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ABSTRACT Fluorescence lifetime imaging captures the spatial distribution of chemical species across cellular environments
employing pulsed illumination confocal setups. However, quantitative interpretation of lifetime data continues to face critical
challenges. For instance, fluorescent species with known in vitro excited-state lifetimes may split into multiple species with
unique lifetimes when introduced into complex living environments. What is more, mixtures of species, which may be both
endogenous and introduced into the sample, may exhibit 1) very similar lifetimes as well as 2) wide ranges of lifetimes including
lifetimes shorter than the instrumental response function or whose duration may be long enough to be comparable to the inter-
pulse window. By contrast, existing methods of analysis are optimized for well-separated and intermediate lifetimes. Here, we
broaden the applicability of fluorescence lifetime analysis by simultaneously treating unknown mixtures of arbitrary lifetimes—
outside the intermediate, Goldilocks, zone—for data drawn from a single confocal spot leveraging the tools of Bayesian nonpara-
metrics (BNP). We benchmark our algorithm, termed BNP lifetime analysis, using a range of synthetic and experimental data.
Moreover, we show that the BNP lifetime analysis method can distinguish and deduce lifetimes using photon counts as small as
500.
SIGNIFICANCE We introduce a method of Bayesian nonparametrics lifetime analysis to infer lifetimes and photon ratios
in a single confocal spot. The Bayesian nonparametrics lifetime analysis method is capable of learning a wide range of
lifetimes from below the instrumental response function to comparable to the laser interpulse window.
INTRODUCTION

Amid a number of fluorescence microscopy techniques
(1–8), fluorescence lifetime imaging microscopy (FLIM)
has extensively contributed to our understanding of subcel-
lular structures and processes (9–16). In FLIM experiments
within a biological sample, multiple biomolecules may be
labeled with unique fluorophores characterized by different
lifetimes (17–20). To deduce how these labels are spatially
distributed, a single (confocal) spot within the sample is
exposed to either modulated (21,22) or pulsed (23,24) exci-
tation with the excitation spot eventually scanned across the
sample. Here, we focus on pulsed illumination since it pro-
vides time-stamped photon arrivals (and helps reduce photo-
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toxicity). A train of such illumination pulses is shown in
Fig. 1 a.

Once excited by a pulse, fluorophores emit photons
whose arrival times at the detector are recorded and used
to infer lifetimes and corresponding photon ratios across
species for each spot (25–27). By photon ratios, we mean
the probability (weight) that any given photon will be
emitted by each species within the confocal area probed.
The photon ratio is itself related to the product of concentra-
tion of the species and excitation cross section.

To deduce weights (photon ratios) and lifetimes present
from photon arrival time data, analysis methods employ
either model free techniques, such as phasors (26,28) and
deep learning (29,30), or model-based techniques, such as
least-squares (31,32), compressed sensing (33), maximum
likelihood (34,35), and Bayesian methods (27,36–39).

However, existing analysis methods are optimized for two
well-separated lifetimes typically longer than the instrument
response function (IRF) (see Fig. 1) but otherwise much
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FIGURE 1 A cartoon representation of laser pulses, designated by green spikes, and fluorophore excitation and emission. (a) A train of laser pulses with

interpulse window T. The pink dashed lines represent the pulse centers. (b) Fluorophores can be excited during laser pulses and may emit photons after mul-

tiple pulses due to long excited-state lifetimes compared with the interpulse windows. Indeed, even lifetimes on par with the interpulse time can appear after

the subsequent pulse with probability e� 1. (c) For fluorophores with lifetimes shorter than the IRF, an excited fluorophore might emit photons even before the

excitation pulse is complete. Here, tex; tem, and tre, respectively, stand for excitation, emission times, and the recorded photon arrival time. The difference

between emission and recorded times arises from the stochastic delay in detectors that, combined with the finite breadth of the laser pulse, is termed

the IRF.

BNP lifetime analysis
shorter than the interpulse window. This regime of lifetimes
can be difficult to control in vivo, as lifetimes invariably drift
in response to the local environment chemistry whose
composition may further split apparent single lifetimes
into multiple different lifetimes (40–42). In addition, exist-
ing lifetime analysis methods, starting from the single spot/
pixel, face several other key challenges including 1)
requiring the number of lifetime components as input
otherwise often truncated for simplicity to two species
(29,30,33–38); 2) require high photon budgets due to infor-
mation averaging arising from data preprocessing, e.g., data
binning (31,32,43); and 3) provide full uncertainty over the
estimated parameters originating from unavoidable sources
of stochasticity including random excitation times intro-
duced by the IRF’s finite breadth and exponential waiting
times for excited-state lifetimes (29–35).
Biophysical Journal 122, 672–683, February 21, 2023 673
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To address these challenges, we begin by considering
photon arrival times. These photon arrival times are essen-
tially a mixture of temporal data points generated from
multiple different sources, namely fluorophore species,
characterized by their lifetimes. As such, mathematically,
the output of a pulsed excitation experiment may be concep-
tualized as generating data drawn from a mixture model
where the ultimate goal of an analysis method would be to
classify the arrival times into multiple categories corre-
sponding to the underlying fluorophore species. More
broadly, such classification tasks fall within the purview of
clustering algorithms. For instance, K-means (44) is perhaps
the simplest and most popular clustering algorithm classi-
fying a set of input data points into a given number, M, of
clusters.

However, as the number of lifetime components is inher-
ently unknown in photon arrival analysis, we need to evoke
more sophisticated clustering algorithms.

To be precise, to correctly propagate inherent uncer-
tainties, we work within a Bayesian paradigm where our
inference is informed by sources of uncertainty including
intrinsic stochasticity in the photon arrival times, finite
breadth of IRF, and finite interpulse time. Moreover, we
further specialize working within a Bayesian nonparametric
(BNP) paradigm to accommodate the unknown number of
fluorophore species.

In particular, within BNPs, we leverage Dirichlet pro-
cesses (45–49) to allow inference over the number of spe-
cies warranted by the data while rigorously propagating
uncertainty from all the existing sources throughout the
problem.

The Dirichlet process formally allows us to place
priors on an infinite number of putative species that
could be warranted by the data (45–49). As we will
see, as we collect data, weights associated to species
contributing to the data will increase, while the weights
ascribed to other species will reduce to negligible values
(see Fig. 2).
t hgi e
w

species 

thgie
w

species 

thgie
w

species 

a b

c

d

674 Biophysical Journal 122, 672–683, February 21, 2023
Here, building upon our previous work (27,39), we pro-
pose a BNP lifetime analysis (BNP-LA) method. This
method leverages the Dirichlet process along with an accu-
rate likelihood model, informed by features such as IRF and
pulsed excitation (see Fig. 1, b–c), to simultaneously
address all the following challenges: it is capable of dealing
with a broad range of lifetimes ranging from values smaller
than the IRF width to comparable to the interpulse time
while addressing the challenges 1–3 above.

Before moving on to the results, a word on nomenclature is
warranted. ‘‘Species’’ here is defined as it normally is in the
FLIM literature, i.e., as exponential components (1,2). We
thus inherit all advantages and disadvantages of this defini-
tion. This nomenclature is historically motivated by the fact
that many fluorophore lifetime histograms are beautifully fit
to a single exponential (36,39). As such, we may be (incor-
rectly) inclined to assume that a species is a chemically
distinct molecule. Indeed, we need to be careful as there exist
cases where the lifetime may differ from exponential (50–52)
and be, say, bi-exponential. This is the case where two radia-
tive pathways are available for de-excitation. In this case, the
literature would define these as two ‘‘species.’’
MATERIALS AND METHODS

In this section, we illustrate our likelihood model formulation and

inverse strategy. We begin with the likelihood for a set of given photon

arrival times Dt

LðDtjl1:M; sÞ ¼
Y
k

LðDtkjlsk Þ; (1)

where LðDtkjlsk Þ is the likelihood for the kth photon arrival time. The indi-

cator parameter sk allocates photons to different species, and lsk and Dtk ,
respectively, denote the inverse of the lifetime and the kth photon arrival

time. The bars over parameters denote the set of parameters for all K pho-

tons, for example Dt ¼ fDt1;.;DtKg.
The likelihood for the kth photon arrival time, assuming the photon is

from a species indicated by sk, can be derived by considering that Dtk is

the sum of three random variables (also see Eq. 13): 1) the time the fluoro-

phore spent in the excited state sampled from an exponential distribution; 2)
FIGURE 2 The Dirichlet process for lifetime

analysis. (a) A spot within a sample is illuminated

with a green laser that, in turn, leads to photons

from red and blue fluorophore species staining

different structures within the sample. The set of

collected photon arrival times from this experiment

is modeled with a Dirichlet process with the first

10 species, represented by 10 different colors,

shown. (b) When no photon arrival times have yet

been collected, the weights ascribed to all species

coincide with the prior value (often it is reasonable

to assume uniform). (c) When 500 photon arrival

times have been collected, the weights start differing

from the nominal prior value, and, in this cartoon, the

blue and red species gain more weights. (d) At 5000

photon arrival times, most of the weights are

ascribed to the blue and red species, while the rest

tend toward negligible values.
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the stochastic time added due to the IRF sampled from a Gaussian distribu-

tion; and 3) the number of pulses over which the fluorophore remains

excited sampled from a categorical distribution. As such, the likelihood is

given by a convolution of the distributions arising from these three contri-

butions (39):

LðDtkjlskÞ ¼
XN
n ¼ 0

�
erfc

�
tIRF � Dtk � nT � lsks

2
IRF

sIRF

ffiffiffi
2

p
�

� lsk
2
exp

�
lsk
2

�
2ðtIRF � Dtk � nTÞþ lsks

2
IRF

���
;

(2)

where N;T;tIRF, and s
2
IRF are, respectively, the maximum number of pulses

after which photon emissions might occur, the interpulse window, the
offset, and the IRF variance. This likelihood has been previously derived

and employed within a parametric framework with a known number of life-

time components (39). Here, we go beyond the parametric framework and

use this likelihood in conjunction with a Dirichlet process to obtain a pos-

terior within a nonparametric Bayesian paradigm where the number of life-

time components is one of the unknowns.

We now proceed to derive our nonparametric posterior. The posterior is

the joint probability over all unknowns we wish to learn including the

weight over each species denoted by symbol pm for the mth species, inverse

of the corresponding lifetimes (i.e., the rate) denoted by lm for the mth spe-
cies, and the indicator parameters for each photon designated by sk and as-

signing the kth photon to one of the species. We collect all these parameters

into q ¼ ðl1:M ;p1:M;sÞ, where, formally,M/N within the nonparametric

framework. Next, the posterior over q, proportional to the product of the

likelihood and priors over these parameters, reads

pðqjDtÞfpðDtjqÞpðqÞ; (3)

where pðqÞ denotes the corresponding priors. This posterior, however, as-

sumes a nonstandard form, and we cannot jointly sample all parameters.
Therefore, we invoke a Gibbs sampling strategy for which we can sample

individual parameters from the full conditional posteriors (53–60). That

is, the posterior of the parameter of interest conditioned on the remaining

parameters. The Gibbs sampling strategy of BNP-LA is as follows:

1) Sample the indicator parameters from their full conditional posterior

given by

pðsjDt; l1:M;p1:MÞfpðDtjqÞpðsjp1:MÞ; (4)

where pðsjp1:MÞ is the prior over the indicator parameters.

2) Sample weights using their corresponding full conditional posterior
P ¼
p
�
Dt
��s;p1:M; l

new
1:M

�
Gamma

�
lnew1:M ;al; bl

�
Gamma

	
aprop;

lold
1:M

aprop



p
�
Dt
��s;p1:M; l

old
1:M

�
Gamma

�
lold1:M;al; bl

�
Gamma

	
aprop;

lnew
1:M

aprop


 : (12)
pðp1:MjDt; s; l1:MÞfpðsjp1:MÞpðp1:MÞ; (5)

where pðp1:MÞ denotes the prior over weights.
(3) Sample the inverse of the lifetimes employing their full conditional pos-
terior given as

pðl1:MjDt; s; l1:MÞfpðDtjqÞpðl1:MÞ; (6)
where pðl1:MÞ is the prior distribution over the lifetime inverse.

Now, for the sake of computational convenience, we opt for conjugate

priors whenever possible such that those conditional posteriors assume

analytical forms allowing for direct sampling. As such, we put a categorical

prior distribution over the indicator parameters

pðsjp1:MÞ ¼ Categorical1:Mðs;p1:MÞ; (7)

leading to a closed form full conditional distribution that can be directly

sampled. For weights, we select a Dirichlet process prior
pðp1:Mjap;MÞ ¼ Dirichlet1:M

	
p1:m;

ap

M
;.;

ap

M



(8)

conjugate to the categorical distribution. Here, ap is a positive hyper-

parameter, which we set to one. This results in a standard closed form
distribution

pðp1:MjDt; s; l1:MÞf pðsjp1:MÞpðp1:Mjap;MÞ

¼
"Y

k

pðskjp1:MÞ
#
Dirichlet1:M

	
p1:M;

ap

M
;.;

ap

M




¼ Dirichlet1:M

 
p1:M;

ap

M
þ
X
k

d1;sk ;.;
ap

M
þ
X
k

dM;sk

!
;

(9)

where d denotes the Kronecker delta. There are two approaches that can be

employed to draw samples from the distribution in Eq. 9: slice sampling and
finite truncation (46–49). Here, we opt for finite truncation due its compu-

tational efficiency. This approach sets an upper limit on the number of spe-

cies by assuming a finite, but large, value for M, facilitating sampling from

the above Dirichlet distribution. Finally, for the inverse of lifetimes, we use

a gamma prior to guarantee positive values:

pðl1:Mjal;blÞ ¼ Gammaðl1:M;al; blÞ: (10)

Since the likelihood of Eq. 2 does not have an associated conjugate

prior, even with a choice of gamma prior, we must use Metropolis-

Hastings (61–65) to numerically draw samples. Here, samples are proposed

also using a gamma proposal distribution,

lnew1:M � Gamma

�
aprop;

lold1:M

aprop

�
; (11)

to avoid negative proposals. The proposed values are then accepted with

probability
Using the Gibbs sampling strategy described above, we build a chain of

samples by iteratively sweeping the set of parameters. Finally, the generated

chain can be used for the subsequent numerical analyses.
RESULTS

Our BNP-LA method’s main objective is to learn the life-
times and their corresponding weights given a set of photon
Biophysical Journal 122, 672–683, February 21, 2023 675
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arrival times. As the BNP-LA method operates within the
Bayesian framework, to learn these parameters, we work
with a posterior, which is proportional to the product of
the likelihood and priors over these parameters (see mate-
rials and methods). However, our nonparametric posterior
does not attain a standard form, and we cannot deal with
that analytically. Therefore, we develop a numerical strategy
to efficiently sample our posterior (see materials and
methods). The results presented in this section are thus his-
tograms of samples drawn from the BNP-LA posterior.

Here, we use both synthetic and experimental data to
evaluate the performance of our BNP-LA analysis package.
We first use synthetic data to benchmark our method with 1)
a decreasing interpulse window (see Fig. 3) where photon
detections occurring after pulses following the one inducing
excitation become increasingly probable; 2) multiple life-
times smaller than the width of IRF distribution, and life-
times with subnanosecond differences (see Figs. 4 and 5);
3) photon counts (see Fig. 5); 4) a range of different weights
associated to species due to variations in photon counts
across species (see Fig. 6); and 5) more than two lifetimes
(see Fig. 7). In addition, we compare parametric and
nonparametric analyses (see Fig. 7), revealing that, for the
same amount of data, nonparametrics reveals the number
of species and their associated uncertainty.

Next, we employ experimental data to evaluate the
robustness of our method in estimating lifetimes over a
wide range, e.g., short lifetimes falling within the width of
the IRF, with short interpulse windows and different photon
counts (see Fig. 8). Moreover, employing experimental data
containing lifetimes of 0.6, 2.3, and 4.6 ns, we will show that
BNP-LA can distinguish and deduce three lifetime species
using as few as 30,000 photons (see Fig. 9).
Synthetic data

Here, we first illustrate how we simulate our data and then
describe our BNP-LA analysis. To generate synthetic
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photon arrival time traces, for each photon, we would first
need to sample the species being excited, then sample the
stochastic excited-state lifetime from an exponential, and
finally add to this lifetime a stochastic IRF time due to
both finite size of laser pulses, i.e., laser pulses are not infi-
nitely narrow, and detector delay. As such, we first sample
the fluorophore species leading to the kth photon detection
(sk ˛ f1;.;Mg for M fluorophore species) from a categor-
ical distribution, then an excited-state lifetime ðDtem;kÞ from
an exponential distribution, and then add to this the IRF time
ðDtIRF;kÞ sampled from a normal distribution.

To be clear, the categorical distribution is an extension of
the Bernoulli distribution with more than two options (spe-
cies); the mean of the exponential distribution for each indi-
vidual species that we use in the simulation to sample
lifetimes is set to that species’ lifetime; and the Gaussian
used in sampling the IRF time has a mean and standard de-
viation of 10.4 and 0.66 ns, respectively (similar to values in
our experimental data that we will see shortly) (7). We also
assume a value for the interpulse window of T ¼ 12:8 ns,
again inspired by values from our experimental data.

In cases when the interpulse window is not much larger
than both lifetimes and the IRF offset, the data generated
as described above can lead to photon arrival times larger
than the interpulse window. As such, to guarantee photon
arrival times smaller than the interpulse window, we have
to introduce a third term as follows,

Dtk ¼ Dtem;k þ DtIRF;k � T
jDtem;k þ DtIRF;k

T

k
; (13)
for the kth photon arrival time. Here, P:R gives the integer
part of its argument.
Now, in order to test BNP-LA against different interpulse
windows (for which the third term in Eq. 13 becomes
increasingly important), we simulate data, as described
above, using two lifetimes of 1 and 8 ns and interpulse win-
dows of 51.2, 25.6, 12.8, and 6.4 ns (see Fig. 3, a–d).
FIGURE 3 Interpulse window effect on lifetime

estimation. (a–d) Histograms of photon arrival data

generated with two lifetimes of 1 and 8 ns and inter-

pulse times of 51.2, 25.6, 12.8, and 6.4 ns, respec-

tively. Pink dashed lines represent the interpulse

window. PDF stands for probability density function,

which is obtained by normalizing the area under his-

tograms to unity. (e–h) Marginal posterior of life-

times corresponding to each generated data. Red

dashed lines represent ground truths. We retain the

same convention throughout the article.
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FIGURE 4 Picking out two lifetimes smaller than the IRF width (sIRF ¼ 0:66 ns) as we increase the number of photons in the analysis. (a) Plot of sampled

photon ratios ðpÞ from the posterior using just 500 photons in the analysis, where only the component shown in green has a nonnegligible photon ratio (i.e., no

other species appreciably contributes photons). (b) Lifetime histogram corresponding to the green component contributing more than 0.95 photon ratio in (a).

(c) Plot of sampled photon ratios from the posterior using 1000 photons, where the green and blue components have nonnegligible photon ratios (i.e., again,

no other species appreciably contributes photons). (d) Histogram of lifetime samples corresponding to the green and blue components contributing a more

than 0.95 photon ratio after 1500 samples in (c). (e) Plot of sampled photon ratios using 5000 photons, where the red and blue components have nonnegligible

photon ratios. (f) Histogram of lifetime samples from the posterior corresponding to the blue and red components contributing more than 0.95 to the

photon ratio after 1500 samples, as before, in (e). We note that the two (ground-truth) species become apparent only beyond 500 photons incorporated

into the analysis.

BNP lifetime analysis
We start by describing results using the largest inter-
pulse window as this is the easiest case since we can
safely ascribe arriving photons as having been generated
from the excitation pulse immediately preceding the
photon arrival. In this case, the resulting weights ascribed
to two lifetimes are nonnegligible and add up to more than
0.9. The histogram of the lifetimes pertaining to these
wights is shown in Fig. 3 e. Here, our method infers
both small and large lifetimes with standard deviations
of 0.01 and 0.35 ns, respectively. Next, in Fig. 3, f and
g, we consider the more difficult case of decreased inter-
pulse windows. This, in turn, leads to larger uncertainties
over lifetimes, although the means of the histograms still
coincide with true values. Finally, Fig. 3 h shows the re-
sulting lifetimes corresponding to the data in Fig. 3
d with an interpulse window 6.4 ns. Here, again, two
important weights are found associated to two lifetimes.
However, our method begins under-estimating the lifetime
with the ground truth (8 ns) larger than the interpulse win-
dow. To develop an intuition as to why the method begins
to fail (as it should) for increasingly small windows, we
consider infinitely small interpulse windows. In this
case, the photon arrival times are essentially uniform
over that window, and no information can be extracted
from a flat distribution. Conversely, as the interpulse win-
dow duration increases, this uniform distribution in arrival
times begin acquiring some shape that, loosely speaking,
any method can begin leveraging to deduce lifetimes.

Next, we continue by considering the challenging case of
multiple lifetimes whose value is smaller than the width of
the IRF (in shorthand, ‘‘lifetimes below the IRF’’). We do
so by generating photon traces involving 500, 1000, and
5000 photons with two lifetimes of 0.2 and 0.6 ns, both
below the IRF, and similar weights (photon ratios) of 0.5.
We then show how many photons are needed to start
discerning that we have two lifetimes present. To do so,
we first consider the weights sampled by our BNP-LA algo-
rithm associated to each species and report them as the num-
ber of lifetime components those lifetimes associated to
weights with nonnegligible values (see Figs. 2 and 4).
Here, we start by describing the results for the trace contain-
ing 500 photons. When these data are analyzed, the BNP-
LA method (incorrectly) ascribes z0:95 weight to a single
lifetime component represented in green in Fig. 4 a. The re-
sulting lifetime histogram has a peak close to the average
lifetimes of the two (ground truth) components present in
the data (see Fig. 4 b). Increasing the photon budget in the
analysis to 1000 and then 5000, our method begins attrib-
uting nonnegligible weights to two lifetimes with weights
whose sum is larger than 0.95 (see Fig. 4, c–f). We also
Biophysical Journal 122, 672–683, February 21, 2023 677
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FIGURE 5 Robustness test against lifetimes and photon counts. (a–c) Marginal posteriors of lifetimes for 1 and 1.7 ns with subnanosecond difference

using different photon counts. (d–f) Marginal posterior of lifetimes of 1 and 3 ns using different photon counts. (g–i) Marginal posterior of lifetimes of 1

and 8 ns (close to interpulse window) using different photon counts.
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note that the uncertainties over the estimated lifetimes
decrease with increasing photon counts.

After demonstrating our method for lifetimes below the
IRF, we proceed to assess its performance over a range of
lifetimes, namely lifetimes with subnanosecond differences
(but not necessarily below the IRF), lifetimes comparable to
the interpulse window (T ¼ 12:8 ns), and lifetimes in the
intermediate range. To do so, we analyzed synthetic photon
traces containing 500, 1000, and 5000 photons.

In Fig. 5, a–c, we start by considering lifetimes with sub-
nanosecond difference (lifetimes of 1 and 1.7 ns). Using 500
photons, only a single lifetime is appreciably warranted by
the data with a weight much larger than the other lifetimes
(see Fig. 5 a). However, upon reaching 1000 and 5000
collected photons, BNP-LA begins ascribing important
weight to two lifetimes adding up to more that 0.9 (Fig. 5,
b and c). Next, we examine larger lifetime gaps in Fig. 5,
d–i. In these cases, the BNP-LA method attributes nonnegli-
gible weights to two lifetimes even for data sets with as few
as 500 photons (Fig. 5, d and g). At larger photon counts, as
expected, our method recovers sharper histograms while
678 Biophysical Journal 122, 672–683, February 21, 2023
accurately recovering both lifetimes with less than an 8%
difference between the histograms’ means (posteriors’
means) and ground-truth values (Fig. 5, e–f and h–i).

Now that we have benchmarked our BNP-LA algorithm
using a wide range of lifetimes, we continue by evaluating
our algorithm in learning the lifetime weights, designated
by p˛ ½0;1�. To be clear, the weights associated to different
lifetimes are proportional to the photon ratios from those
lifetimes. In order to perform such an evaluation, we simu-
late data sets with two lifetimes of 1 and 3 ns containing
1000 and 5000 photons (the first and second rows in
Fig. 6) and weights of (0.5, 0.5), (0.33, 0.66), and (0.2,
0.8) for data sets used in Fig. 6, a–f, respectively. As we
now see, only weights associated to two lifetimes were
found to contribute nonnegligibly. Fig. 6 represents histo-
grams over these weights. As expected, cases with 500 pho-
tons have larger uncertainty (Fig. 6, a and b), with the
uncertainty decreasing as the photons considered in the anal-
ysis mount.

Finally, in Fig. 7, we show that our nonparametric method
is capable of dealing with data sets containing more than two
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FIGURE 6 Robustness test against lifetime weights, shown by p, and photon counts. (a and b) Marginal posterior for the two weights found (when the

ground truth is for 1/2 each) when 1000 and 5000 total photon counts are considered in the analysis, respectively. (c and d) Similar to above except for

when the ground truth of the weights is 1/3 and 2/3. (e and f) Same as above except for weights of 1/5 and 4/5.

BNP lifetime analysis
lifetime components and compare the results with parametric
samplers assuming one and two species a priori. As such, we
generate data with three lifetimes of 0.5, 2, and 5 ns. These
traces are now, naturally, longer (contain more photons) as
the inference task is more difficult. In particular, we find
that we need about 30,000 photons to analyze these data,
though the exact number of photons required is specific to
a number of parameters (including how well separated the
lifetimes are). The BNP-LAmethod returned three nonnegli-
gible weights adding up to z0:9 with corresponding mean
posterior lifetimes of 0.5, 2, and 5 ns (see Fig. 7 c). As ex-
pected, the resulting lifetime histograms exhibit more uncer-
tainty for larger lifetimes, as measured by a wider posterior,
on account of more photon emissions occurring beyond the
pulse subsequent to the one resulting in excitation.
a b

FIGURE 7 Parametric versus nonparametric analysis. Here, we use simulated

compare Bayesian parametric algorithms with our nonparametric BNP-LA. (a) R

(b) Resulting lifetime histogram from a parametric sampler with two lifetimes. (c

specification of the number of lifetime components.
We also analyzed this data set using a parametric version
of our sampler while assuming one or two lifetime compo-
nents such as in (36,37). The resulting lifetime histograms
are, respectively, depicted in Fig. 7, a and b. In both cases,
the learned lifetimes are incorrect, and the histogram peaks
coincide with averages of the lifetimes present within
the data.
Experimental data

We now continue by benchmarking our BNP-LA method on
experimental data. We start with a data set acquired using
only two fluorophores, namely calcein and MitoTracker,
with lifetimes of 3.6 and 0.45 ns, respectively. Here, the
shorter lifetime falls below the IRF, where the IRF
c

data with three lifetimes of 0.5, 2, and 5 ns containing 30,000 photons to

esulting lifetime histogram from a parametric sampler with a single lifetime.

) Resulting lifetime histogram from our BNP-LA algorithm without a priori
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FIGURE 8 Experimental data with two lifetimes including a lifetime (0.45 ns) below IRF width (0.66 ns). (a–c) Marginal posterior of lifetimes for 500,

1000, and 5000 photons, respectively.
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parameters as well as the interpulse window are the same as
what were used for the simulations. In Fig. 8, a–c, we
analyze photon traces from this data set containing 500,
1000, and 5000 photons, respectively. Our BNP-LA method
returns two nonnegligible weights adding up toz 0:9 for all
the cases. The corresponding lifetime histograms show that
the BNP-LA method deduces both lifetimes including the
lifetime below the IRF even for as few as 500 photons.

Finally, we test our method by employing an experi-
mental data set containing three fluorophore species, i.e.,
Lyso red, TMRM, and pHrodo, characterized by lifetimes
of 4.6, 2.3, and 0.6 ns, respectively. These ground-truth
values are obtained by using 330,000 photons with
commonly employed phasor plots (26) (see Fig. 9 a).

Next, we process a trace of 30,000 photons from this
data set using both our BNP-LA method and the phasor
technique (see Fig. 9, b and c). Using only 30,000 photons,
it is difficult to extrapolate the three lifetimes from the pha-
sor plot (Fig. 9 b). However, analysis by our method results
in three major weights adding up to z0:9, indicating the
presence of three lifetime components within the input
data. Fig. 9 c illustrates the lifetime histogram correspond-
ing to these three weights. The histogram peaks match the
Lyso Red

TMRM

pHrodo

a b

FIGURE 9 Experimental data containing three fluorophore species, namely L

tively. (a) For illustrative purposes, we show the resulting phasor plot for an FLIM

200 photons with a total photon count of 330,000. The red dots represent the th

lifetimes are used as ground truth. (b) Results using a phasor plot for multiple pix

highlighting the data efficiency of BNP-LA. (c) Marginal posterior of lifetimes f

lifetimes obtained using the phasor technique with 330,000 photons.
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values we use as ground truth. Here, for reasons identical
to synthetic data, uncertainty increases with larger
lifetimes.
DISCUSSION

Fluorescence lifetime experiments provide a means to probe
subcellular processes and structures. For instance, these
techniques have been essential in cancer diagnosis (66,67)
and monitoring the effect of drugs on cancer cells (67).
However, quantitative assessment of FLIM data remains a
challenge, as the number of fluorescent lifetime species
and their associated lifetimes may vary within a biological
sample due to exposure to variable chemical environ-
ments (41,42).

These issues immediately require the development of
methods capable of learning the number of unique species,
as well as their associated lifetimes and photon ratios.
Ideally, such methods would be robust in treating lifetimes
irrespective of what numerical value they ultimately attain
in experiments, whether they are shorter than the width of
the IRF, on par with the interpulse time, or similar to each
other.
c

yso red, TMRM, and pHrodo with lifetimes of 4.6, 2.3, and 0.6 ns, respec-

image of 256� 256 pixels. Here, we only used pixels containing more than

ree fluorophore species on the universal circle (26,28). The corresponding

els containing 30,000 total photons (which is the same number we analyze)

rom the BNP-LA method using 30,000 photons. The red dashed lines show



BNP lifetime analysis
Here, we put forward a BNP-LA method capable of
enumerating lifetime components using as few photons as
500 from a single confocal spot while simultaneously
deducing the corresponding lifetimes over a wide range
from below the IRF to the interpulse window. BNP-LA
does so by leveraging tools, such as Dirichlet processes,
from the BNP paradigm.

We benchmark BNP-LA using both synthetic and exper-
imental data over a broader range of conditions than was
previously accessible. That is, we benchmarked our method
against lifetimes shorter than the IRF width, comparable to
the interpulse window, and lifetimes with subnanosecond
gaps with different photon ratios.

In terms of computational cost, the scaling growth is
linear with the number of photons, while the exact absolute
cost depends on the number of iterations required for the
sampler to converge, which is, in turn, related to the number
of lifetimes and how close they are. For instance, for typical
lifetimes in Figs. 4 and 8, the computation took less than
1 min on a regular scientific desktop for cases involving
5000 photons. We expect this value to vary depending on
the exact CPU specifications.

Although here we only assume Gaussian IRFs, BNP-LA
can be extended to consider non-Gaussian IRFs by modifi-
cations to the likelihood in Eq. 2. Furthermore, BNP-LA
can be used to construct a pixel-by-pixel spatial map of spe-
cies distributions over a large field of view by independently
analyzing data obtained from individual confocal spots
across a specimen.

While we have advanced LA, there are questions neither
we nor any existing methods can address. Answering these
questions may inspire alternatives to lifetime experiments.
For instance, we cannot learn lifetimes when arrival times
far exceed the interpulse window; as a corollary, we cannot
avoid posterior broadening for larger lifetimes, e.g., life-
times comparable to the interpulse window; we cannot
determine whether two exponential components coincide
with the same chemical species or two different chemical
species; we cannot distinguish chemical species with small
lifetime differences, e.g., as of the current date of publica-
tion is less than approximately 0.2 ns, from the number of
photons we typically analyze (far higher photon counts
would then introduce high computational costs, which
may require greater resources not yet available). Addition-
ally, we can only quantify photon ratios and not concentra-
tions nor absorption cross sections, as the latter two
quantities always appear as one (a product of both funda-
mental quantities) in the likelihood (39).

More broadly, our method uses few photons to draw infer-
ences. From this follow two consequences: 1) our method
may help improve spatial resolution by allowing for the
analysis of data obtained using small pinholes that otherwise
provide too few photons for other methods, and 2) we may
reduce sample photodamage by lowering the power of
illumination.
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