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Abstract

N6–methyladenosine (m6A) is the most abundant mRNA modification and plays crucial roles 

in diverse physiological processes. Utilizing a Massively Parallel Assay for m6A (MPm6A), we 

discover that m6A specificity is globally regulated by “suppressors” that prevent m6A deposition 

in unmethylated transcriptome regions. We identify Exon Junction Complexes (EJCs) as m6A 

suppressors that protect exon junction-proximal RNA within coding sequences from methylation 
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and regulate mRNA stability through m6A suppression. EJC suppression of m6A underlies 

multiple global characteristics of mRNA m6A specificity, with the local range of EJC protection 

sufficient to suppress m6A deposition in average-length internal exons, but not in long internal 

and terminal exons. EJC-suppressed methylation sites co-localize with EJC-suppressed splice 

sites, suggesting that exon architecture broadly determines local mRNA accessibility to regulatory 

complexes.

N6–methyladenosine (m6A), the most prevalent mRNA modification in mammals, 

influences wide-ranging aspects of gene expression in diverse physiological and 

pathophysiological processes (1–3). The METTL3-METTL14 methyltransferase complex 

installs m6A methylation on mRNA in a common DRACH (D = A, G, or U; R= A or G; 

H= A, C, or U) sequence motif, but only a fraction of DRACH sequences (~5%) in a subset 

of cellular transcripts are selected for methylation (4). Additionally, m6A exhibits a marked 

regional bias in its transcriptomic distribution, being strongly enriched in unusually long 

internal exons and near stop codons (5, 6). Despite the central importance of specific m6A 

deposition in m6A-mediated gene regulation, the mechanistic basis for m6A specificity has 

remained poorly understood.

In this study, we discover the existence of prevalent regulatory mechanisms that restrict 

m6A methylation to specific transcript regions through targeted suppression of m6A 

in unmethylated regions. We find that pre-mRNA splicing selectively suppresses m6A 

deposition in average-length internal exons, but not in longer exons. We identify Exon 

Junction Complexes (EJC) as major m6A suppressors that mediate this effect and control 

several key characteristics of global m6A specificity. EJC depletion results in pervasive 

aberrant methylation of mRNAs and m6A-mediated transcript destabilization. EJCs, together 

with interacting proteins, package and protect long stretches of proximal RNA from 

cellular methylation deposition, which may represent a general mechanism by which 

exon architecture and EJC positioning determine local mRNA accessibility to regulatory 

machineries.

Massively Parallel Assay for m6A

The extent to which global m6A specificity is controlled has important implications for 

m6A regulation but is poorly understood (4). We approached this problem by asking: is the 

local sequence surrounding an m6A methylated site, when uncoupled from its endogenous 

context, sufficient to specify methylation at that site? Conversely, is the local sequence 

surrounding an unmethylated DRACH site, when uncoupled from its endogenous context, 

sufficient to prevent methylation at that site?

To assess this systematically on an epitranscriptome-wide scale, we developed a Massively 

Parallel Reporter Assay (MPRA) that enables high-throughput assessment of the m6A 

methylation status of thousands of designed sequences, which we termed Massively Parallel 

assay for m6A (MPm6A) (Fig. 1A and fig. S1A). In the MPm6A workflow, thousands 

of endogenously methylated m6A sites and endogenously unmethylated DRACH sites, 

with 102 nucleotides of sequence surrounding each site, were synthesized and cloned 

into the 3′UTR of a plasmid-based intronless GFP transgene. For each sequence, we also 
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designed a corresponding negative control sequence in which all DRACH motifs were 

mutated to prevent methylation. The sequences were expressed and then m6A methylated 

through transfection into cells, or, when specified, through in vitro transcription and in vitro 

m6A methylation. The methylation status of each individual sequence was assessed by its 

enrichment following m6A-immunoprecipitation (IP) of mRNA. We selected 6,897 HeLa 

m6A sites and 3,058 unmethylated DRACH sites to assay in HeLa cells and validated the 

assay’s precision and accuracy (fig. S1, B to D).

Widespread mRNA m6A suppression controls m6A epitranscriptome 

specificity

When we compared the methylation levels of the endogenously methylated sequences 

to their negative control sequences, we found that 92.8% of the sequences exhibited 

significant methylation in this reporter assay (Fig. 1B and fig. S1E), indicating that 

most endogenously methylated sites do not strictly require their larger surrounding native 

context for methylation. Unexpectedly, 90.2% of endogenously unmethylated sequences also 

exhibited significant methylation (Fig. 1B and fig. S1E). The MPm6A enrichment scores 

of the endogenously unmethylated group were similar to the endogenously methylated 

group, despite their diverging endogenous methylation states (Fig. 1B). We observed similar 

results when the sequences were in vitro transcribed and methylated with recombinant 

METTL3-METTL14 (fig. S2). Thus, thousands of endogenously unmethylated DRACH 

sites became methylated when they were uncoupled from their endogenous contexts and 

expressed in an artificial reporter context. We term these identified sites “suppressed m6A 

sites”. We validated these results for three selected sequences (fig. S1F), and confirmed that 

methylation was not notably influenced by the CMV promoter of the MPm6A plasmid (fig. 

S3). We observed similar results when sequences were expressed within CDS or 5′UTR, 

though m6A enrichment was significantly lower for many sequences when placed in the 

CDS or 5′UTR versus in the 3′UTR (fig. S4, A to D). This suggests that 5′ regions 

are generally less conducive for m6A methylation than 3′ regions (fig. S4E). Collectively, 

these results reveal the existence of thousands of suppressed m6A sites that are silenced by 

unknown mechanisms.

We noted that suppressed m6A sites were enriched in the CDS and 3′UTR and were 

depleted near the stop codon, which is the reverse of endogenous m6A site enrichment 

(Fig. 1C and fig. S5A). Further, suppressed m6A sites in internal exons reside within much 

shorter exons (median = 167 nt) than endogenous m6A sites (median = 915 nt) (Fig. 1D). 

These observations suggest that endogenous m6A enrichment in long internal exons may be 

a consequence of suppression of m6A deposition in shorter internal exons, which comprise 

most exons (90% of internal exons are < 246 nt) (Fig. 1E). 942 genes containing suppressed 

m6A sites did not contain any endogenous m6A peaks on their transcripts (fig. S5B). 

Suppression of these sites appears to involve suppression of m6A deposition rather than 

active demethylation, as binding sites for RBM15, a METTL3-METTL14 methyltransferase 

complex accessory subunit, were highly enriched near endogenous m6A sites compared 

to suppressed m6A sites (fig. S6A), while FTO and ALKBH5 binding sites were not 

significantly enriched near suppressed sites and exhibited little binding near suppressed sites 
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overall (fig. S6B). These results were unexpected as previous reports on m6A specificity had 

mainly focused on activating mechanisms (7–12). Our MPm6A assay suggests the existence 

of unknown m6A “suppressors” that govern global m6A specificity by suppressing m6A 

deposition.

Pre-mRNA splicing suppresses m6A methylation proximal to splice sites

We next examined the relative enrichment of binding sites for 120 RBPs near endogenously 

methylated versus suppressed m6A sites to identify candidate suppressors (13). Several 

spliceosome components (BUD13, SF3B4, EFTUD2) were significantly enriched near 

suppressed sites, suggesting that splicing may suppress m6A (fig. S6A). Because suppressed 

m6A sites in CDS primarily reside within average-length internal exons, we hypothesized 

that the splicing of average-length internal exons may suppress m6A methylation. To test 

this, we cloned a suppressed m6A site from an average-length internal exon in the CRY1 
gene (fig. S7A) into a rabbit beta-globin minigene reporter (BG), as well as a version with 

the introns removed (BG Δi1,i2). First, we cloned the suppressed CRY1 site and 50/51 nt of 

flanking sequence into the internal exon, or in the last exon of these constructs. Notably, the 

spliced construct strongly suppressed methylation of the sequence placed within the internal 

exon, but not within the last exon (fig. S7B). Removal of either intron (BG Δi1 CRY1 

102, BG Δi2 CRY1 102) resulted in partial loss of suppression, indicating that splicing of 

both introns contributed to methylation suppression (Fig. 2A). Consistent with this notion, 

deletion of all splice sites also resulted in a decrease in m6A suppression (fig. S7C). Cloning 

in 912 nt of the CRY1 exonic sequence surrounding the suppressed site into the internal 

exon (BG CRY1 912), forming a long internal exon, resulted in a loss of suppression (Fig. 

2A). We hypothesized that the suppression is dependent on the proximity of the m6A site, 

located within the center of the exon, to splice sites. Expanding the length of the BG CRY1 

102 internal exon by cloning in larger amounts of CRY1 flanking exonic sequence resulted 

in a progressive loss of suppression, with a > 476 nt internal exon unable to suppress m6A 

(Fig. 2B and fig. S7D). These results reveal a causal role for pre-mRNA splicing in m6A 

regulation.

Exon junction complexes control m6A epitranscriptome specificity

We next sought to understand the mechanism by which splicing suppresses m6A deposition. 

Exon junction complexes (EJCs) are deposited by spliceosomes onto mRNA ~24 nt 

upstream of exon-exon junctions and plays multifaceted roles in gene expression regulation 

(14, 15). Notably, two recent studies reported that EJCs efficiently block splicing at 

proximal aberrant splice sites (16, 17). Additionally, EJCs, together with interacting 

serine and arginine-rich (SR) proteins, package and compact mRNA and can protect long 

stretches of proximal RNA from nuclease accessibility in vitro, and also block 5′ to 3′ 
exonuclease degradation in vivo (18, 19). We reasoned that suppressed m6A sites within 

average-length internal exons are within relatively close proximity to both an upstream and 

downstream EJC. Conversely, m6A sites within long internal exons and near stop codons 

(which generally reside in long last exons) can be hundreds of nucleotides away from the 

nearest EJC. We therefore hypothesized that EJCs could mediate the splice site-proximal 

suppression of m6A we observed.
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We knocked down (KD) the core EJC factor EIF4A3 in HeLa cells and assessed the 

effect on m6A deposition transcriptome-wide using m6A-MeRIP-seq. Notably, 24,350 

regions were significantly hypermethylated upon EIF4A3 KD, while 3,140 regions were 

hypomethylated (Fig. 3A). 39% of these hypermethylated regions exhibited a greater than 8-

fold increase in m6A enrichment compared to the non-targeting siRNA control. We knocked 

down RBM8A, another core EJC factor (20), and observed similar, though relatively 

milder, transcriptome-wide m6A changes, with 14,034 significantly hypermethylated regions 

observed, of which 57% overlapped with hypermethylated regions observed in EIF4A3 
KD (Fig. 3A and fig. S8, A and B). The relatively milder m6A changes upon RBM8A 
KD may result from relatively lower KD efficiency (table S1) or may indicate a stronger 

requirement of EIF4A3 for suppression. Concordant with these transcriptome-wide m6A 

changes, using UHPLC-QQQ-MS/MS, we found that EIF4A3 KD increased global levels of 

m6A in polyadenylated RNA by two-fold, while RBM8A KD resulted in a ~25% increase 

(fig. S8C).

94% of hypermethylated regions from EIF4A3 KD and 82% of hypermethylated regions 

from RBM8A KD did not overlap with m6A peaks identified under the non-targeting siRNA 

control conditions, suggesting that these regions contain newly methylated suppressed m6A 

sites (Fig. 3, A and B, and fig. S8D). Indeed, out of 1,024 CDS sequences identified by 

MPm6A to contain suppressed m6A sites, 46% become methylated upon EIF4A3 and/or 

RBM8A KD, including the CRY1 suppressed site (fig. S8E), with three selected suppressed 

sites validated (fig. S8, F and G) (21). Furthermore, EIF4A3 KD substantially alleviated the 

previously observed m6A suppression within the internal exon of BG CRY1 102 (fig. S8H).

Consistent with our model, newly methylated and hypermethylated regions were highly 

enriched in average-length internal exons within CDSs (Fig. 3, C to E, and fig. S8, I and 

J), with transcriptome-wide increases in m6A enrichment in exon junction-proximal regions 

observed (fig.S9, A and B) upon EIF4A3 or RBM8A KD. EIF4A3 KD disrupted m6A 

epitranscriptome specificity globally, resulting in substantial loss of enrichment of m6A 

peaks in long internal exons and increased density of m6A in the CDS relative to the 

stop codon (Fig. 3, D and E). It was previously reported that the peak of m6A density 

near stop codons on metagene plots can be more precisely visualized as an increased 

enrichment 150 nt past the start of last exons (6). EIF4A3 KD resulted in a global increase 

in m6A enrichment < 150 nt past the start of last exons (fig. S9, A to C), indicating that 

EJC suppression of methylation proximal to last exon-exon junctions is responsible for 

the characteristic m6A peak density near stop codons. While most transcripts exhibited 

hypermethylation and contained one or more endogenous m6A peaks upon EIF4A3 KD, 

over a thousand transcripts that ordinarily lack endogenous m6A peaks also gained aberrant 

m6A methylation upon EIF4A3 KD, revealing a major role for EJCs in suppressing m6A 

deposition on the subset of transcripts that ordinarily are not subject to m6A regulation (fig. 

S9, D to F).

The widespread suppression of m6A by the EJCs also implies that many m6A are deposited 

following splicing, which we confirmed using pulse-chase metabolic labeling experiments 

and UHPLC-QQQ-MS/MS (supplementary text and fig. S10). Two genes used in gene 

therapies for mucopolysaccharidosis type II and spinal muscular atrophy, IDS and SMN, 

He et al. Page 5

Science. Author manuscript; available in PMC 2024 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



contain EJC-suppressed m6A sites in their mRNAs, respectively. As expected, when these 

mRNAs were expressed from cDNA constructs, and thus not bound by EJCs, they were 

significantly hypermethylated relative to the corresponding endogenous mRNAs (fig. S11). 

Further, lncRNAs that contain three or more exons globally exhibit EJC suppression of m6A 

in internal exons, while those with two or less do not (supplementary text and fig. S12). 

We depleted EIF4A3 with a different siRNA in HeLa cells, and knocked down EIF4A3 
in HEK293T cells as well as in a glioblastoma cancer cell line (U87) that is sensitive to 

EIF4A3 perturbation (22), and observed similar transcriptome-wide m6A changes in each 

case (figs. S13 to S15). Altogether, our results indicate that spliceosomes widely suppress 

m6A methylation via deposition of EJCs that protect proximal RNA from methylation.

EJCs regulate mRNA stability by suppressing m6A methylation

m6A is known to mainly accelerate mRNA degradation via the reader protein YTHDF2 

(23, 24). Accordingly, we observed globally reduced mRNA half-life of hypermethylated 

transcripts (~90%) upon EIF4A3 KD (Fig. 4, A and B). Consistently, we observed generally 

increased YTHDF2 binding on hypermethylated mRNAs, accompanied with the decreased 

mRNA half-life (Fig. 4C). YTHDF2 KD could rescue accelerated degradation of YTHDF2 

target transcripts upon EIF4A3 KD (fig. S16). Further, the density of EJC-loading on 

transcripts (estimated by the number of exons within CDS regions per 1 kb) correlated with 

transcriptome-wide mRNA stability (fig. S17). Higher EJC density on transcripts tended to 

correlate with reduced m6A methylation and higher mRNA stability, and the strength of this 

correlation was diminished by Mettl3 KO (fig. S17, A and B).

We also found that METTL3 depletion could generally reduce the expression level changes 

of hypermethylated genes upon EJC depletion in HeLa cells (supplementary text and fig. 

S18), indicating that these EJC-dependent gene expression changes are at least in part 

mediated by m6A methylation.

While the vast majority of hypermethylated transcripts were destabilized by EIF4A3 KD, a 

small subset of hypermethylated transcripts were stabilized (Fig. 4A). One example is p53, 

which mediates neurodevelopmental defects in mouse models of EJC haploinsufficiency 

(25). The TP53 transcript was hypermethylated but also up-regulated upon EIF4A3 KD. 

Mechanistically, we observed increased binding to TP53 mRNA by IGF2BP proteins, which 

are known to stabilize methylated transcripts (supplementary text and fig. S19). In summary, 

while the predominant effect of EJC-mediated m6A suppression is to stabilize mRNAs 

by preventing the YTHDF2-mediated decay, in a minority of instances hypermethylated 

transcripts can be stabilized by other mechanisms, such as binding by IGF2BPs (26).

Consistent with a general role for m6A in promoting translation (12, 27), EIF4A3 KD led 

to slightly increased translation efficiency of hypermethylated transcripts, with more highly 

hypermethylated transcripts exhibiting greater increases in translation efficiency (fig. S20), 

although the impact was modest relative to the effects observed on mRNA stability.
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Differential m6A methylation across tissues and species through EJC 

suppression

Our model suggests that the cellular EJC levels may impact global mRNA m6A deposition 

in different tissues. Indeed, we observed a negative correlation between EIF4A3 expression 

level and global mRNA m6A modification level in 25 different human tissues with available 

transcriptome-wide m6A profiles (fig. S21A) (28). We examined the top 10% of genes 

with the strongest correlations and found that the majority (> 70%) exhibited a negative 

correlation between m6A and EIF4A3 levels in different tissues. Further, m6A levels of 

these genes also negatively correlated with their transcript abundances (fig. S21B). Similar 

trends were also observed in mouse tissues (fig. S21C). These results further support m6A 

suppression by EJCs and subsequently mRNA stability regulation in mammalian tissues.

Notably, we observed the lowest EIF4A3 expressions in brain tissues, which exhibited 

the highest overall mRNA m6A levels (fig. S21A). We further compared the methylome 

of the human cerebellum (lowest EIF4A3 level and highest overall mRNA m6A) with 

that of the heart (higher EIF4A3 level and lower overall mRNA m6A). Regions that 

are hypermethylated in the cerebellum (compared to heart) reside within short internal 

exons (fig. S21D), suggesting reduced m6A suppression due to low EIF4A3 expression 

in cerebellum. This association between high m6A level and low EIF4A3 expression in 

cerebellum was attenuated upon depletion of METTL3 (fig. S21C). These observations 

further indicate the widespread suppression by EJCs contributes to tissue-specific m6A 

deposition. We also found that a subset of EJC-suppressed m6A sites physiologically 

escape suppression in certain tissues via methylation of alternative transcript isoforms. 

These isoforms contain longer exons and thus altered EJC positioning; methylation of these 

isoforms generates tissue-specific m6A patterns (supplementary text and fig. S22).

Lastly, the effect of exon-intron architecture on mRNA stability may have co-evolved with 

YTHDF2 in vertebrates. The strong correlation between EJC loading, represented by the 

number of exons, and mRNA level across tissues is maintained across humans, mice, and 

zebrafish, but not fly and worm, which lack YTHDF2 orthologs (supplementary text and fig. 

S23).

EJCs and peripheral EJC factor RNPS1 protect exon junction-proximal RNA 

regions from aberrant mRNA processing

We did not observe interactions between the methyltransferase complex and EJC complexes 

(fig. S24), suggesting that steric hindrance from EJCs, rather than a specific inhibitory 

interaction, accounts for methylation suppression. Nuclear EJCs bound with the peripheral 

EJC factor RNPS1 multimerize and associate with wide variety of SR and SR-like proteins 

to package and compact mRNA into higher-order, megadalton-scale mRNPs that ensheathe 

proximal RNA well beyond the canonical EJC deposition sites (18, 29, 30). Tens to 

hundreds of nucleotides of proximal RNA could be protected by this mega-complex 

from nuclease digestion due to this packaging (18, 31). To examine whether the mRNA 

packaging function of the EJC-mediates suppression of proximal methylation, we isolated 
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EJCs/EJC-bound RNA from cellular extracts, digested away physically accessible RNA 

with in vitro nuclease treatment, and then measured m6A levels on the EJC-protected RNA 

footprints (fig. S25, A and B). EJC-protected footprints were strongly depleted of m6A, 

indicating that these inaccessible RNA regions are largely protected from m6A deposition 

within cells (fig. S25C). EJCs also protected these footprints from in vitro methylation 

by recombinant METTL3-METTL14 (fig. S25D). This was not due to general inhibition 

of methyltransferase activity or lack of methylatable sites on the EJC footprints, as free, 

unmethylated RNA spiked into the methylation reaction as well as deproteinized footprints 

were both robustly methylated (fig. S25, D and E). Therefore, EJCs suppress local m6A 

deposition by packaging proximal RNA.

We next asked whether the peripheral EJC factor RNPS1, which associates with high 

molecular weight EJCs in these highly packaged mRNP structures (29), plays a role. 

RNPS1 knockdown led to substantial transcript m6A hypermethylation within average-

length internal exons and CDS regions (Fig. 5, A to C, and fig. S26, A to C). We detected 

fewer hypermethylated regions overall compared to depletion of the core EJC factors; 

however, we did observe high overlap (45%) between siRNPS1 hypermethylated regions 

and siEIF4A3/siRBM8A hypermethylated regions (Fig. 5C and fig. S26C). In contrast, 

depletion of UPF1, a central NMD factor that interacts with the EJC in the cytoplasm, did 

not result in m6A changes similar to those of the core EJC (fig. S27).

The ability of EJCs to protect proximal RNA regions from methylation resembles the 

recently characterized EJC- and RNPS1-mediated suppression of proximal aberrant splice 

sites and recursive splicing (16, 17). Transcriptome-wide, EJC-suppressed splice sites 

significantly colocalize with EJC-suppressed m6A sites (supplementary text; Fig. 4, C to E; 

fig. S26, D to F; and table S2). Altogether, these results suggest that RNPS1-associated EJCs 

suppress both local cellular m6A methylation and splicing through packaging of proximal 

RNA and point to exon architecture as an important determinant of local RNA accessibility 

to regulatory machineries. Additionally, beyond components of the m6A methyltransferase 

complex, a number of other RBPs also exhibit preferential binding at long internal exons, 

suggesting that EJCs may regulate mRNA accessibility to a broader range of mRNA 

regulators in addition to the splicing and m6A methylation machineries through their mRNA 

packaging function (supplementary text and fig. S28).

Discussion

Previously identified m6A effector proteins fall broadly into three categories according to 

their activities: “writers”, which catalyze m6A methylation, “readers”, which preferentially 

bind m6A, and “erasers”, which reverse m6A methylation. Here we establish the EJCs as 

a member of a new class of m6A regulators: “suppressors”, which broadly suppress the 

deposition of m6A (fig. S28). EJCs appear to be a major regulator of m6A deposition 

that mediate multiple key aspects of global m6A epitranscriptome specificity, including 

enrichment of m6A in long internal exons, depletion of m6A in CDSs and enrichment of 

m6A in last exons near stop codons, and methylation selectivity for transcripts possessing 

long internal exons. This mechanism may also explain the high abundance of m6A on 

certain non-coding RNAs, such as LINE-1 elements that are generally unspliced and thus 
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not bound by the EJCs (32, 33). Further, our systematic analysis of m6A determinants 

using MPm6A may suggest the existence of additional m6A suppressing pathways, including 

m6A suppression within the CDS, as EIF4A3 KD does not appear to completely restore 

methylation to unspliced levels (supplementary text, fig. S8H, and fig. S29).

Our results point to exon length within transcripts as a functionally relevant element 

for post-transcriptional gene expression regulation. Mammalian EJCs stably bind the vast 

majority of pre-translational mRNAs in the transcriptome at closely spaced intervals. Long 

internal exons and terminal exons, which usually encode UTRs, are notably free of EJCs. 

This widespread binding, in conjunction with their mRNA packaging function, appears to 

uniquely position EJCs to broadly determine mRNA accessibility to regulatory machineries, 

such as the m6A methylation and splicing machineries (fig. S30). Our work has relevance 

for the use of cDNA expression constructs in research studies and gene therapies, as loss of 

endogenous mRNA exon architecture and EJC protection results in m6A hypermethylation 

(fig. S11), which could modulate gene expression outcome. Finally, our study also suggests 

that exon length and architecture co-evolved with mRNA processing steps as an additional 

regulatory layer of gene expression.
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Fig. 1. MPm6A reveals suppression of thousands of m6A sites in unmethylated transcriptome 
regions.
(A) Schematic of the MPm6A workflow. (B) MPm6A enrichment scores (experimental 

IP/input – negative control IP/input) for endogenously methylated (n = 6,095) and 

unmethylated (n = 2,716) sequences, mean ± SD, four biological replicates. (C) Metagenes 

of endogenously methylated and unmethylated sequences that are significantly methylated 

in MPm6A. (D) Exon lengths of endogenously methylated and unmethylated sequences that 

are significantly methylated in MPm6A. Median, and IQR, Wilcoxon rank sum test. Sample 

size for each violin plot from left to right is: n = 175, n = 22, n = 696, n = 519, n = 3,539, 

and n = 1,328. (E) Distribution of internal exon lengths in the human genome. Black lines 

indicate 10th percentile (left, 60 nt) and 90th percentile (right, 246 nt). Blue and red lines 

indicate median internal exon length for MPm6A endogenously methylated (915 nt) and 

unmethylated (167 nt) sequences, respectively.
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Fig. 2. Pre-mRNA splicing suppresses m6A methylation in average-length exons.
(A and B) Left: schematic of specified BG CRY1 constructs. Blue regions indicate 

sequences derived from the CRY1 endogenous sequence, gray regions indicate sequences 

derived from rabbit beta-globin (BG). Number following CRY1 refers to the number of 

nucleotides of exonic sequence surrounding the CRY1 suppressed m6A site in the CRY1 
endogenous mRNA that was cloned into the BG construct. Grey dot in the blue region 

denotes the suppressed m6A site; the number at the left and right of the m6A site shows 

the distance (nt) between the m6A site and the 3′ and 5′ splice site, respectively; the 

number next to the TSS shows the distance (nt) between the m6A site and the promoter. 

Δ denotes deletion of the specified intron(s). Details of each construct are described in the 

supplementary method. Right: m6A enrichment at a CRY1 suppressed m6A site. Primers 

amplifying a 62 nt-fragment containing the CRY1 suppressed m6A site. m6A enrichment 

was calculated as IP/input normalized to m6A-marked Gaussia luciferase RNA spike-in IP/

input. Mean ± SEM, two-tailed t-test, *P < 0.05; **P < 0.01, ***P < 0.001. Three biological 

replicates.
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Fig. 3. EJCs protect exon junction-proximal RNA in average-length exons within CDS regions 
from m6A methylation.
(A) Differentially methylated regions upon EIF4A3 KD (left) and RBM8A KD (right) in 

HeLa cells (FDR<.1, |log2FC|>1). Three biological replicates. Gray and red dots indicate 

differentially methylated regions that overlap and do not overlap m6A peaks in the control 

cells, respectively. (B) Input and m6A-IP read coverage at FUS and SRSF6 in EIF4A3 KD, 

RBM8A KD, and control HeLa cells. (C) Numbers of EIF4A3 KD hypermethylated regions 

(left) and m6A peaks in control cells (right) that reside within first, internal or last exons 

(D) Exon lengths for m6A peaks residing within internal exons in control KD, EIF4A3 KD 

and RBM8A KD cells, and exon lengths of hypermethylated regions residing within internal 

exons in EIF4A3 and RBM8A KD cells. Dot and bar represent median and interquartile 

range, Wilcoxon rank sum test of indicated group vs. siC all m6A peaks. Sample size for 

each violin plot from left to right is: n = 3166, n = 6659, n = 8438, n = 3817, and n = 

3827. (E) Metagenes of m6A peaks and significantly hypermethylated m6A regions (and top 

quartile) in EIF4A3 KD HeLa cells, and m6A peaks in control cells.
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Fig. 4. mRNA m6A hypermethylation upon EJC depletion destabilizes mRNAs.
(A) Correlation between fold changes in mRNA half-life and m6A level upon EIF4A3 KD 

in HeLa cells (n = 3840). (B) Boxplots showing half-life fold changes of hypermethylated 

mRNAs upon EIF4A3 KD in HeLa cells. mRNAs were categorized into three groups 

according to their methylation changes upon EIF4A3 KD in HeLa cells. P values from 

Wilcoxon rank sum test. Sample size for each boxplot plot from left to right is: n = 1887, n 
= 1201, and n = 752. (C) Left: heatmap showing fold changes in m6A level, mRNA half-life, 

and YTHDF2 binding upon EIF4A3 KD in HeLa cells. Right: scatter plots showing the 
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correlation among fold changes in m6A level, mRNA half-life, and YTHDF2 binding upon 

EIF4A3 KD in HeLa cells. The hypermethylated mRNAs (m6A log2FC > 0; n = 3424) were 

categorized into 100 bins based on ranked fold change of m6A level upon EIF4A3 KD. For 

(A) and (C), PCC and P values are shown.
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Fig. 5. EJCs and RNPS1 protect proximal RNA regions from aberrant mRNA processing.
(A) Differentially methylated regions upon RNPS1 KD in HeLa cells (FDR < 0.1, |log2FC| 

> 1), three biological replicates. Gray and red dots indicate differentially methylated regions 

that overlap and do not overlap with m6A peaks in the control KD cells, respectively. (B) 

Metagenes of significantly m6A hypermethylated regions (and top quartile) upon RNPS1 
KD in HeLa cells in comparison with that of all m6A peaks in control cells. (C) Input 

and m6A-IP read coverage at CDH24 and NRAS upon RNPS1 KD and EIF4A3 KD, 

respectively, as well as corresponding controls in HeLa cells. (D) Enrichment of suppressed 

m6A sites (identified from MPm6A) at EIF4A3-suppressed splice sites (left) and enrichment 

of EIF4A3 KD hypermethylated regions at EIF4A3-suppressed splice sites (right). Fisher’s 

exact test, dot and bar represent odds ratio and 95% confidence interval. (E) Input and 

m6A-IP read coverage at SENP3 and HNRNPH1 in EIF4A3 KD and control HeLa cells. 

(F) Schematic model depicting that EJCs and RNPS1 (and potentially other EJC-associated 

proteins) protect exon junction-proximal RNA from m6A deposition through local mRNA 

packaging. For (C) and (E), red bracket indicates EIF4A3-suppressed splice variant, with 

ends of bracket indicating the suppressed splice junctions.
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