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Purpose: To investigate the diagnostic performance of a deep convolutional neural network for 

differentiation of clear cell renal cell carcinoma (ccRCC) from renal oncocytoma.

Methods: In this retrospective study, 74 patients (49 male, mean age 59.3) with 243 renal masses 

(203 ccRCC and 40 oncocytoma) that had undergone MR imaging 6 months prior to pathologic 

confirmation of the lesions were included. Segmentation using seed placement and bounding box 

selection was used to extract the lesion patches from T2-WI, and T1-WI pre-contrast, post-contrast 

arterial and venous phases. Then, a deep convolutional neural network (AlexNet) was fine-tuned 

to distinguish the ccRCC from oncocytoma. Five-fold cross validation was used to evaluate the 

Al algorithm performance. A subset of 80 lesions (40 ccRCC, 40 oncocytoma) were randomly 

selected to be classified by two radiologists and their performance was compared to the AI 

algorithm. Intra-class correlation coefficient was calculated using the Shrout-Fleiss method.

Results: Overall accuracy of the AI system was 91% for differentiation of ccRCC from 

oncocytoma with an area under the curve of 0.9. For the observer study on 80 randomly selected 

lesions, there was moderate agreement between the two radiologists and AI algorithm. In the 

comparison sub-dataset, classification accuracies were 81%, 78%, and 70% for AI, radiologist 1, 

and radiologist 2, respectively.

Conclusion: The developed AI system in this study showed high diagnostic performance in 

differentiation of ccRCC versus oncocytoma on multi-phasic MRIs.

Keywords

Deep learning; Radiomics; Clear cell renal cell carcinoma; Oncocytoma; Multi-phasic MRI

1. Introduction

Increased use of cross sectional imaging has resulted in remarkable rise in detection of 

small renal masses, which are defined as masses with the largest dimension of ≤4 cm on 

abdominal imaging.1 3 Small renal masses (SRMs) can demonstrate a wide spectrum of 

prognosis from benign neoplasms and cysts to aggressive malignancies. 4,5

The majority of contrast-enhancing SRMs are Renal Cell Carcinomas (RCC) that encompass 

a heterogeneous group of cancers, with clear cell subtype (ccRCC) being the most 

common subclassification of RCCs that accounts for the majority of kidney cancerrelated 

mortalities.5‘6 While enhancement increases the chance of malignancy, a considerable 

portion of contrast-enhancing SRMs are benign tumors.7‘8 For instance, Oncocytoma, 

the most common benign renal mass often demonstrates enhancement patterns similar 

to ccRCC, making it challenging to differentiate these two subtypes that have different 

prognostic outcomes.9,10

Due to uncertainty in pre-operative diagnosis and lower incidence, benign tumors tend to be 

over treated, while active surveillance is an option for many patients with these tumors. In 

fact, renal oncocytoma accounts for 4–10% of nephrectomies in which renal-cell carcinoma 

is suspected.11,12
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Percutaneous renal mass biopsy is suggested in cases that knowledge of histology could 

influence subsequent management.13 However, renal mass biopsy is an invasive procedure, 

associated with complications related to the procedure itself or difficulties with acquiring 

the representative tissue.14 In addition, the collected biopsy samples may be inadequate or 

indeterminate in a number of cases. For instance, benign oncocytoma coexists with RCC in 

20% of cases of oncocytoma which might lead to imprecise biopsy and false negative results 

and subsequent detrimental clinical outcomes.14,15

It is evident that in such heterogeneous clinical setting, development of diagnostic tools 

could have significant impact on patient management and care. However, efforts for finding 

a robust radiologic method to accurately differentiate ccRCC and oncocytoma, has not yet 

delivered any finding of high clinical value.16,17

To determine the biologic nature of an observed lesion from imaging data, a common 

practice for the radiologist includes evaluation of certain morphologic features such as 

boundary, sphericity, internal structure, and texture. However, these features, which can be 

quite subjective, suffer from high inter/intra-observer variability. In some more challenging 

scenarios, such as the present task of classification of oncocytoma and ccRCC, it may 

not be feasible to design such a rule-based system due to the subtle and hard-to-translate 

difference between the two. In the past decades, radiomics has enabled us to analyze 

medical images beyond what human eye is capable of detecting. Radiomics has facilitated 

automatic detection and characterization of renal masses. Early attempts mostly relied on 

a combination of handcrafted features and machine learning classifiers to estimate the 

desired output in tasks such as computer aided diagnosis (CAD). The features were mostly 

general-purpose initially designed for natural images and were fed to common classifiers 

such as support vector machine (SVM) and random forest. These methods often suffered 

from limited accuracy and robustness.18 With the recent development of deep learning and 

artificial intelligence (AI), robust hierarchical features can be learnt directly from data and 

tasks which can achieve performance matching to that of human.19,20 This can be especially 

useful for tasks where the features are too subtle or difficult to catch explicitly.

The purpose of this article was to develop a deep-learning based AI system for 

differentiation of clear cell renal carcinoma from benign oncocytoma and to evaluate its 

performance. We further compared the result from the AI algorithm with the assessment of 

lesion types from two independent radiologists.

2. Methods

2.1. Patient population

This study was compliant with the Health Insurance Portability and Accountability Act 

(HIPAA) and was approved by our institutions Institutional Review Board (IRB). Patients 

were recruited consecutively for a prospective study of natural history of hereditary renal 

cancers at the Urologic Oncology Branch of the National Cancer Institute (UOB-NCI). All 

patients signed written informed consent to participate in this protocol (NCI-89-C-0086).
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Our patient cohort was selected through the retrospective review of a prospectively 

maintained UOB-imaging registry for individuals with pathological diagnosis of 

oncocytoma or ccRCC that had undergone surgical resection of tumors between February 

2014 and July 2018 and had contrast-enhanced Magnetic Resonance Imaging (MRI) within 

6 months prior to pathologic confirmation. Images were acquired on 1.5 T MRI scanners 

(Aera, Siemens Healthcare) with the same dedicated renal mass protocol. Patients with 

images that had significant artifact and lesions smaller than 1 cm were excluded from further 

analysis. Fig. 1 shows the accrual flowchart of our study based on inclusion and exclusion 

criteria used in this study.

2.2. Magnetic resonance imaging acquisition

MRI examinations were performed per our institution’s protocol for renal masses at a field 

strength of 1.5 T (Aera, Siemens Healthcare). Images were acquired before and after an 

administration of gadobutrol (Gadavist, Bayer, Whippany, New Jersey, USA) at 0.1 mmol/kg 

and 20 mL saline f ush. Imaging sequences included T2-weighted images (T2-WI), and pre- 

and post contrast T1-weighted Images (T1-WI) during corticomedullary phase (20 s), and 

nephrographic phase (70 s) (Table 1).

2.3. Image registration

In order to fully exploit the information from different MRI sequences in the AI 

algorithm, we aligned all the pre-contrast and contrast-enhanced (arterial and venous) 

sequences of T1-weighted images (T1-WI) with the T2-weighted images (T2-WI). Since 

patients have limited body or abdomen movement during the MRI scanning, a rigid 

image registration was sufficient to align all the contrast sequences to the T2-WI. More 

specifically, we designated the T2 volumetric image as the target image, denoted as 

IT2, and contrast enhanced volumetric images as the moving images, denoted as Icontrast. 

The goal was to find the optimal 3D spatial transformation T(.), which maps any 

point in the moving image Icontrast to its corresponding point in the target image IT2. 

Mutual information (MI) was used as their similarity measurement, which was defined 

by MI Icontrast, IT2 = H Icontrast + H IT2 − H Icontrast, IT2 , where H(Icontrast) and H IT2
denoted the marginal entropies of Icontrast and IT2, and H Icontrast, IT2  denoted their joint 

entropy that was calculated from their joint histogram. We used the Insight Segmentation 

and Registration Toolkit (ITK) (https://itk.org/) to perform the image registrations.

2.4. Image processing for training data generation

Oncocytoma and ccRCCs were cropped out as two-dimensional (2D) patches to fine-tune 

the AI algorithm for their classifications. First, for each lesion, an imaging research fellow 

with 3 years of experience manually selected a seed point roughly at the lesion center from 

each lesion slice in T2-WI, using image analysis software ITK-SNAP (v3.6.0).21 Then, local 

region of interest (ROI) patch was automatically extracted around the seed point with a fixed 

size of 100 × 100 mm in physical space. After that, corresponding patches from sets of three 

image series were selected, creating four possible sequence combinations. Image patches 
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from each set were combined as a red green blue (RGB) image and resized to 224 × 224 to 

fit the pre-trained AlexNet configuration, which requires 3 channels for the input image.

Data Augmentation was performed on training data to increase the size of training sets, and 

to reduce the overfitting. To balance the training number of ccRCC and oncocytoma lesions 

(originally approximately 5:1), different ratios of data augmentations were performed. For 

each oncocytoma lesion patch, 20 rotations with random degree from −90 to 90 were 

applied. And for each ccRCC lesion patch, 4 rotations with random degree from −90 to 

90 were applied. For both types of lesions, a flipping operation from top to down was 

also applied. Fig. 2 shows an example of image segmentation performed for training data 

generation.

2.5. Architecture

Considering the fact that our kidney lesion dataset was relatively small (compared to 

millions of pictures in natural image domain) and the pre-trained AI algorithms were 

Jess prone to overfitting, we chose to fine-tune a relative shallower convolutional neural 

network (CNN), i.e. AlexNet,22 which contains five convolutional layers followed by three 

fully-connected layers. The AlexNet architecture is presented in Fig. 3. We modified the last 

fully connected layer from 1000 original neural nodes to 2 nodes representing oncocytoma 

and ccRCC classes, while keeping other layers setup unchanged. The output of the last filly 

connected layer is further processed by a two classes softmax function before calculating 

network losses. The cross-entropy loss was used to train the network.

2.6. Training

We used 5-fold cross validations at lesion level to get a comprehensive evaluation of the 

classifier’s performance on differentiating oncocytoma and ccRCC lesions. For each fold, 

there were roughly 160 ccRCC and 32 oncocytoma lesions used for training and 40 ccRCC 

and 8 oncocytoma lesions for testing. Each lesion contained 1– 10 (average 4.5) slices. After 

data augmentation, there was a total –7000 training patches for each fold.

We used the deep learning library of Caffe23 to fine-tune the AlexNet, where optimization 

was performed using stochastic gradient descent, with an initial learning rate of le-6, a 

momentum of 0.9, and a weight decay of 0.005. The learning rate was reduced by 0.1 after 

every 40 epochs. Training converged after –100 epochs taking about 2 h in an Nvidia K40 

GPU.

2.7. Performance evaluation metrics

The fine-tuned network was used to predict the label of testing data. Final per lesion 

prediction was obtained by aggregating the probability scores across all lesion slices. 

Final performance was reported by averaging the prediction results from 5 folds. Receiver 

operating characteristic (ROC) analysis was performed and area under the curve (AUC) 

was calculated. Sensitivity, specificity, precision or positive predictive value (PPV) and 

negative predictive value (NPV), and accuracy in differentiating oncocytoma and ccRCC 

were calculated.
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2.8. Clinical validation

To compare radiologists’ vs. AI performance on this classification task, we designed an 

observer study that allowed readers to simultaneously view all sequences of pre-contrast 

and contrast-enhanced (arterial and venous) T1-WI and T2 WI, while being able to scroll 

through the volume that only included lesion and perilesional information. Images were 

cropped to the size of the bounding box used for the deep neural network to include only the 

ipsilateral kidney in order to eliminate confusion of contralateral kidney and were randomly 

presented to radiologists. Two fellowship-trained radiologists (with 30 and 10 years of 

experience), evaluated a total of 80 (40 ccRCC, 40 oncocytoma) masses that were randomly 

selected from the same cohort. Radiologists were blinded to all patient clinical and histology 

information and were asked to provide their diagnosis on a grade of 1–4 as their certainty 

of decision. A score of 1 was defined as when the radiologist observed enough evidence 

(including but not limited to homogeneous, well-circumscribed solid mass, often containing 

a central scar) to have high confidence about the diagnosis of oncocytoma. A score of 2 was 

assigned when the radiologist preferred the oncocytoma lesion type but with low confidence 

to confirm its diagnosis. Similar to the score of 1 and 2 used for oncocytoma lesions, 

score of 3 was assigned if the radiologist preferred the ccRCC lesion type but with low 

confidence to confirm its diagnosis, while score of 4 was assigned when the radiologist was 

highly confident that the lesion type was ccRCC. This scoring system could better reflect the 

decision process of radiologists and also more comparable to the probability-based outputs 

from AI algorithm. This scoring system could also allow for a ROC analysis by setting the 

positive threshold at each individual score, resulting in 5 points within ROC plane.

2.9. Performance, comparison

The intra-class correlation coefficient of the two radiologists and AI classifications was 

determined by using Shrout Fleiss method. Accuracy, sensitivity, specificity, positive 

predictive value (PPV) and negative predictive value (NPV) were calculated for the 

radiologists and were compared to the performance of AI on the comparison subset (80 

tumors with 40 oncocytoma and 40 ccRCC lesions). Next, the probability outputs of AI 

algorithm for these 80 lesions were rounded to the nearest quartile to more precisely 

investigate probability outcomes rather than a binary decision and to compare to radiologist 

rating of 1–4. More specifically, if AI’s output probability for oncocytoma was greater than 

0.75, the score 1 was assigned meaning the AI algorithm had high confidence that it was an 

oncocytoma lesion, and if the output probability for oncocytoma was between (0.5, 0.75), 

the score of 2 was assigned meaning the network had low confidence on suggesting an 

oncocytoma lesion. Similarly, the score of 3 and 4 were defined if the network had low and 

high confidence, respectively to predict the lesion as ccRCC type.

3. Results

Our study included a final cohort of 74 patients (49 male, mean age 59.3 years) with 

243 renal masses, consisting of 203 ccRCC from 59 patients and 40 oncocytoma from 15 

patients. From the four sequence combinations, using T2 WI and T1-post contrast sequences 

yielded the highest performance as reported in the following.

Nikpanah et al. Page 6

Clin Imaging. Author manuscript; available in PMC 2023 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the 5-fold cross validation, AI showed sensitivity of 94%, specificity of 75% and an 

overall accuracy of 91% with the receiver operating characteristic (ROC) curves plotted 

in Fig. 4 (“CNN_FullData”), the corresponding area under the curve (AUC) was 0.9. 

Confusion matrix and performance report are presented in Tables 2 and 3, respectively.

Out of the 80 tumors that were reviewed by the radiologists, AI achieved the classification 

sensitivity of 88%, specificity of 75% and accuracy of 81% for predicting the ccRCC 

lesions, while the corresponding numbers were 85%, 70%, 78% for radiologist 1 and 85%, 

55%, 70% for radiologist 2. The ROC curves are shown in Fig. 4 (*_EvalData), where the 

AI achieved an AUC of 0.9. Using radiologist 1–4 scoring system, each radiologist had in 

total 5 sensitivity-specificity pairs (including origin and [1, 1]): consider score 1/2/3/4 all as 

positive for ccRCC, consider score 2/3/4 as positive, consider score 3/4 as positive, consider 

score 4 as positive, and consider all scores negative. It could also be observed from the ROC 

curve that the subset ROC was roughly aligned with full ROC for CNN.

Among these 80 tumors reviewed by 2 radiologists, radiologist 1 selected 37 oncocytoma 

and 43 ccRCC. Radiologist 2 selected 35 oncocytoma and 45 ccRCC lesions. Intra-class 

correlation measurement resulted in a mean κ score of 0.56 for the classification task, 

indicating moderate agreements between the radiologists and AI.24 When certainty of 

decision making was considered, both radiologists and AI performed better for decisions 

made with high probability (>75%) than low probability (less than 75%). AI algorithm 

showed the highest performance, among three for high probability decisions and was correct 

in 94% of the times for ccRCC and 78% for oncocytoma tumors. These numbers were 89% 

and 75% for radiologist 1, and 86%, and 75% for radiologist 2, respectively. Moreover, 

AI also made higher number of decisions with high probability, i.e. 58 high probability 

decisions made by AI vs. 46 and 40 from the 2 radiologists. Performance decreased for 

all three for decisions made with low probability. Specifically, performance of AI had 

a significant decrease with an accuracy of 67% for ccRCCs and 69% for oncocytomas. 

These numbers were 80% and 67% for radiologist 1, and 83% and 46% for radiologist 2, 

respectively.

Out of 40 ccRCC lesions, 30 were correctly classified by both radiologists and AI. Fifteen 

ccRCC lesions were classified with high probability by all three entities. For oncocytomas, 

both radiologists and AI had agreement on correctly identifying 11 lesions. Two of these 

lesions were classified with high probability by all three entities. There were six oncocytoma 

lesions that were misclassified by radiologists for which AI had a correct classification. 

Table 4 shows the confusion matrix comparing performance of AI and radiologists on 80 

tumor subset.

4. Discussion

In the present study, we investigated whether ccRCC can be differentiated from oncocytoma 

lesions on pre and post-contrast MR imaging using AI based on deep learning with 

convolutional neural network. Our result indicates that AI can be a useful tool for 

differentiation of these two tumor subtypes with reasonable performance metrics.
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It is evident that clinical outcomes of various types of renal masses are significantly 

different and successful application of a non-invasive method for risk stratification is of 

paramount importance, specifically in differentiation of ccRCC from oncocytoma lesions 

which has always been a diagnostic challenge for radiologists.25,26 This is particularly 

important for lesions that are considered small since these are followed with different 

active surveillance strategies. Various tools and imaging sequences have been previously 

tested for their ability in differentiating ccRCC from Oncocytoma.12,25,27,28 Most of these 

studies utilized imaging information from only a single classifier for this classification 

task. The advantage that AI algorithms could potentially bring about to this classification 

task is their ability in aggregating information from multiple tools and sequences. Coy 

et al evaluated the performance of Google TensorFlow™ in differentiation of ccRCC and 

oncocytoma on a cohort of 179 lesions. In their study, they utilized multiple phases of 

contrast-enhanced CT scans and reported an accuracy of 74.4%. However, their training 

method was limited by transfer learning from ImageNet datasets that contains non-medical 

imaging data. Additionally, the algorithm used in their study investigated individual 

performance of sequences for this prediction task, again utilizing only a single classifier for 

each performance measurement.29 As a preliminary effort in implementing such multiscale 

approach for differentiation of renal masses, we developed an in-house AI algorithm by 

utilizing a three-channel network by inputting combinations of four selected sequences of 

MR images. We selected these sequences in a way to take advantage of the information from 

contrast enhancement and fat and water tissue characteristics.

Our findings showed combining information from T2-WI and T1-post contrast sequences 

resulted in best performance of algorithm that could indicate the importance of utilizing 

information related to both T1 and T2-specific tissue characteristics and contrast phasing. 

Moreover, by selecting a fixed bounding box surrounding the tumor in the image-space, 

we also included the effect of perilesional information in our calculations. This could be 

important as renal tumors can cause physiologic changes in the surrounding tissue that might 

be specific to their unique pathology.30

To better understand our findings and outputs of AI, we asked two independent radiologists 

to classify a subset of 80 tumors which were also reviewed by the algorithm. However, 

instead of a binary classification task, we defined an observer study utilizing a rating system 

(1–4) to assess radiologists’ certainty of judgment. This way, we were able to generate 

probability of decision making from radiologists’ classifications, similar to the output from 

AI. Additionally, when considering probability of decision making, both radiologists and 

AI were more accurate for decisions made with higher confidence (probability >75%). This 

could indicate the strength of imaging metrics learned by the AI algorithm and radiologic 

evidence used by radiologists for differentiation of these two subtypes. Out of 40 ccRCC 

lesions, 15 were correctly identified by both radiologists and the algorithm with high 

probability. This may indicate that these tumors contained meaningful imaging patterns 

significantly suggestive of ccRCC pathology that were detected by deep network and 

radiologists with high certainty of classification. By reviewing these cases, we found that 

these lesions appeared to be heterogeneous cases of ccRCC that showed more enhancing 

septations on post-contrast studies with brighter appearance on T2 WI, same as the features 

Nikpanah et al. Page 8

Clin Imaging. Author manuscript; available in PMC 2023 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



previously reported in the literature.31 33 Fig. 5 shows an example of these tumors that 

showed significant evidence suggestive of ccRCC.

Our algorithm had much better performance in identification of ccRCC tumors versus 

oncocytoma. We also observed that both radiologists performed better in identifying 

ccRCC tumors than oncocytoma lesions. Even though we used several measures of data 

augmentation to care for data imbalance, part of the reason for lower performance of 

the AI algorithm on oncocytomas could be due to smaller number of training samples of 

oncocytoma versus clear cell (40 vs. 203). However, our findings that both radiologists 

and AI had less accuracy in characterization of oncocytomas could emphasize the difficulty 

of differentiating oncocytoma lesions from ccRCCs potentially attributed to less unique 

imaging features characteristic of oncocytoma pathology. Out of 40 oncocytoma lesions, 

AI correctly classified 6 that were misclassified by both radiologists. These cases were 

rather smaller oncocytomas that showed enhancement patterns similar to ccRCC with 

heterogeneity and brighter appearance on T2-WI. Fig. 6 is an example of these oncocytoma 

tumors with features suggestive of ccRCC.

The current study had some limitations. Even though we used a cross-validation method 

to address issues associated with overfitting, our findings are limited by the lack of a 

retest dataset. Another limitation was the small number of lesions used in this study 

particularly oncocytomas due to rare incidence of this subtype of renal tumors. Moreover, 

scores that were assigned by the radiologists were still subjective since there are no 

conventional radiologic guidelines for differentiation of these two tumor subtypes, ratings 

with lower probability would depend on expert judgment without sufficient clinical 

evidence. Additionally, our AI algorithm still needs a lesion to be detected and outlined 

for the classification task to be accomplished, however our group is working on building an 

AI system to automatedly detect kidney lesions, which will be cascaded to the defined lesion 

classification algorithm. Finally, at our institution, patients with kidney lesions are evaluated 

and managed by a dedicated radiology and urology team who has decades of experience in 

their respective fields. Thus, our single-institution study may not be readily generalizable to 

community settings.

5. Conclusion

In conclusion, this study showed that a deep learning based AI system using convolutional 

neural networks showed high diagnostic performance in differentiation of ccRCC and 

oncocytoma on multi-phasic MRIs.
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Fig. 1. 
Study flow chart summarizing the patient and lesion selection.
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Fig. 2. 
Showing segmentation process and bounding box generated of the tumor shown in Fig. 2. 

Tumor was located on T2 WI (A), a seed point was placed on the lesion based on rough 

estimation of its location (B). Bounding box was generated, relative to the image (C), and 

extracted (D).
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Fig. 3. 
Convolutional neural network architecture.
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Fig. 4. 
Receiver operating characteristic (ROC) curve plotted for performance of algorithm (blue for 

full data and orange for 80 lesion subset) for differentiating ccRCC from oncocytoma. Gray 

and yellow lines show radiologist performance on 80 lesion subset. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 5. 
(A) T2-WI, (B) pre-contrast phase, (C) post-contrast arterial, and (D) post-contrast venous 

phase MRI image sets in a 34-year old male with a clear cell renal cell carcinoma diagnosed 

with von Hippel-Lindau syndrome. The mass was correctly identified by both radiologists 

and AI with high probability of being ccRCC.

Nikpanah et al. Page 16

Clin Imaging. Author manuscript; available in PMC 2023 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
(A) T2 WI, (B) pre contrast phase, (C) post-contrast arterial, and (D) post contrast venous 

phase MRI image sets in a 41 year-old male with an oncocytoma tumor diagnosed with 

Birt-Hogg-Dubé syndrome. This mass was misclassified by both radiologists as ccRCC, 

but was correctly diagnosed by the AI algorithm. Imaging features of the mass represent 

common enhancement patterns similar to that of ccRCC.
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Table 1

Sequence acquisition parameters for Echo Planar Imaging of renal masses.

Parameter T2 WI without fat saturation Pre-contrast T1 WI Arterial Phase T1-WI Venous Phase T1-WI

TR (ms) 1700 3.78 3.78 3.78

TE (ms) 112 1.74 1.74 1.74

No. of slices 40 104 104 104

Slice thickness (mm) 6 3 3 3

Flip angle (°) 140 10 10 10

Matrix 232 × 256 270 × 320 270 × 320 270 × 320

FOV (cm) 148.5 × 66.9 119 × 53.5 119 × 53.5 119 × 53.5

Voxel size (mm) 7.8 3 3 3

TR: repetition time; TE: echo time; FOV: field of view.
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Table 2

Confusion matrix for five-fold cross validation results in classification of ccRCC and oncocytoma lesions.

Histology-based ground truth

ccRCC Oncocytoma

Prediction ccRCC 190 10

Oncocytoma 13 30
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Table 3

Performance report for two radiologists and AI algorithm on comparison dataset (80 tumors) for classification 

of tumors to ccRCC vs. oncocytoma (binary decision).

ccRCC Sensitivity Specificity PPV NPV Accuracy

Radiologist 1 0.85 0.70 0.74 0.82 0.78

Radiologist 2 0.85 0.55 0.65 0.79 0.70

AI 0.88 0.75 0.78 0.86 0.81

PPV: positive predictive value; NPV: negative predictive value.
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Table 4

Shows confusion matrix for performance of the AI algorithm, radiologist 1, and radiologist 2; considering 

probability of decision making with decisions made with low certainty ( <75% - right) and high certainty 

(>75% - left).

High certainty Truth Low certainty Truth

Rating ccRCC Oncocytoma Rating ccRCC Oncocytoma

ccRCC 29 6
AI

ccRCC 6 4
AI

Oncocytoma 2 21 Oncocytoma 3 9

ccRCC 26 4

R d1
ccRCC 8 8

R 1
Oncocytoma 4 12 Oncocytoma 2 16

ccRCC 24 3

R d2
ccRCC 10 15

R 2
Oncocytoma 4 9 Oncocytoma 2 13
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