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ABSTRACT: The availability of proteomics datasets in the public domain,
and in the PRIDE database, in particular, has increased dramatically in recent
years. This unprecedented large-scale availability of data provides an
opportunity for combined analyses of datasets to get organism-wide protein
abundance data in a consistent manner. We have reanalyzed 24 public
proteomics datasets from healthy human individuals to assess baseline
protein abundance in 31 organs. We defined tissue as a distinct functional or
structural region within an organ. Overall, the aggregated dataset contains 67
healthy tissues, corresponding to 3,119 mass spectrometry runs covering 498
samples from 489 individuals. We compared protein abundances between
different organs and studied the distribution of proteins across these organs.
We also compared the results with data generated in analogous studies.
Additionally, we performed gene ontology and pathway-enrichment analyses
to identify organ-specific enriched biological processes and pathways. As a key point, we have integrated the protein abundance
results into the resource Expression Atlas, where they can be accessed and visualized either individually or together with gene
expression data coming from transcriptomics datasets. We believe this is a good mechanism to make proteomics data more accessible
for life scientists.
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■ INTRODUCTION
High-throughput mass spectrometry (MS)-based proteomics
approaches have matured and generalized significantly,
becoming an essential tool in biological research, sometimes
together with other “omics” approaches such as genomics and
transcriptomics. It is now commonplace to make quantitative
measurements of 2,000−3,000 proteins in a single LC−MS run
and typically 6,000−7,000 proteins in workflows with
fractionation. The most used experimental approach is data-
dependent acquisition (DDA) bottom-up proteomics. Among
existing DDA quantitative proteomics approaches, label-free is
very popular, although labeled approaches such as metabolic
labeling (e.g., SILAC) and especially techniques based on the
isotopic labeling of peptides (e.g., TMT) are growing in
importance. In bottom-up experiments, proteins are first
digested into peptides using an enzyme (e.g., trypsin), and
typically, several peptides are required per protein to give
confidence in the measurement of protein-level quantification
across samples. Measured peptide intensity is correlated with
absolute protein abundance, but there can be differences
depending on individual peptides due to the considerable
variation in the ionization efficiency of these peptides.
Different peptides can also be detected in different studies,
giving rise to variability in protein abundance. One further
challenge in quantitative proteomics relates to the “protein
inference” problem.1 In brief, many peptide sequences cannot

be uniquely mapped to a single protein due to common
conserved sequences present in different gene families
(paralogs). During the last decade, technological advances in
MS have led to a large number of studies that have analyzed
protein abundances across various human tissues and
organs.2−5 These efforts are complemented by the compre-
hensive characterization of the human proteome performed
within the Human Proteome Project (HPP),6−8 although the
HPP has been focused on the identification of proteins without
performing any quantitative analysis.
In parallel with the technical developments in chromatog-

raphy, MS, and bioinformatics, the proteomics community has
evolved to largely support open data practices. In brief, this
means that datasets are released alongside publications,
allowing other groups to check findings or reanalyze data
with different approaches to generate new findings. Therefore,
in recent years, the amount and variety of shared datasets in
the public domain have grown dramatically. This was driven by
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Table 1. List of Proteomics Datasets that were Reanalyzed

aDataset identifiers starting with “PXD” come from the PRIDE database, and those identifiers starting by “syn” come from the AMP-AD knowledge
portal. bOnly normal samples within this dataset are reported in this study. However, results from both normal and disease samples are available in
Expression Atlas. Unique protein sample batches available in any given dataset are considered as individual samples (e.g., dataset E-PROT-34
(PXD004143) consists of four experiment batches, where materials from two donors are each digested with LysC and trypsin, and therefore these
four unique batches are considered as four different samples). cNumbers after post-processing. The proteomics results in Expression Atlas can be
accessed using the link: https://www.ebi.ac.uk/gxa/experiments/E-PROT-XX/Results, where XX should be replaced by the E-PROT accession
number shown in the table. The raw proteomics datasets in PRIDE can be accessed using the link: https://www.ebi.ac.uk/pride/archive/projects/
PXDxxxxxx, where PXDxxxxxx should be replaced by the PRIDE dataset identifier shown in the table.
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the establishment and maturation of reliable proteomics data
repositories, in tandem with policy recommendations by
scientific journals and funding agencies.
The PRIDE database,9 which is one of the founding

members of the global ProteomeXchange consortium,10 is
currently the largest resource worldwide for public proteomics
data deposition. As of October 2022, PRIDE hosts more than
29,500 datasets. Of those, human datasets are by far the
majority, representing approximately 40% of all datasets. Public
datasets stored in PRIDE (or in other resources) present an
opportunity to be systematically reanalyzed and integrated in
order to confirm the original results potentially in a more
robust manner, obtain new insights, generate new hypotheses,
and even be able to answer biologically relevant questions
orthogonal to those posed in the original studies. Such
integrative meta-analyses have already been successfully
employed, especially in genomics and transcriptomics.11−13

Therefore, the large availability of public datasets has triggered
different types of data re-use activities, including “big data”
approaches (e.g.,14−16) and the establishment of new data
resources using reanalyzed public datasets as the basis.17−19 In
this context of data re-use, the main interest of PRIDE is to
disseminate and integrate proteomics data into popular added-
value bioinformatics resources at the European Bioinformatics
Institute (EMBL-EBI), such as Expression Atlas20 (for
quantitative proteomics data), Ensembl21 (proteogenomics),
and UniProt7 (protein sequence information including post-
translational modifications (PTMs)). The overall aim is to
enable life scientists (including those who are non-experts in
proteomics) to have improved access to proteomics-derived
information. Expression Atlas (https://www.ebi.ac.uk/gxa/
home) is an added-value resource that enables easy access to
integrated information about gene and, recently, protein
expression across species, tissues, cells, experimental con-
ditions, and diseases. The Expression Atlas “bulk” Atlas has
two sections: baseline and differential atlas. Protein abundance
results derived from the reanalysis of DDA public datasets of
different sources have started to be incorporated into
Expression Atlas. The availability of such results in Expression
Atlas makes proteomics abundance data integrated with
transcriptomics information in the web interface. We have
performed two DDA studies of this type so far. First of all, we
reported the reanalysis and integration into the Expression
Atlas of 11 public quantitative datasets coming from cell lines
and human tumor samples.22 Additionally, we have recently
reported the reanalysis and integration of 23 datasets coming
from mouse and rat tissues in baseline conditions.23

There are other public resources providing access to
reanalyzed MS-based quantitative proteomics datasets. Pro-
teomicsDB24 provides access to human protein abundance
data in addition to other recent (multi-omic) studies carried
out on model organisms. Many additional human datasets
derived from human tissues have been made publicly available
in recent years. Within the HPP, it is important to highlight
that ProteomeXchange resources PeptideAtlas25 and MassIVE
provide peptide and protein identifications derived from the
reanalysis of public human datasets, but their main focus is not
quantitative data. Additionally, antibody-based protein abun-
dance information can be accessed via the Human Protein
Atlas (HPA).4 Here, we report the reanalysis and integration of
24 public human label-free datasets and the incorporation of
the results into Expression Atlas as baseline studies.

Experimental Procedures

Datasets. As of September 2020, 3,930 public MS human
proteomics datasets were publicly available in PRIDE. We
manually filtered these 3,930 human datasets to select suitable
datasets for downstream analyses by applying several selection
criteria. These selection criteria for the datasets to be
reanalyzed were (i) experimental data from healthy tissues in
baseline conditions coming from label-free studies where no
PTM-enrichment had been performed; (ii) experiments
performed on Thermo Fisher Scientific instruments (LTQ
Orbitrap, LTQ Orbitrap Elite, LTQ Orbitrap Velos, LTQ
Orbitrap XL ETD, LTQ Orbitrap XL ETD, Orbitrap Fusion,
and Q-Exactive) because they represent the larger proportion
of the relevant public datasets available, and we preferred to
avoid the heterogeneity introduced by using data taken from
different MS vendors; (iii) availability of detailed sample
metadata in the original publication or after contacting the
original submitters; and (iv) our previous experience in the
team working with some datasets, which were discarded
because they were not considered to be usable (data not
shown). As a result, 16 human datasets were obtained from
PRIDE (Table 1). Additionally, 8 datasets coming from human
brain samples (also generated in Thermo Fisher Scientific
instruments) were downloaded from a large Alzheimer’s
disease (AD) dataset described in,26 which was available via
the AMP-AD knowledge portal (https://adknowledgeportal.
synapse.org/). Due to ethical issues, the AD datasets from the
AMP-AD knowledge portal are available under a controlled
access agreement (i.e., data made available only to approved
users of the data included in the AMP-AD knowledge portal)
and were downloaded after obtaining the required author-
ization.
The sample and experimental metadata were manually

curated from their respective publications or by contacting the
original authors/submitters. Metadata was annotated using
Annotare27 and stored using the investigation description
format (IDF) and sample and data relationship format (SDRF)
file formats required for their integration in Expression Atlas.
The IDF includes an overview of the experimental design,
including the experimental factors, protocols, publication
information, and contact information. The SDRF file includes
sample metadata and describes the relationship between
various sample characteristics and the data files included in
the dataset.
In addition to the quantification of proteins in healthy

tissues representing the baseline conditions described in this
study, we also analyzed samples in the same datasets that were
from non-healthy/non-normal samples, which were included
in the same datasets (which are not discussed in this article,
but the results are also available in Expression Atlas). The
selected datasets are listed in Table 1, including the original
dataset identifiers, tissues and organs included, number of MS
runs, and number of samples. The 24 datasets sum up a total of
498 samples from 67 different tissues classified in 31 organs.
Proteomics Raw Data Processing

Datasets were analyzed separately using the same software and
search database. Peptide/protein identification and protein
quantification were performed using MaxQuant28,29 (version
1.6.3.4) on a high-performance Linux computing cluster. The
input parameters for each dataset, such as MS1 and MS2
tolerances, digestive enzymes, and fixed and variable
modifications, were set as described in their respective
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publications, together with two missed cleavage sites. PSM
(peptide spectrum match) and protein FDR (false discovery
rate) levels were set at 1%. Other MaxQuant parameter
settings were left as defaults: maximum number of
modifications per peptide: 5, minimum peptide length: 7,
maximum peptide mass: 4,600 Da. For a match between runs,
the minimum match time window was set to 0.7 s, and the
minimum retention time alignment window was set to 20 s.
The MaxQuant parameter files are available for download from
Expression Atlas. The UniProt human reference proteome
release-2019_05 (including isoforms and 95,915 sequences)
was used as the target sequence database. The inbuilt
MaxQuant contaminant database was used, and the decoy
database was generated using MaxQuant at the time of the
analysis (on-the-fly) by reversing the input database sequences
after the respective enzymatic cleavage. The datasets were run
in a multithreading mode with a maximum of 60 threads and
300 GB of RAM per dataset.
Post-Processing

The results coming from MaxQuant for each dataset were
further processed downstream to remove potential contami-
nants, decoys, and protein groups, which had fewer than 2
PSMs. The protein intensities were normalized using the
fraction of total (FOT) method, wherein each protein’s
“iBAQ” intensity value is scaled to the total amount of signal in
a given MS run and transformed to parts per billion (ppb).

=
=( )ppb iBAQ

iBAQ x1,000,000,000
i
n

iBAQ
i

1 ii

The bioconductor package “mygene”30 was used to assign
Ensembl gene identifiers/annotations to the protein groups by
mapping the “majority protein identifiers” within each protein
group. This step is required for integration into Expression
Atlas because, at present, all abundance values have to be in
the same reference system to be integrated. The protein
groups, whose protein identifiers were mapped to multiple
Ensembl gene IDs, were not integrated into Expression Atlas
but are available in Supporting Table S1. In the case of a
protein group containing isoforms from the same gene, these
mapped to a single unique Ensembl gene ID and were not
filtered out. In cases where two or more protein groups
mapped to the same Ensembl gene ID, their median intensity
values were considered. The parent genes, to which different
protein groups were mapped, are equivalent to “canonical
proteins” in UniProt (https://www.uniprot.org/help/
canonical_and_isoforms), and therefore, the term protein
abundance is used to describe the protein abundance of the
canonical protein throughout the article.
Integration into Expression Atlas

The calculated canonical protein abundances (mapped as
genes), validated SDRF files, and summary files detailing the
quality of post-processing were integrated into Expression
Atlas (release 37, March 2021) as proteomics baseline
experiments (E-PROT identifiers are available in Table 1).
Protein Abundance Comparison Across Datasets

Since datasets were analyzed separately, the protein
abundances, available in ppb values within each dataset, were
converted into ranked bins for comparison of abundances
across datasets. The normalized protein abundances per MS
run, as described above, were ranked and grouped into five
bins, wherein proteins with the lowest protein abundance

values were in bin 1 and those with the highest abundance
values were in bin 5. Additionally, distinct tissue regions or
organs within a dataset were grouped into batches and binned
separately. In this study, “tissue” is defined as a distinct
functional or structural region within an “organ”. For example,
the corpus callosum, anterior temporal lobe, and dorsolateral
prefrontal cortex were defined as tissues that are part of the
brain (organ), and similarly, the left ventricle, aorta, and
tricuspid valve are defined as tissues in the heart (organ).
During the rank-bin transformation, if a protein was not

detected in any of the samples within a batch, we did not
assign it a bin value but annotated it as an NA (corresponding
to not detected) value instead. However, if a protein was not
detected in some samples of the batch but had protein
abundance values in other samples within the batch, we
assigned the lowest bin value 1 to those samples in that batch
that were undetected. For example, in a dataset comprising
tissue samples from the brain, all samples from tissue regions
such as the corpus callosum were grouped into a batch, and the
ppb abundances were transformed into bins. If any of the
samples within a batch had no abundance values for a protein,
they were marked as NA. If some samples within the batch had
missing abundance values, the missing abundance values of
those samples for that protein were assigned the bin value 1.
Binned abundances of those proteins that were detected in at
least 50% of the samples in the heart and brain datasets were
selected for PCA (principal component analysis). To compare
which normalization methods performed better at removing
batch effects, the iBAQ protein abundances were also
normalized using the ComBat31 and Limma32 methods. PCA
was performed in R using the Stats package. Pearson’s
correlation coefficient for all samples was calculated on the
basis of pairwise complete observations of bin-transformed
iBAQ values in R. Samples were hierarchically clustered on
columns and rows using Euclidean distances.
Comparison of the Results with the Protein Abundance
Values from the Human Protein Atlas and ProteomicsDB

Results from our analysis were compared with protein
abundance data available at the HPA. Abundance profiles of
proteins in normal human tissues were downloaded from HPA
version 21.0. Protein abundance with reliability scores labeled
as “uncertain” were not considered in the comparison. For the
purposes of easing the comparison and computing correlation,
the categorical protein abundance levels in data downloaded
from the HPA were assigned numerical values closely matching
the protein abundance bins used in our analysis. Protein
abundance levels annotated as “low”, “medium”, and “high”
were assigned values 1, 2, and 3, respectively. The level
annotated as “not detected” was assigned NA, and levels
annotated as “ascending”, “descending”, and “not representa-
tive” were all assigned a value of 1. For the purpose of this
comparison, we re-binned our protein abundance data into just
three categories: bins 1, 2, and 3, representing low, medium,
and high abundances, respectively. The “randomized edit
distance difference” was calculated across all pairs of organs
included in this study and HPA. The “randomized edit
distance difference” is the difference between the “true edit
distance” and the “randomized edit distance” of protein
abundance bins. Randomized edit distance difference =
mean(random edit distance1−n − true edit distance1−n). The
“true edit distance” of a protein was computed as the absolute
difference between the protein abundance bins of both pairs.
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The “randomized edit distance” is calculated as the mean of
the absolute difference between the bin value of pair 1 and the
randomized bin value of pair 2, after sampling it 10 times, that
i s , t h e r andom i z ed ed i t d i s t a n c e = mean (

[abs(bin1 random(bin2)1
10 )]). This was done using the
base R package.
Normalized protein intensities from ProteomicsDB33 were

queried for organs that were common in our study (31
organs). Values were obtained using the ProteomicsDB
application programming interface. For different tissue
samples, we aggregated the normalized intensities using the
median of their respective organs. The intensities were log2
normalized and compared.
Comparison of Label-free Protein Abundances with
Protein Abundances Generated Using a TMT Approach
The protein abundances calculated across various baseline
human organs/tissues using the TMT-labeling method were
obtained from3 (Supporting file “NIHMS1624446-supple-
ment-2”, sheet: “C protein normalized abundance”). Protein
abundances of the respective organs measured across different
TMT channels and runs were aggregated using the median and
log2 transformed. Different tissue samples from the esophagus,
heart, brain, and colon were aggregated into their respective
organs. Pearson’s correlation was calculated in R.
Organ-Specific Expression Profile Analysis
To investigate the organ-specific protein-based abundance
profile, we carried out a modification of the classification
scheme done by Uhleń et al.4 Briefly, each of the 13,070
canonical proteins that were mapped from the protein groups
was classified into one of three categories based on the bin
levels in 31 organs: (1) “organ-enriched”: one unique organ
with bin values twofold higher than the mean bin value across
all organs; (2) “group enriched”: a group of 2−7 organs with
bin values twofold higher than the mean bin value across all
organs; and (3) “mixed”: the remaining canonical proteins that
are not part of the above two categories.
Enriched gene ontology (GO) term analysis was performed

by means of the over-representation test, combining the

“organ-enriched” and “group-enriched” mapped gene lists for
each organ. The computational analysis was carried out in the
R environment with the package clusterProfiler34 version
3.16.1 using the function enrichGO() for the GO over-
representation test using the parent gene list of all detected
canonical proteins as the background set. Setting the p-value
cut-off to 0.05 and the q-value cut-off to 0.05. Additionally,
reactome35 pathway analysis was carried out by using mapped
gene lists (indicated by the protein groups) and running
pathway topology and over-representation analysis. First, the
“project to human” option was selected with the combining list
of “organ-enriched” and “group-enriched” entities. Afterward,
those pathways with a p-value >0.05 were filtered out. The
hierarchical clustering was done based on the distances
calculated on the p-values using the ggdendro package in R.

■ RESULTS

Human Baseline Proteomics Datasets

We manually selected 24 label-free publicly available human
proteomics datasets coming from PRIDE and from the AMP-
AD knowledge portal databases (Table 1). These datasets were
selected to represent baseline conditions and therefore
included samples annotated as healthy or normal from a
wide range of biological tissues. The datasets were restricted to
include those label-free datasets generated on Thermo Fisher
Scientific Instruments. See more details about dataset selection
in the “Methods” section.
In total, the aggregated datasets represent 67 healthy tissues,

corresponding to 3,119 MS runs covering 498 samples, coming
from 489 individuals. In this study, “tissue” is defined as a
distinct functional or structural region within an “organ”. The
cumulative CPU time used for the reanalyses was approx-
imately 2,750 h or 114 calendar days. The numbers of protein
groups, peptides, and unique peptides identified and protein
coverage in each dataset are shown in Table 1.
The resulting protein abundances of all samples have been

made available in Expression Atlas. These “proteomics
baseline” quantification results can be viewed as abundance

Figure 1. Overview of the study design and reanalysis pipeline. QA: Quality assessment. Reprinted (Adapted or Reprinted in part) with permission
from .20 Copyright 2022 EMBL-EBI.
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heatmaps against the gene symbols, and the quantification
matrices can be downloaded as text files together with
annotated metadata of donor samples, experimental parame-
ters, and a summary file describing the analysis with
representative charts (quality assessment) summarizing the
output of the post-processed samples. The protocol for data
reanalysis is summarized in Figure 1.
Protein Coverage Across Samples

For simplicity of comparison, we broadly grouped 67 tissues
into 31 major types of organs. As explained in “Methods”, we
defined “tissue” as a distinct functional or structural region
within an “organ”. For example, the corpus callosum, anterior
temporal lobe, and dorsolateral prefrontal cortex were all
defined as tissues in the brain (which is the “organ”). After

post-processing the output files from MaxQuant, 11,653
protein groups (36.3% of identified protein groups across all
datasets) were uniquely present in only one organ and 380
protein groups (1.2%) were ubiquitously observed (Supporting
Table S2). This does not imply that these proteins are unique
to these organs. Merely, this is the outcome considering the
selected datasets.
We mapped the isoforms in the protein groups to their

respective parent gene names, which we will use as equivalent
to “canonical proteins” in UniProt (see “Methods”) from now
on in the article. Overall, 13,070 different genes were mapped
from protein identifiers in the protein groups. We denote the
term “protein abundance” to mean “canonical protein
abundance” from here on. We then estimated the number of
proteins identified across organs, which indicated that greater

Figure 2. (A) Number of canonical proteins identified across different organs. The number within the parenthesis indicates the number of samples.
(B) Range of normalized iBAQ protein abundances across different organs. The number within the parenthesis indicates the number of samples. In
panels (A) and (B), the term heart is used in a broader sense to mean the cardiovascular system. (C) Canonical proteins identified across different
datasets. The number within the parenthesis indicates the number of unique tissues in the dataset. (D) Range of normalized iBAQ protein
abundances across different datasets. The number within the parenthesis indicates the number of unique tissues in the dataset. (E) Comparison of
total spectral data with the number of canonical proteins identified in each dataset and organ. (F) Distribution of canonical proteins identified
across organs.
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than 70% of all canonical proteins were present in a majority of
organs (Figure 2A,C). We also observed the highest numbers
of common proteins in samples from the tonsil (92.2%) and
brain (90.9%) and the lowest numbers in samples from the
umbilical artery (7.2%).
The higher number of proteins identified in the brain could

be attributed to the greater representation of samples (339
samples out of 498, 68.0%). However, tonsils were represented
only by seven samples, all of which were derived from one
dataset (PXD010154). It is worth noting that the sample
preparation protocol for the tonsil samples employed seven
different proteases (trypsin, LysC, ArgC, GluC, AspN, LysN,
and chymotrypsin) for tissue digestion,36 thus significantly
increasing its peptide coverage.36 The sample size of the
umbilical artery, which showed significantly lower protein
coverage than other organs, was 10 samples.

The largest number of canonical proteins were identified in
dataset PXD010154 (Figure 2C), which comprises numerous
tissue samples (31 tissues) including samples from tonsils. The
dynamic range of protein abundances in all organs is shown in
Figure 2B. On the other hand, protein abundances among
datasets showed that PXD010154 had the lowest median
protein abundances (Figure 2D). We also compared the
quantity of spectral data from various organs and datasets with
the number of canonical proteins identified in them to detect
any organ or dataset that showed enrichment of proteins
relative to the amount of data. We observed a linear relation
between the number of proteins identified and the amount of
spectral data present in the organ samples or datasets (Figure
2E).

Figure 3. Heatmap of pairwise Pearson correlation coefficients across all samples. The color on the heatmap represents the correlation coefficient,
which was calculated using the bin-transformed iBAQ values. The samples are hierarchically clustered on columns and rows using Euclidean
distances. The clusters composed of the brain and cardiovascular system (heart) samples are highlighted with black borders. The abbreviations used
in the organs’ header are B: brain, C: colon, H: heart, L: liver, O: ovary, and P: pancreas.
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Distribution of Canonical Protein Identifications per
Organ

We observed that 37.1% (4,853) of the identified canonical
proteins were expressed in 30 different organs (Figure 2F).
The low number of proteins identified in umbilical artery
(933) samples greatly influenced the protein distribution. As a
result, 7.0% (917) of all identified canonical proteins were
present in all 31 organs, whereas 4.2% (565) of the identified
canonical proteins were uniquely present in one organ.
However, it is important to highlight that the list of concrete
canonical proteins that were detected in just one organ should
be taken with caution since the list is subjected to an inflated
FDR due to the accumulation of false positives when analyzing
the datasets separately. However, this should not be an issue in
the case of proteins detected across five datasets or more since

the number of commonly detected decoy protein hits enabled
us to calculate a protein FDR less than 1% (Figure S1 in
Supporting Figures).
Protein Abundance Comparison Across Organs

Next, we compared the protein abundances to see how
proteins compared across different organs. Inter-dataset batch
effects make comparisons challenging. We transformed the
normalized iBAQ intensities into ranked bins as explained in
“Methods”. The bin-transformed protein abundances in all
organs are provided in Supporting Table S3.
To compare protein abundance across all organs, a pairwise

Pearson correlation coefficient of binned protein abundances
was calculated across 498 samples (Figure 3). We observed a
good correlation of protein abundance within the brain
(median R2 = 0.61) and cardiovascular system (median R2 =

Figure 4. (A) PCA of brain samples colored by the tissue types. (B) PCA of brain samples colored by their respective dataset identifiers. (C) PCA
of cardiovascular system (heart) samples colored by the tissue types. (D) PCA of cardiovascular system (heart) samples colored by their respective
dataset identifiers. The numbers in parenthesis indicate the number of datasets for each tissue. Binned values of canonical proteins quantified in at
least 50% of the samples were used to perform the PCA.
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0.41) samples, which represent the two organ groups with the
largest number of samples. We tested the effectiveness of
various normalization methods in reducing batch effects by
performing a PCA on samples coming from the cardiovascular
system and brain datasets. The analyzed brain and
cardiovascular system samples constituted the largest numbers
in the aggregated dataset, including 19 and 3 datasets,
respectively. First, we performed PCA on the normalized
iBAQ values, wherein the brain samples did not cluster either
by tissues or by datasets. However, for cardiovascular system
samples, we observed clustering of samples by datasets and not
by tissue type (Figure S2 in Supporting Figures). We then
tested the ComBat and Limma normalization methods on
iBAQ values, which neither showed clustering of samples by
tissues nor by datasets for both cardiovascular system and
brain samples (Figures S3 and S4 in Supporting Figures).
We then decided to use the bin-transformed protein

abundances (see “Methods”). First, we observed that brain
samples were clustered together according to their tissue type
(Figure 4A). All brain tissue samples, except those coming
from the dorsolateral prefrontal cortex (DLPFC), were part of
individual datasets. The DLPFC samples were derived from six
separate datasets, of which five of them were part of the
Consensus Brain Protein Coexpression study.26 The DLPFC
samples clustered into two groups: a large group that
comprised samples from the Consensus Protein Coexpression
study and a smaller cluster with samples from dataset
PXD004143 (Figure 4B), indicating that there was still a
residual batch effect.
Similarly, we observed cardiovascular system samples

clustered according to their tissue types (Figure 4C). All
cardiovascular system samples except those coming from the
left ventricle were part of an individual dataset. Interestingly,
we observed three major clusters: one wherein all valve
samples (aortic valve, mitral valve, pulmonary valve, and
tricuspid valve) were clustered together. A second cluster was
formed where the samples from the ventricles and atriums
were clustered in a large group together with other
cardiovascular system samples. Finally, left ventricle samples
from dataset PXD008934 (Figure 4D) formed a separate
cluster, indicating that there were still batch effects, which were
not completely removed.
Comparison of Protein Abundance Values with Previous
Studies

We first compared the protein abundances resulting from our
reanalysis with those reported in the original publications. By
comparing the number of protein groups or genes identified in
individual datasets, we observed that the differences between
our analysis and the original published results ranged from as
low as 1.3% (E-PROT-53, dataset syn7204174) to as high as
43.2% (E-PROT-36, dataset PXD012755). Similarly, the
difference at the level of identified peptides ranged from a
minimum of 0.29% (E-PROT-33, dataset PXD005819) to a
maximum of 57.2% (E-PROT-36, dataset PXD012755)
(Supporting Table S4). These differences in overall numbers
could be due to various factors, including the target protein
sequence database, the analysis software, and the version used.
We then compared our results with protein abundance data

available in ProteomicsDB 33 and found a good correlation in
abundance across various organs. As it can be seen in Figure S5
in Supporting Figures, the highest correlation was found in the
salivary gland (R2 = 0.75) and the lowest one in the ovary (R2

= 0.52). However, it should be noted that one of the datasets
included in our analysis (dataset PXD010154) is also included
in ProteomicsDB. Additionally, we also made a comparison
between our protein abundance results and those found in a
large study across multiple human organs using TMT-labeling
method 3. Figure S6 in Supporting Figures shows the Pearson’s
correlation of protein abundances between both studies, which
was generally lower than in the case of ProteomicsDB data,
ranging from 0.22 to 0.48 across various organs.
In addition, we compared our results with protein

abundances computed using antibody-based methods, avail-
able in the Human Protein Atlas (HPA). First, we performed a
qualitative analysis in which we compared the number of
proteins identified in matching organs in our analysis with
those identified in the HPA. There were 30 organs that were
common between both studies (except for the umbilical artery,
which was not available in HPA). The comparison results are
shown in Figure S7 in Supporting Figures. Our analysis shows
that an average of 43.7% of all proteins identified in HPA were
also present in our aggregated dataset, with the highest number
of commonly identified proteins found in the brain (50.4%)
and the lowest number of common proteins was found in
adipose tissue (27.2%). On the other hand, an average of
40.4% of proteins were only identified in our analysis and were
not present in the results analyzed in HPA. The largest and the
lowest number of proteins that were identified only in our
analysis were in adipose tissue (61.6%) and in testes (30.2%),
respectively. Lastly, an average of 15.8% of the proteins were
exclusive to HPA and not identified across any organs in our
analysis. Of these proteins, the largest HPA-exclusive group
was present in the vermiform appendix (21.6%), and the
lowest was found in the adrenal gland (8.9%).
We then compared protein abundances by first transforming

the abundances in HPA into numerical bins. Protein
abundance data from HPA are annotated in three categorical
groups as “low”, “medium,” and “high”, which we converted
into three numerical bins 1, 2, and 3, respectively. For the
purpose of this comparison, we re-binned our protein
abundance data into just three categories: bins 1, 2, and 3,
representing low, medium, and high abundances, respectively
(see “Methods”). To identify the difference between noise and
signal, we calculated the randomized edit distance difference
metric across all organs between the two studies (see
Methods). The higher “randomized edit distance difference”
indicates that there is a difference between signal and random
noise. The randomized edit distance difference matrix (Figure
S8 in Supporting Figures) shows that the randomized edit
distance difference between organs within HPA is low (average
randomized edit distance difference = 0.18) compared to that
of the organs within our study (average randomized edit
distance difference = 0.43). This seems to suggest that the
overall protein abundances generated in this study are less
noisy than the abundance data available in HPA.
Organ-Elevated Proteome and the Over-Representative
Biological Processes

As explained in “Methods”, according to their abundances,
canonical proteins were divided in three different groups
according to their organ specificity: “organ-enriched”, “group-
enriched,” and “mixed” (see Supporting Table S5). We
considered elevated canonical proteins, which were classified
as an “organ-enriched” or “group-enriched” instead of the
“mixed” group. The analysis (Figure 5A) showed that, on
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average, 3.8% of the total elevated canonical proteins were
organ group-specific. The highest ratio was found in the
adrenal gland (9.3%), brain (7.5%), and liver (7.1%), and the
lowest ratio was found in the gall bladder (2.3%) and umbilical
artery (0.1%). In addition, 0.4% of the total canonical proteins
were uniquely organ enriched. The highest ratio was found in
the brain (3.8%), cardiovascular system (1.4%), and liver
(0.5%), and the lowest ratio (∼0.1%) was found in the tonsil
and uterine endometrium.
Then, we performed a gene ontology (GO) enrichment

analysis using the GO terms related to biological processes for
those canonical proteins that were “organ-enriched” and
“group-enriched”, as shown in Table 2. As a summary, 358
GO terms were found to be statistically significant across all
organs (see Supporting Table S6). The terms found were in
agreement with the known functions of the respective organs.
The brain had the largest number of “organ-enriched”
canonical proteins (457), and among the biological processes
associated with them stand out the regulatory function on
membrane potential (GO:0042391), neurotransmitter trans-
port (GO:0006836), modulation of chemical synaptic trans-
mission (GO:0050804), regulation of trans-synaptic signaling
(GO:0099177), and potassium ion transport (GO:0006813).
The second organ with a greater number of “organ-enriched”
canonical proteins was the cardiovascular system (137). The
enriched biological processes involved were related to striated
muscle cell differentiation (GO:0051146), sarcomere organ-
ization (GO:0045214), muscle structure development
(GO:0061061), and regulation of myotube differentiation
(GO:0010830). As expected, there were common GO terms
that were shared between the organs, such as detoxification of
inorganic compounds (GO:0061687) in the liver and kidneys,
import across the plasma membrane (GO:0098739) in the
kidney, brain, and umbilical artery, and processes involved in
tissues with high cell division turnover like chromosome
segregation (GO:0007059) in the bone marrow and testis.
Next, we performed a pathway-enrichment analysis using

reactome35 to analyze canonical proteins that were “organ-
enriched” and “group-enriched” (see Supporting Table S7).
The heatmap (Figure 5B) shows statistically significant

pathways (p-value <0.05) across the organs. The total number
of pathways found in all the organs was 928, and the largest
number of pathways was found in the brain with 67 pathways.
The pathways found were consistent with the GO analysis and
with the expected function in each organ. We observed a “cell
cycle’ cluster of over-represented pathways related to the bone

Figure 5. (A) Analysis of organ-specific canonical proteins. The analysis comprises the number of canonical proteins found in 31 organs, classified
in three groups: “organ-enriched”, “group-enriched”, and “group mixed”. (B) Pathway analysis of the over-represented canonical proteins, showing
the statistically significant representative pathways (p-value <0.05) in 31 organs. In panels (A) and (B), the term heart is used in a broader sense to
mean the cardiovascular system.

Table 2. Analysis of the GO Terms for Each Organ Using
the Elevated Organ-Specific Canonical Proteins and Group-
Specific Ones, as Described in the “Methods” Section

organ GO ID description
adjusted
p-value

adrenal gland GO:0031649 heat generation 7.94 × 10−4

bone marrow GO:0034080 CENP-A containing
nucleosome
assembly

1.49 × 10−3

brain GO:0042391 regulation of
membrane potential

1.71 × 10−11

fallopian tube
oviduct

GO:0044782 cilium organization 2.88 × 10−48

gallbladder GO:0017158 regulation of calcium
ion-dependent
exocytosis

1.17 × 10−2

cardiovascular
system (heart)

GO:0051146 striated muscle cell
differentiation

9.58 × 10−6

kidney GO:0046942 carboxylic acid
transport

4.81 × 10−16

liver GO:0097501 stress response to
metal ion

1.08 × 10−3

lung GO:0003002 regionalization 8.83 × 10−3

lymph node GO:0002250 adaptive immune
response

1.93 × 10−4

ovary GO:0008544 epidermis
development

8.42 × 10−7

placenta GO:0044706 multi-multicellular
organism process

4.84 × 10−3

testis GO:0048232 male gamete
generation

5.00 × 10−24

thyroid GO:0098742 cell−cell adhesion via
plasma-membrane
adhesion molecules

1.34 × 10−2

tonsil GO:0031424 keratinization 3.20 × 10−5

umbilical artery GO:0001937 negative regulation of
endothelial cell
proliferation

1.75 × 10−3
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marrow and testis (R-HSA-1640170, R-HSA-69620, R-HSA-
73886, R-HSA-2500257, and R-HSA-69618), expected in high
cell turnover tissues, the digestion pathway (R-HSA-192456)
in the pancreas and stomach, a neuronal system cluster of
pathways (R-HSA-112316) in the brain, and pathways related
to the transport of small molecules (R-HSA-382551, R-HSA-
425407, R-HSA-425393, and R-HSA-425366) in the kidneys.
Integration of Results into Expression Atlas

Protein abundance results from label-free experiments across
various tissues were integrated into Expression Atlas. The
abundances of each protein are represented in terms of their
canonical gene symbols since Expression Atlas is designed as a
gene-centric resource. Proteomics results can be accessed using
the link www.ebi.ac.uk/gxa/experiments/E-PROT-xx/
Downloads (replacing xx with the corresponding identifier
for each dataset). For each dataset, the raw, unprocessed
MaxQuant output files (proteinGroups.txt) are made available
to download together with the input experimental parameters
(mqpar.xml) to MaxQuant, as well as the metadata annotation
file of each sample. We also provide a summary of the quality
assessment of the results. Supporting Figures S9−S12 provide
a brief manual on how to access proteomics data in Expression
Atlas.

■ DISCUSSION
We here include a combined analysis of human baseline
proteomics datasets representing baseline protein abundance
across 67 healthy tissues grouped in 31 organs. This type of
study has been enabled by the large amount of data in the
public domain, as the proteomics community is now
embracing open data policies. The large-scale availability of
MS data in public databases such as PRIDE enables integrated
metaanalyses of proteomics data covering a wide array of
tissues and biological conditions. The main aim of our study
was to provide a system-wide baseline protein abundance
catalog across various tissues and organs, which could be used
as a reference (especially to those non-experts in proteomics)
and help to reduce redundant efforts of similar computationally
expensive reanalyses.
Unlike what was done in one previous study performed by

us,22 and analogously to what we did with a more recent study
performed using data generated from baseline rat and mouse
tissues,23 here we analyzed each dataset separately using the
same software and the same search protein sequence database.
The disadvantage of this approach is that the FDR statistical
thresholds are applied at a dataset level and not to all datasets
together as a whole, with the potential accumulation of false
positives across datasets. However, this does not represent an
issue in the case of proteins detected in several datasets (in this
particular study, at least five datasets will provide a protein
FDR of less than 1%, Figure S1 in Supporting Figures), since
the number of commonly detected false positives is reduced in
parallel with the increase in the number of common datasets
where a given protein is detected. This means that proteins
that are only detected in a small number of datasets could
potentially be false positives (considering the applied 1% FDR
at the protein level), but that does not mean that they are. At
that point, researchers should seek confirmation of the
existence of the protein (if that is their goal) via alternative
sources as well. Different reanalyses of some of the datasets
used in this study, with different FDR calculation methods,
have been published independently.56,57

In our view, the objective of integrating quantitative
proteomics information with other omics data types (in this
case, transcriptomics) in resources used by non-proteomics
researchers such as Expression Atlas is only feasible in a
sustainable manner using a dataset per dataset analysis
approach, at least at present. This enables that (i) the
computing requirements for the reanalyses are realistic, given
the large volume of files included in the potentially very large-
combined datasets; (ii) interesting additional datasets could be
added at a different time point without having to reanalyze all
datasets together again; (iii) future updates in the results are
more feasible to perform; and (iv) (semi)-automation of the
reanalyses is achievable, making these efforts more sustainable
again. As mentioned above, we followed this same overall
approach in the recent study that we performed in mouse and
rat tissues in baseline conditions.23 Additionally, we compared
our results with previous analogous studies performed in
baseline tissues using MS and also the antibody-based data
available in the HPA. These comparisons generated quite
different results depending on each study.
One of the major bottlenecks was, as reported before, the

curation of dataset metadata, consisting of mapping files to
samples and biological conditions. Detailed sample and donor
metadata is crucial for result reproducibility, and we found
detailed metadata available in PRIDE for just a handful of
datasets. The required information was either inferred or
requested by contacting the respective study’s authors. If no
responses were obtained, such datasets could not be
considered for the reanalysis. Therefore, to aid the
reproducibility of results in the future, we need to improve
the provision of metadata by data submitters. A format to
enable that has been developed (the SDRF-Proteomics format,
as part of the new MAGE-TAB-Proteomics format), which can
be submitted optionally to PRIDE.58 We expect that it will
become increasingly used for data submissions to PRIDE once
the right tooling is available and submitters have been
educated appropriately.
Another one of the major challenges in the reanalysis of a

large number of proteomics datasets is the integration of
results from different datasets since batch effects are inevitable.
We used a rank-binned normalization of abundances, which
transformed protein abundances across datasets and samples to
bins of 1 to 5. This approach is useful for reducing batch
effects, although we acknowledge that there is also a loss of
signal through this transformation. We also acknowledge that
this method is not ideal in all circumstances, but in our view, it
generally works better when compared to popular methods to
reduce batch effects, such as ComBat and Limma. Since our
method computes protein abundances in terms of their
canonical protein and gene identifiers, we acknowledge that
using the median of intensities to aggregate abundances over
protein groups with isoforms coming from the same canonical
protein may not represent the total sum of all proteins and may
influence ranking during binning.
Although the combined dataset contains a higher

representation of particular tissues (especially brain), we
believe it represents the current state of the art with regard
to public baseline human proteomics studies carried out in
tissues. The analysis search strategy used in this study focused
only on detecting known coding protein sequences using the
UniProt reference proteome, in the same way as performed in
the original studies. Therefore, it was not possible to detect any
single amino acid variants or equivalent isobaric combinations
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involving PTMs. However, the effect of this limitation on the
analysis should, in our view, be relatively small because the
type of samples used in this study (healthy tissues) did not
involve, for example, tumor samples. The availability of the
results through Expression Atlas enables the integration of
mRNA and proteomics abundance information, offering an
interface for researchers to access this type of information. One
possible next step will be the integration of datasets in the
differential part of Expression Atlas. The work required there
would be more complex at different levels, including the
downstream statistical differential analysis. Also, the availability
of mapping between the channels (e.g., in TMT and SILAC
experiments) and samples is very rare at present. In parallel,
work has also started on integrating in Expression Atlas
quantitative proteomics data generated using data independent
acquisition (DIA) approaches.59

The generated baseline protein abundance data can be used
for different purposes. For instance, quantitative proteomics
data can be used for the generation of co-expression networks
and/or the inference of protein complexes. Protein abundance
data could also be used to potentially refine the recently
developed AlphaFold-based protein complex predictions.60

Additionally, it is possible to use artificial intelligence
approaches to impute protein abundance values using
calculated abundance values as training data.61 It would also
be possible to perform expression correlation studies between
the gene and protein expression information. However, this
type of study can only be performed optimally if the same
samples are analyzed by both techniques, as reported in the
original publication for dataset PXD010154 36. It should also
be highlighted that a growing number of studies are using non-
MS-based proteomics techniques, such as the use of affinity
reagents (e.g., the Olink and SomaLogic platforms), due to the
increased throughput that they can provide. Initial studies are
being performed to compare these with MS approaches.
In conclusion, the results presented here represent a large-

scale meta-analysis of public human baseline proteomics
datasets. We also show the challenges in this kind of analysis,
providing a roadmap for such future studies.

■ DATA AVAILABILITY
Expression Atlas E-PROT identifiers and PRIDE and AMP-AD
original dataset identifiers are included in Table 1.
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