
were, however, no significant improvements in the total distance
traveled or average velocity in treated compared with untreated
caf mutants (Fig. 7A).

To determine whether MLSA1 had any impact on the dys-
trophic phenotype of caf mutants, we quantified the intensity
of birefringence in treated versus untreated caf mutants and
their WT siblings at 3 dpf. We found no significant improvement
of the dystrophic phenotype of caf mutants compared with
the untreated mutants (Supplementary Material, Fig. S2D). To
determine whether lysosome distribution is altered by MLSA1
treatment, we did immunostaining with anti-Lamp1 antibod-
ies on whole-mount embryos at 5 dpf. We found no differ-
ences in Lamp1 localization between treated and untreated
groups (Fig. 7B). Overall, these data suggest that MLSA1 has only
marginal benefit in caf mutants, though an important caveat is
that we were not able to verify drug-target engagement.

Inhibition of lysosome-membrane fusion with Vacuolin
does not exacerbate the swimming behavior or the
dystrophic phenotype of caf mutants

Vacuolin blocks Ca2+-dependent fusion of lysosomes to the
cell membrane, thereby inhibiting cellular exocytosis (64).
We hypothesized that this chemical would exacerbate the
caf phenotype because it interferes with proper lysosomal
function. We first treated zebrafish embryos with increasing
concentrations of Vacuolin and found that 15 μM Vacuolin is the
maximum non-toxic concentration. As with MLSA1, we added
the drug at two different developmental times (24 hpf and at 3
dpf) and assessed swimming behavior at 3 dpf (Supplementary
Material, Fig. S2) and 5 dpf (Supplementary Material, Fig. S3). We
did not observe a significant change in swimming behavior at
3 or 5 dpf with any concentration of Vacuolin in caf mutants
(Supplementary Material, Figs S2 and S3). We did observe,
however, a dose-dependent worsening of swimming behavior
in WT embryos (Supplementary Material, Fig. S3). There was no
significant worsening of the dystrophic phenotype of treated caf
mutants compared with the untreated mutants, as assessed by
birefringence at 3dpf (Supplementary Material, Fig. S2). In all, our
data did not support an exacerbation of the dystrophic mutant
phenotype with lysosomal inhibition, again with the caveat of
lack of confirmation of drug-target engagement.

Class III PI3 kinase inhibitors do not alter
the phenotype of caf mutants

Targeting autophagy has been shown to be therapeutically ben-
eficial in an MDC1A mouse model (33). Specifically, systemic
treatment with 3-MA, a class III PI3K inhibitor that acts to
prevent autophagosome formation (65–67), results in a moderate
improvement to the dystrophic phenotype and walking time of
the Lama2 mutant mice dy3k/dy3k (33). To assess autophagy levels
in caf mutants, we performed immunostaining and western blot
analysis using anti-LC3 antibody, an autophagy marker (68–70).
We found that caf mutants have increased levels of LC3 (Fig. 8 A
and B). To determine whether 3-MA treatment affects autophagy
in zebrafish embryos, we looked at LC3 levels in WT embryos.

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab278#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab278#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab278#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab278#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab278#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab278#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab278#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab278#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab278#supplementary-data
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Figure 6. Increasing lysosomal biogenesis moderately protects against myofiber

detachment in caf zebrafish. (A) Lysosomal biogenesis transcription factor TFEB

increases the number of lysosomes in myofibers, however not significantly

(P = 0.1200). (B) Confocal micrographs illustrating GFP-expressing myofibers in

WT embryos. (C) Confocal micrographs illustrating GFP-expressing myofibers in

caf mutant embryos (detached fibers: TFEB-GFP = 33.9%; PLCδ-PH-GFP = 45.4%;

P = 0.0065).

We found that autophagy is reduced in WT-treated zebrafish
compared with untreated WT group (Fig. 8C). We were interested
to determine if autophagy inhibition leads to an improvement in
the phenotype of caf zebrafish. We thus tested 3-MA at several
doses, including 10 mM, the highest non-toxic concentration.

Regardless of the dosage, we saw no change in any aspect
of swimming behavior of caf mutants treated with 3-MA as
compared with control mutants (Fig. 8D–F).

Given that 3-MA is not entirely specific as a class III PI3
kinase inhibitor (67), we additionally tested a more specific
class III PI3K inhibitor, Vps34-IN1 (71,72). Vps34, a class III PI3K
involved in generating PI3P, is essential for phagosome formation
and maturation and for completion of phagocytosis (73,74). We
observed a small but not statistically significant improvement
in treated caf mutants in time spent moving (Fig 9A) and total
distance traveled (Fig. 9B). We detected no changes in the dys-
trophic phenotype in caf mutants after Vps34-IN1 treatment, as
assessed by birefringence (Fig. 9D).

Inhibition of UPS significantly improves the phenotype
of caf mutants

To determine whether the UPS is also upregulated in the
zebrafish model of MDC1A, similar to the mouse model (32), we
measured the levels of Polyubiquitinylated (PolyU) conjugates
in zebrafish embryos at 5 dpf. We found that PolyU levels
are significantly increased in caf mutants (Fig. 10A and B).
Previous studies showed that pharmacological inhibition of
the proteasome successfully rescues aspects of the muscle
phenotype in several muscular dystrophies (32,75–77). Of these,
the MG-132 proteasome inhibitor was shown to improve the
dystrophic phenotype and lifespan of the dy3K/dy3K mouse model
of MDC1A (32) and the sap zebrafish model of DMD (78). We
therefore tested MG-132 in our caf zebrafish. Corroborating the
findings in the mouse, we found that 10 μM MG-132 treatment
improves the swimming behavior of caf mutants at 3 dpf
(Fig. 10C–F). While there was no significant improvement in
time spent moving (Fig. 10C), treated embryos had significant
improvement in distance traveled (Fig. 10D) and average
velocity (Fig. 10E). We also looked at the extent of muscle fiber
detachment and degeneration with birefringence, and we found
that MG-132 improves the dystrophic phenotype of caf zebrafish
at 3 dpf, although the chemical does not restore muscle integrity
to WT levels (Fig. 10F). The therapeutic benefit of MG-132 in
the caf mutants did not extend beyond 3 dpf, as there was
no improvement in swimming behavior of caf larvae at 4 dpf
(Supplementary Material, Fig. S4A–C). Furthermore, there was no
survival benefit with 10 μM MG-132 (Supplementary Material,
S4D). These data suggest that MG-132 promote modest but
significant benefit in the caf mutants, consistent with the data
from MDC1A mice (32).

Discussion
Normal development and functioning of the skeletal muscle
depends on tightly regulated protein synthesis and degradation
events (39). The autophagy-lysosome pathway and the UPS play
essential roles in protein degradation and quality control of
skeletal muscle proteins (39). In many muscle disorders, these
proteolytic systems are misregulated (79,80). MDC1A, a form
of CMD, is characterized by generalized muscle weakness and
wasting (81). In this study, we used genetic and pharmacological
approaches to study the lysosome, autophagy and UPS systems
in an MDC1A zebrafish model.

Our results show that lysosome distribution is altered in
MDC1A and this feature is common to both MDC1A patient
muscle biopsies and to a lama2 muscular dystrophy zebrafish
model. We found that, in addition to their cytoplasmic local-
ization, lysosomes were distributed at the myofiber membranes

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab278#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab278#supplementary-data
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Figure 7. Treatment with the lysosomal agonist MLSA1 partially improves swimming behavior of caf mutants at 5 dpf. (A) MLSA1 reduces swimming behavior of WT

zebrafish at 5dpf in a dose-dependent manner. Conversely, in caf mutants, treatment with 5 or 8 μM significantly increases the time spent moving. However, there was

no significant improvement in the total distance traveled or average velocity in treated versus untreated caf mutants at any dose tested (n = min 56). Bars represent

mean ± SD. (B) Confocal micrographs of whole-mount embryos stained with anti-Lamp1 antibody (green), Phalloidin (magenta) and DAPI (blue). There are no differences

in Lamp1 distribution between treated and untreated groups at 5 dpf, and no evidence of increased fiber integrity or decreased detachment.

in the human muscle and at the myosepta in zebrafish mus-
cle. There are several potential explanations for our observa-
tion of increased lysosomal concentration at the sarcolemmal
membrane of MDC1A myofibers. The most enticing one is that
the lysosomes are redirected to sites of impaired membrane
integrity in an effort to prevent and/or repair membrane damage.
This is supported in part by our observation of significantly
reduced myofiber detachment with TFEB expression. When we
increased lysosome numbers by expressing TFEB, we observed
an overall decrease in number of detached fibers in caf zebrafish
mutants. Based on these results, we hypothesize that this re-
distribution implies a therapeutic potential for treatments that
improve lysosome number or membrane repair function.

However, we did not see more than minimal improvement
in the phenotype of caf mutants with MLSA-1, a drug known
to improve lysosome-mediated sarcolemmal membrane repair,

nor did we observe worsening of the phenotype with Vacuolin,
an inhibitor of lysosomal fusion. These negative results obtained
with chemical manipulation of the lysosomal system could
mean that these pathways might not play an essential role in the
pathomechanisms associated with MDC1A. There are, however,
important caveats associated with pharmacological approaches
in zebrafish, especially related to the inability to accurately
measure target engagement to be assured the drugs truly alter
lysosomal function, to measure the final concentration of the
drug in the muscle tissue or to assess low-level toxicity of the
drugs (82). In addition, it is quite possible that the lysosomal
function(s) enhanced with TFEB expression are not recapitulated
fully by these chemical treatments.

Another hypothesis for increased lysosomal concentration
at the sarcolemmal membrane is that lysosomes are directed
to the sites of fiber detachment from the ECM to limit and
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Figure 8. Autophagy is upregulated in caf mutants but 3-MA treatment does not improve the swimming behavior or dystrophic phenotype of caf mutants. (A) Confocal

micrographs of whole-mount embryos stained with anti-LC3 (green), anti-Dystrophin (orange), Phalloidin (magenta) and DAPI (blue). LC3 localization and abundance

are affected in caf mutants at 5 dpf; LC3 accumulates at sites of fiber detachment (white arrowheads). (B) Western blot analysis showing increased levels of LC3 II in caf

mutants. LC3 II levels were normalized against total protein. (C) Western blot analysis showing decreased levels of LC3 II in WT zebrafish after 3-MA treatment. LC3 II

levels were normalized against β-actin. (D–F) Swimming behavior analysis. There was no significant change at 3 dpf in time spent moving (D), total distance traveled

(E) or average velocity (F) in caf mutants after treatment with 10 mM 3-MA (n = 165). Bars represent mean ± SEM.

‘clean up’ the cellular damage that occurs with detachment
or membrane injury. ECM–myofiber interactions are critical for
normal muscle function and homeostasis (18,83,84). Autophagic
flux is altered in response to cellular detachment from the ECM
in a variety of biological systems (33,85–90), and accumulation
of autophagosomes at these stress sites directly correlates with
lysosome accumulation, which are responsible for the final step
in degradation of autophagic vesicles (91–93). These observa-
tions fit with our data showing a connection between Lamp1

redistribution and fiber detachment and are supported by the
fact that manipulating proteolytic pathways, particularly the
UPS, appear to have a positive effect on the caf phenotype.
However, while we did see a change in autophagic markers
in untreated caf mutant zebrafish, inhibiting autophagy with
class III PI3K inhibitors did not significantly improve swim-
ming behavior and dystrophic phenotype (71,72,94). This lack
of effect may reflect incomplete target engagement (though we
did observe changes in autophagic flux with 3-MA) or instead
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Figure 9. Vps34-IN1 treatment does not significantly improve the swimming behavior and dystrophic phenotype of caf mutants. (A and B) There is a small magnitude,

non-significant, increase in time spent moving and total distance traveled in caf mutants after treatment with 100 nM Vps34-IN1 (n = 96). (C) There is no change in

average velocity in caf mutants after treatment with 100 nM Vps34-IN1 (n = 96). (D) Birefringence intensity measurements show no significant improvement to the

dystrophic phenotype of caf mutants after Vps34-IN1 treatment (n = 16). ∗∗∗∗P < 0.0001. Bars represent mean ± SEM.

suggest that blocking autophagy is not able to prevent myofiber
detachment or otherwise modify the MDC1A phenotype. Alter-
natively, it is conceivable that other autophagy pathways might
be activated, compensating for the Vps34 inhibition, similarly to
results previously observed in myotubes (95).

Additional evidence in support of this latter hypothesis is the
more robust improvement in swimming behavior and dystrophic
phenotype we observed when we treated caf zebrafish with
the proteasome inhibitor MG-132. These results are similar to
those described in other animal models of muscular dystrophies
(32,75–78,96). Increased protein ubiquitination and upregulation
of the proteasome complex were shown to be hallmarks of the
dystrophic muscle (96,97), and inhibition of proteasome activity
was shown to rescue the dystrophic phenotype (32,76–78). Of
note, MG-132 is the only compound we found that improves both
swim behavior and muscle integrity.

Overall, our results reveal new pathophysiological features
of MDC1A and contribute to an improved understanding of the
advantages and limitations of pharmacological treatments of
MDC1A. Based on our results, we conclude that lysosome redis-
tribution in MDC1A is an intriguing phenomenon with uncertain
therapeutic implications that warrants further investigations.

Material and Methods
Zebrafish husbandry and strains

We adhered to established zebrafish husbandry and all pro-
tocols used in this study were approved by the Animal Care

Committee at the Peter Gilgan Centre for Research and Learning
at The Hospital for Sick Children (Protocol #: 1000052731). The
caf and sap zebrafish strains were obtained from University
of Tubingen (Tubingen, Germany). Heterozygous carriers were
genotyped using genomic DNA extracted from tail clips and
specially designed Taqman PCR protocols (Thermo Fischer Sci-
entific) we optimized for each strain. Heterozygous incrosses
provided caf and sap homozygous mutants, and all embryos
that were not raised were sacrificed in accordance with our
established protocols.

Microinjections and DNA constructs

Embryos from a heterozygous caf or sap incross were isolated
at 20 min post-fertilization. Lamp1-RFP heat shock-inducible
DNA construct was injected into one-cell stage embryos at 15 pg
concentration. These were then incubated in egg water (system
water with methylene blue) at 28.5◦C, manually dechorionated
at 24 hpf and either placed back in the incubator for observation
at a later time point or immediately placed in 10 mL of system
water (without methylene blue) in a 60 × 15 mm Petri dish, which
was then placed in a 37◦C water bath for one hour. After heat-
shock, embryos were returned to the 28.5◦C incubator for a 24-h
recovery period. Upon recovery, larvae were immobilized with
0.04% ethyl 3-aminobenzoate methanesulfonate salt (tricaine)
and embedded in 1% agarose diluted in system water on a
MatTek 35 mm glass bottom dish (No. 1) (MatTek Corp., Ashland,
MA, USA). PLC-δ-PH-GFP (Tobias Meyer Lab, Stanford University,
CA), mcherry-CAAX (58) and TFEB-GFP (98) (Shawn Ferguson
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Figure 10. UPS is upregulated and MG-132 treatment improves the swimming behavior and dystrophic phenotype of caf mutants. (A and B) Western blot analysis

showing increased levels of Polyubiquitinylated proteins (PolyU) in caf mutants. (C–E) Swimming behavior analysis. (C) There is no significant improvement in time

spent swimming in caf mutants treated with 10 μM MG132 (n = 166). (D and E) There are significant improvements in distance traveled and average velocity in caf

mutants at 3 dpf after treatment with 10 μM MG132. (F) Treatment with 10 μM MG132 improves the dystrophic phenotype of caf mutants at 3 dpf but does not restore

muscle integrity to WT levels (n = 43). ∗∗P < 0.0075; ∗∗∗∗P < 0.0001. Bars represent mean ± SEM.

Lab; Addgene plasmid # 38119; http://n2t.net/addgene:38119;
RRID:Addgene_38 119) constructs were injected at 10 pg concen-
tration each.

Muscle biopsies

Muscle biopsy samples were obtained from three unrelated
MDC1A patients with complete merosin deficiency.

Immobilization of caf embryos and larvae

Embryos in the 75%-epiboly-stage (99) were manually dechori-
onated with forceps and incubated in 50 μM BTS (Sigma-Aldrich
#S949760) in egg water at 28.5◦C, which was changed daily.

Drug treatment

Drugs were added at two developmental timepoints: either at
24 hpf or at 3 dpf. The embryos treated at 24 hpf were first
manually dechorionated at 24 hpf and placed into groups of 20
in 24-well plates. The chemicals [3-MA (Sigma; #M9281); Vps34-
IN1 (EMD Millipore; #532628); MG-132 (Sigma; #M7499); MLSA1
(Tocris; #4746); Vacuolin (Santa Cruz; #351986–85-1)] were first
dissolved in either double-distilled water (3-MA) or DMSO (all
the other drugs). Then, they were diluted in fresh system water
to their working concentrations and paired with either water or
DMSO controls. Final concentration of double-distilled water or
DMSO was 0.1%. Solutions were changed every 24 h until analysis
of birefringence, survival or movement. The drugs were used at

http://n2t.net/addgene:38119;
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the following concentrations: 10 mM 3-MA; 100 nM Vps34-IN1;
10 μM MG-132; 2.5, 5 and 8 μM MLSA1; and 5, 10 and 15 μM
Vacuolin.

Birefringence

At 3 or 5 dpf, larvae were anaesthetized with 0.04% tricaine
and muscle integrity was assessed by birefringence using an
Olympus SZX7 stereoscope equipped with two polarizing filters.
Images were acquired with a Firefly camera (Belmont, MA, USA).
Measurements of birefringence intensity were made with ImageJ
(ImageJ, U. S. National Institutes of Health, Bethesda, MD, USA,
https://imagej.nih.gov/ij/).

Survival analysis

Embryos were manually dechorionated at 24 hpf and placed into
groups of 20 in a 24-well plate. The chemical or control solution
was added at this stage and the solution was changed every
24 h. At 5 dpf, the larvae were transferred to the fish facility
system daily for feeding with a glass pipette. Larvae remained
on the system for feeding for 7 h and were then retrieved with
a glass pipette and returned to treatment or control conditions
in a 60 × 15 mm Petri dish and incubated at 28.5◦C. Larvae were
counted before and after transfer to the system for feeding, upon
which dead embryos were removed.

Swimming behavior

To assess motor function of the larvae with and without chem-
ical treatment, our lab developed a photochemical movement
assay using the optovin analogue 6b8 (ChemBridge, #5707191)
(48,100). Optovin is a reversible transient receptor protein (TRP)
A1 (TRPA1) ligand that elicits motor excitation following expo-
sure to light. The 6b8 analogue stock was prepared to 10 mM
concentration in DMSO then to 10 μM working concentration
by adding the stock into system water in a 1:1000 ratio. Larvae
were placed into 96-well plates with a glass pipette using surface
tension and excess water was removed. The larvae would remain
covered in minimal water that contributed negligibly to the
overall volume of the well. After 150 μL of the 6b8 solution was
added to each well, the plates were covered with aluminum foil
to protect the larvae from light and incubated at 28.5◦C for 5 min
prior to the analysis of motor behavior. After incubation, move-
ment of the larvae was monitored for 30 s using the Zebrabox
platform (Viewpoint Behaviour Technology, Lyon, France). We
designed the parameters of the assay as follows: 10 s light off;
10 s light on and 10 s light off. Time spent moving, total distance
traveled and average velocity during the 30 s cycle were used to
compare groups of treated versus untreated larvae for all chem-
icals tested, and the data collected was treated as continuous.
We also used this assay to determine the baseline function of caf
mutants compared with their WT sibling in normal conditions.

Westerns

Protein samples were isolated from zebrafish embryos in RIPA
lysis buffer supplemented with protease and phosphatase
inhibitors. Total protein was stained with Revert Total Protein
Stain (LI-COR Biotechnology; Lincoln, NE, USA) and visualized
with Odyssey FX Imaging system using Image Studio software
(LI-COR Biotechnology). Membranes were blocked in TBST (TBS
with 0.1% Tween-20) with 5% BSA, for 1 h, at RT, and probed with
primary antibodies, overnight, at 4◦C. The following dilutions

were used: rabbit anti-LC3B (1:1000; Novus Biologicals; NB600–
1384), mouse IgM anti-PolyU (1:1000; Enzo Life Sciences; BML-
PW8805–0500) and rabbit anti-β-actin (1:1000; Cell Signaling
Technology #4967). After rinsing with TBST (3 × 10 min),
membranes were incubated for 1 h at RT with goat anti-rabbit
or rabbit anti-mouse IgM HRP-conjugate secondary antibodies
(ThermoFisher Scientific), diluted at 1:5000 in blocking solution.
ECL detection (ThermoFisher Scientific) was performed on
Bio-Rad Gel Doc System using Image Lab software (Bio-Rad
Laboratories, Hercules, CA, USA). Blot quantification analysis
was made using Image J (ImageJ, U. S. National Institutes of
Health, Bethesda, MD, USA, https://imagej.nih.gov/ij/).

Microscopic preparations and immunofluorescence
staining

Muscle biopsy microscopic preparations were processed for
immunostaining as previously described (84). Anti-Lamp1 rat
antibody (1DB4, Developmental Studies Hybridoma Bank) was
used at 1:100 dilution.

For whole-mount microscopic preparations, zebrafish
embryos were fixed overnight in 4% paraformaldehyde (PFA)
(Electron Microscopy Sciences, Hatfield, PA, USA), rinsed
3 × 5 min with PBST (PBS + 0.3% Triton X), washed once in ddH2O
for 5 min, followed by 10 min treatment with 500 μL pre-chilled
acetone at −20◦C. Then, embryos were washed gently in ddH2O
for 5 min, rinsed once in PBST for 5 min and blocked in PBSTB
(PBST with 5% BSA) for 2 h at room temperature (RT). Embryos
were incubated with primary antibodies diluted in PBSTB,
overnight, at 4◦C. The following dilutions were used: rabbit anti-
Lamp1 (1:200; Abcam; ab24170), rabbit anti-LC3B (1:200; Novus
Biologicals; NB600–1384) and mouse anti-Dystrophin (1:10;
Developmental Studies Hybridoma Bank; 7A10). Next, embryos
were incubated with secondary antibodies or fluorescent dyes
diluted in PBSTB, at RT, for 2–3 h. The following dilutions were
used: Alexa Fluor 488 goat anti-rabbit (1:250; ThermoFisher
Scientific), Alexa Fluor 555 goat anti-mouse (1:250; ThermoFisher
Scientific), Alexa Fluor 647 goat anti-mouse (1:250; ThermoFisher
Scientific), Rhodamine-Phalloidin (1:200; Molecular Probes) and
Alexa Fluor 633 Phalloidin (1:200; ThermoFisher Scientific). After
rinsing with PBST 3 × 10 min, the embryos were mounted in
ProLong Gold Antifade Mountant with DAPI (ThermoFisher
Scientific).

Microscopy and image analysis

Larvae were visualized with a Nikon A1R laser confocal
microscope, using a 40× or 63× oil-immersion lens. Images
were acquired with NIS Elements software (Nikon Instruments
Inc., Melville, NY, USA). Fluorescence intensity at myosepta and
lysosome abundance in the entire myofiber were measured in
regions of interest drawn either along the myosepta or along
selected regions in the myofiber (i.e. central region, sarcolemma)
using Volocity 6.3 software (PerkinElmer, Inc., Waltham, MA,
USA). Micrographs were edited using NIS Elements software
and/or Adobe Photoshop (Adobe Inc., San Jose, CA, USA).

Statistical analysis

All statistical analyses (ANOVA, Chi-square and non-parametric
t-tests) were performed using GraphPad Prism 6.0 and 8.0.

https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/
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