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Abstract

Abnormalities in renal electrolyte and water excretion may result in inappropriate salt and water
retention, which facilitates the development and maintenance of hypertension, as well as acid-base
and electrolyte disorders. A key mechanism by which the kidney regulates renal hemodynamics
and electrolyte excretion is via tubuloglomerular feedback (TGF), an intrarenal negative feedback
between tubules and arterioles. TGF is initiated by an increase of NaCl delivery at the macula
densa cells. The increased NaCl activates luminal Na-K-2Cl cotransporter (NKCC2) of the macula
densa cells, which leads to activation of several intracellular processes followed by production

of paracrine signals that ultimately result in a constriction of the afferent arteriole and a tonic
inhibition of single nephron glomerular filtration rate. Neuronal nitric oxide (NOSL1) is highly
expressed in the macula densa. NOS1p is the major splice variant and accounts for most of NO
generation by the macula densa, which inhibits TGF response. Macula densa NOS1p-mediated
modulation of TGF responses play an essential role in control of sodium excretion, volume

and electrolyte hemostasis, and blood pressure. In this article, we describe the mechanisms that
regulate macula densa-derived NO and their effect on TGF response in physiologic and pathologic
conditions.
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INTRODUCTION

Tubuloglomerular feedback (TGF) response is one of the sophisticated and orchestrated
mechanisms in the kidney that regulate sodium excretion. TGF is a negative feedback loop
between tubules and the glomerular arterioles~11, This feedback loop is initiated by an
increase in NaCl delivery to the macula densa, a small cluster of modified thick ascending
limb (TAL) cells located near the distal end of the TAL, adjacent to the arterioles of

its parent glomerulus. The increase in NaCl delivery to this segment enhances luminal
Na-K-2Cl cotransporter (NKCC2) activity of the macula densa cells, consequently raising
their intracellular NaCl concentration. This increase in intracellular NaCl leads to several
responses including stimulation of basolateral CI~ efflux, which depolarizes the macula
densa cell,12: 13 and activation of the luminal Na/H exchanger (NHE), thereby alkalinizing
the macula densa cell1, as well as alteration in intracellular calciuml® 16, The net

effect of the increased NaCl transport mechanisms across the macula densa cells induces
release of ATP and/or adenosine from the basolateral membrane of the macula densa,’
which constrict the afferent arteriole!®-21 and may also dilate the efferent arteriole,22 thus
decreasing GFR and returning tubular flow to normal levels. In this way, TGF response
protects against large fluctuations in distal tubular flow and excessive changes in NaCl
excretion.

However, the relationship between NaCl delivery and the TGF response cannot be rigid.

It must adapt to a number of physiological conditions (e.g., renal growth, pregnancy,
volume expansion and depletion), otherwise, it could become detrimental. For instance,
volume expansion increases NaCl delivery to the macula densa, thus triggering TGF-induced
decreases in glomerular filtration rate (GFR), tubular flow, and NaCl excretion. This
response, if unopposed, would cause sodium retention and ultimately volume overload.
However, this adverse relationship does not normally occur because the macula densa
possesses mechanisms that modulate TGF responsiveness, thus permitting it to adapt

to diverse levels of salt intake as well as other physiologic conditions? 23, Indeed,

TGF responsiveness is regulated by many factors, including angiotensin 1111 24,25,
adenosine26-29, arachidonic acid metabolites30-33, ATP18-20. 34 atrial natriuretic factor3®,
superoxide (057)7:36: 37 and nitric oxide (NO)6-8. 14. 38,39 Consequently, abnormalities
in any of these factors can impair normal adaptation of TGF response to physiologic
conditions, and thus lead to impaired NaCl excretion, salt-sensitivity, and/or hypertension.

In this article, we summarize the modulatory effect of macula densa-derived NO on TGF
responses in health and disease. The first section provides an overview of macula densa-
derived NO during acute TGF responses, whereas the latter sections summarize the role
of macula densa-derived NO during different physiologic and pathophysiologic conditions
including adaptation to high salt intake, sex differences, salt-sensitive hypertension,
glomerular hyperfiltration, and gestational hypertension as described in Figures 1 and 2.

ROLE OF MACULA DENSA-DERIVED NO ON ACUTE TGF RESPONSES

A variety of cells adjacent to the macula densa (particularly endothelial and TAL cells) are
capable of generating sufficient NO via NOS3 to potentially alter TGF responsiveness#0: 41,
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However, it is the NO generated by the macula densa cells per se via its abundantly
expressed NOS142 43 that is likely to be the main modulator of TGF responsiveness under
normal physiologic conditions. Indeed, the same increase in NaCl delivery to the macula
densa that triggers the TGF response also increases local NO levels.k: 44 This NO can

then either act directly on the macula densa cells by activating cGMP-dependent protein
kinase, or diffuse to the afferent arterioles directly blunting the ensuing vasoconstriction,
either of which will reduce the magnitude of the TGF response.8: 14. 36,45 |ndeed, eliciting
the TGF response in isolated-perfused juxtaglomerular apparatus (JGA) was accompanied
by an increase in NO levels in the macula densa. Blocking NOS1 with 7-nitroindazole
(7-NI; a selective inhibitor of NOS1) prevented the increase in NO in the macula densa
cells and augmented the magnitude of the TGF response.!: 44 Since the macula densa

is the primary source of NOS1 in the normal renal cortex,*6: 47 the results strongly
suggest that the macula densa cells themselves are the primary source of the NO, and that
macula densa-derived NO provides an intrinsic feedback mechanism that modulates TGF
responsiveness.l: 44.8. 14, 36, 45, 48-50 Consequently, factors that alter NOS1 activity or NO
levels in the macula densa will be quite influential in determining TGF responsiveness.

NOSL1 is a constitutively expressed enzyme whose activity is regulated by a variety

of pathways, including via calcium-calmodulin mediated mechanisms, posttranslational
modifications, and/or protein-protein interactions, which have been thoroughly reviewed
by others.>1-54 One mechanism that is triggered by the same stimulus as the TGF response
(and is thus of special interest) is cellular alkalinization. Increased NaCl delivery increases
the activity of NHE2 and NHE4, on the apical and basolateral sides of the macula densa,
respectivelyl”: 55, The increased NHE activity in the macula densa cells increases their
intracellular pH from 7.0-7.2 to 7.4-7.8,1456. 57 which in turn increases NOS1 activity

by up to 5-fold (maximal activation occurs at a pH of 8).58-60 Evidence supporting a key
role for NHE-dependent alkalinization of macula densa cells to generate NO is provided
by the following. First, directly elevating intracellular pH by using nigericin enhanced NO
generation from NOS1 in the macula densa cellsl4. Second, inhibiting apical NHE with
amiloride reduced macula densa-derived NO generation and enhanced the TGF response,
in a similar manner to 7-N1,*! but by only 40-60%,14 thus suggesting that NHE is only
partially responsible for the increase in NOS1 activity. The relative contributions of diverse
stimuli of NOSL1 activity during different physiologic conditions remain incompletely
understood.

The Importance of O,~ in Modulating Macula Densa-Derived NO.

The bioavailability of NO (the amount available to interact with its target) in the macula
densa is not only determined by NOS1 activity, but also by increased degradation of NO,
which will largely be determined by the levels of reactive oxygen species, in particular
superoxide (057).61-63.64 0,~ generation by the macula densa is increased by the same
stimuli as the TGF response. Indeed, like the TGF response, NaCl-induced O,~ generation is
prevented by blocking NKCC2 with furosemide. Moreover, it is also blocked by apocynin (a
NOX inhibitor), suggesting that activation of NKCC2 stimulates NOX thus increasing Oy~
generation.85-67
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There are several mechanisms known by which stimulation of the TGF response leads to
increased O, generation. The first is investigated by membrane depolarization. Correlation
between changes in membrane potential and O,~ production was first found in human
granulocytes®8 and later confirmed in endothelial cells.® Macula densa cells behave
similarly in response to depolarization. The sequence of events is as follows. Increases

in luminal NaCl concentrations activate NKCC2 activity which results in depolarization of
the macula densa cells by up to 31 mV (as measured via micro-electrodes).12 Depolarization
of the macula densa cells via increased NKCC2 activity (or independently via valinomycin)
leads to translocation of Rac to the apical membrane, and a subsequent increase in macula
densa-derived NOX activity and O, generation.’%:65

The second mechanism that leads to increased NOX activity is similar to that of NOS1,

that is, via NHE-induced increases in intracellular pH. This is because NOX is highly

pH sensitive.”1=74 [ts activity, in human eosinophils or neutrophils, is directly correlated
with intracellular pH between 7.0 to 8.1, above or below which, its activity decreases
drastically.”® 72 Because the intracellular pH of macula densa cells fluctuates between these
levels depending on TGF activity, O,~ generation by the macula densa may be dependent
on TGF-induced changes in intracellular pH. Indeed, the pH of macula densa cells during
low TGF activity is between 7.0-7.2. Activation of the TGF response immediately increased
intracellular pH to 7.4-7.8,14.56.57 and O,~ production by 5-fold (in the presence of the
NOS inhibitor A-nitro-l-arginine methyl ester), thus demonstrating a correlation between
intracellular pH and O, production. To determine whether the changes in intracellular pH
were causing the changes in O,~ production, experiments were carried out in the isolated
perfused JGA preparation. The delivery of NaCl to the macula densa was fixed, but the
intracellular pH was increased by either increasing the pH of the tubular perfusate or
clamping it using nigericin, a K*/H* ionophore. The two methods of increasing intracellular
pH were equally effective at increasing O,~ production by the macula densa, despite

the absence of changes in NaCl delivery. Tempol and apocynin completely blocked the
pH-induced O,~ production by the macula densa, whereas blocking NHE with dimethyl-
amiloride inhibited NaCl-induced O,~ production by about 40%.%8 It is important to note
that the two mechanisms, depolarization and alkalinization of macula densa cells do not

act on NOX activity independent of each other. For instance, alkalinization of the macula
densa cells only stimulated O,~ generation when the cells were perfused with 80 mM, rather
than 10 mM NaCl.%6:107 The macula densa cells are depolarized when exposed to 80 mM
NaCl, but hyperpolarized when perfused with 10 mM NaCl. Together, the above results
suggest that increasing NaCl delivery depolarizes the macula densa cells and activate NOX.
In addition, it stimulates NHE activity, which in turn increases intracellular pH and further
increases NOX activity.

The generated O,~ does not appear to increase TGF responses directly, rather by
counteracting the actions of NO on TGF. Specifically, O,™ binds to NO, thereby reducing
its bioavailability and effect on TGF responses. 8: 36 37.56. Conversely, in the absence of
0,7, NO will have an unopposed buffering effect on TGF. This concept is supported by the
finding that tempol (a stable membrane-permeant superoxide dismutase mimetic) prevented
TGF-induced generation of O, and potentiated the buffering effect of NO on TGF38. It is
noteworthy that the tempol’s ability to blunt TGF responses occured only in the presence
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of intact NO synthesis, concomitant administration of the NOS1 blocker (7-NI) abolished
tempol’s effect on TGF.38 Together, the above studies suggest that the ratio between NO and
0, levels determines TGF responsiveness in a variety of conditions, 14. 36. 44, 56, 67

Under physiological conditions, the balance between NO and O, is heavily tilted towards
NO; in fact, O,~ in the macula densa is largely undetectable when the NOS activity is intact.
However, if NOS is inhibited or generation of O, is enhanced (e.g. in conditions associated
with hypertension, diabetes, and kidney injury’>-8%) the balance between NO to O,~ may
be shifted in favor of O,™. For instance, mice rendered hypertensive by infusing angiotensin
I1 (Ang Il) had greatly increased expression and activity of the NAD(P)H oxidase isoforms
NOX2 and NOX4 and consequently O,~ generation in the macula densa.86: 87.88 This
increase in NOX-derived O,~ production was sufficient to make NO levels in the macula
densa undetectable,39 despite increased macula densa-NOS1 activityC. Consequently, this
inversion of the NO/O,™ ratio led to significantly enhanced TGF response.8% 91 Indeed, the
reduction in single nephron GFR in Ang |l-treated rats was significantly reduced when they
were concomitantly treated with a siRNA against a membrane NOX subunit p22phox.%2
Several studies have demonstrated the importance of the NOX isoforms in regulating
glomerular hemodynamics particularly through their actions on TGF, but also via direct
vascular effects.92-99 Importantly, the reaction of NO with O, generates peroxynitrite,
which has been demonstrated to modulate NOS2 and NOS3 expression and activity, as well
as play an important role in many pathophysiological conditions.199-102 However, the role of
peroxynitrite in the regulation of NOS1 and TGF response has not been investigated.

Because of the significance of O,~ in modulating TGF, it is important to understand its
sources and the regulation of these sources in the kidney. Uncoupling of NOS1 due to
decreased availability of its substrate (L-arginine) and/or other cofactors (BH4, NAD, etc.)
not only decreases generation of NO, but is also a potential source of O,~.103-108 However,
the majority of O,~ appears to be generated by the NOX isoforms,’ 37: 107 which are

widely expressed in the vasculature and tubules in the cortex and the medulla.36: 43. 108, 109
Of the five NOX isoforms (NOX1 — NOX5)110-116 and the two gp91PM°X jsoforms

(DUOX1 and DUOX2)117:118, 119 ‘only NOX1, NOX2 and NOX4 have been found in adult
kidneys.107. 114,120, 121,113, 116-118 Eyperiments that combined laser-capture microdissection
together with real PCR revealed that the macula densa expresses NOX2 and NOX467: 88,
NOX4 was responsible for basal O, production, whereas NOX2 was the main source for
NaCl-induced O,~ generation;” both contributed to macula densa-derived O,~ in Ang II-
dependent hypertension.88:98 Any O,~ produced in the macula densa cells by these isoforms
will be restricted to the cells where it was produced, because O,~ is not membrane-permeant
and is therefore restricted to the compartment where it is generated.81-63. 122 | jkewise, the
0,~ produced by surrounding cells, such as TAL in response to NaCI123: 124 will not likely
affect TGF, at least directly via the macula densa (Fig 1).
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ROLE OF MACULA DENSA-DERIVED NO IN MODULATING TGF
RESPONSES DURING CHRONIC PHYSIOLOGIC CONDITIONS - THE
IMPORTANCE OF THE SPLICE VARIANTS OF NOS1

Chronic Adaptation of NOS1 Activity during High Salt Intake

In the acute setting, TGF-induced decreases in GFR make perfect sense. It prevents large
fluctuations in the delivery of NaCl to the distal segments and provides fine tuning of

the autoregulatory response. However, if sustained, it becomes maladaptive. An obvious
example is that of a high dietary salt intake. This initially would increase the delivery of
NaCl to the macula densa, decrease GFR, and facilitate sodium retention. However, resetting
or adaption of the TGF response via the interactions between NO and O,™, prevent this
from occurring. For instance, the TGF response must be reset so that it is reduced during

a high NaCl diet. This resetting occurs in a large part due to enhanced NO generation at
the macula densa. This notion was first supported by several lines of evidence; 1) early
studies found that rodents fed a high salt diet had evidence of enhanced NO generation,
including increased plasma levels and renal excretion rates of nitrite and nitrate (NO
metabolites),125-128 as well as increased cGMP levels (a downstream signaling molecule
of NO).125 2) Increased distal tubular flow enhanced NOS1 activity at the macula densa. 3)
Pharmacological inhibition of macula densa NOSL1 in vitro augmented TGF responses to a
greater extent in animals on a high salt diet, suggesting increased activity of NOS.3: 129, 4)
Inhibition of NOS had a greater effect on renal blood flow (RBF), GFR and renal vascular
resistance in animals fed a high salt diet. 125 127,130, 131 5y |n normal and hypertensive
humans, a high salt diet was usually associated with an elevation in GFR, RBF, sodium
and cGMP excretion compared with low-salt dietary conditions. Moreover, these effects are
significantly enhanced by L-arginine administration132 133, 6) Finally, several hypertensive
rodent strains, such as Dahl salt-sensitive, as well as Milan and spontaneously hypertensive
rats, exhibit impaired NOS1 expression and/or activity.” 38 39 Taken together, these data
provide strong evidence that a high NaCl intake increases NOS activity, which in turn
influences renal regulation of Na excretion.

Despite this compelling evidence, several well-done studies found a significant discrepancy
with the above results. They found that mRNA and protein levels of NOS1 in the renal
cortex and macula densa decreased, rather than increased by a high salt diet. In fact, those
animals on a low salt diet had a higher NOS1 level.134-136 A second discrepancy arose
when comparing studies that blocked NOS1 using pharmacological vs genetic techniques.
Chronic pharmacologic inhibition of NOS1 with 7-NI triggered hypertension in Sprague
Dawley rats® and caused salt-sensitive hypertension in Dahl salt-resistant rats,137 again
suggesting an important role for NOS1 in regulating blood pressure. However, mice with
global NOS1 deletion were not hypertensive, salt-sensitive, or have renal hemodynamic
abnormalities.}38-140 Thus, these studies suggested that macula densa NOS1 and NOS1-
mediated TGF response did not play an important role in the regulation of sodium
excretion, volume homeostasis and blood pressure.138-140 The reason for the discrepant
results between the two approaches was finally resolved with the identification of the NOS1
splice variants in the macula densa cells.46: 47, 141
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NOS1 Splice Variants in the Macula Densa in Chronic Adaptation to Salt Intake.

One of the unique characteristics of NOS1 is the alternate splicing, which can produce
several NOS1 mRNA variants and protein isoforms, while NOS2 and NOS3 do not exhibit
this splicing phenomenon. Identified splice variants of NOS1 include a, 8, v, and . NOS1u
is only expressed in myocytes. NOS1 exhibits about 80% enzymatic activity of NOSla,
while NOS1y only has 3% activity of NOS1a.54 142-144 NOS1B has been found to be a
functional enzyme both in vitro and in vivo studies.?1: 143-147 gplice variants of NOS1 have
been found in the kidneys, e.g. Baylis’s group reported NOS1a and B proteins in the renal
cortex. They showed reduced mRNAs of NOS1a and upregulated NOS1p were found in
tubules in a rat model of chronic kidney disease.146: 148. 149 NOS1B in collecting ducts has
been reported by Pollock’s laboratory9: 151 They demonstrated that the collecting-duct
NOS1p played an important role in the control of fluid-electrolyte balance.

The expressions of NOS1 splice variants in the macula densa were examined with laser
capture microdissection of the macula densa cells from frozen kidney slices.*6 NOS1a,

B, and -y mRNAs were detected in isolated macula densa cells, and the protein isoforms

of NOS1la and NOS1p, but not NOS1vy, were detected in renal cortex (mainly from the
macula densa).*2 43. 46 Considering the scarce expression level and low enzymatic activity
of NOS1y, itis unlikely to play an important role in the NO generation, and thus was

not further considered. Expression levels of NOS1p mRNA and protein were 30- and

5-fold higher, respectively, than those of NOS1a in the renal cortex of C57BL/6 mice.
Furthermore, macula densa NO production was similar in the isolated perfused JGAs from
wild-type and NOS1a-knockout mice, whose NOS1 is intact*’. Finally, NOS1@ exhibited
a 2-3 fold increase in its levels in the macula densa of rats fed a high salt diet, while NOSla
significantly decreased.*6 These results provided strong evidence that macula densa NOS1p
is the major splice variant of NOS1 and accounts for most of the NO generation by the
macula densa®®, and is largely responsible for blunting of TGF during salt loading.

The above results also provided a potential answer for the conflicting data about salt-induced
changes in NOS1 expression and activity, as well as the disparate results found between

the studies that used pharmacological vs. genetic approaches. First, studies that reported
decreased NOSL1 expression in response to a high salt diet likely used antibodies that
targeted the N-terminal of NOS1, and thus identified only the NOS1a splice variant,54 142
which decreased during the high salt diet*®. Second, the global NOS1 KO mouse line used
in the previous studies targets exon-2 thus only deletes the NOS1a isoform1%2, NOS1B is
still intact and the NO generated by the macula densa is not affected in the NOS1a KO
mice.46: 47. 141 Therefore, no changes in salt sensitivity or blood pressure would be expected.
Note that 7-NI blocks the whole enzymic activity of NOS1, thus likely explaining its effects
on TGF, salt-sensitivity and blood pressure, albeit an unrecognized non-renal effect of 7-NI
cannot yet be ruled out. While the above studies demonstrated that the NOS1a KO mouse
line is not a valid strain to study the significance of macula densa NOSL1, they do provide
strong evidence that NOS1 in the CNS does not play a significant role in control of blood
pressure, since NOS1a is the dominant splice variant in the brain.142 152,153
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Sexual Dimorphism in Salt-Sensitive and Ang lI-Dependent Hypertension

Experimental and clinical evidence shows that females have a lower risk of developing
several forms of hypertension, including salt-sensitive®4-162 and Ang I1-induced
hypertension.163-166 However, the underlying mechanisms behind this protection are not
elucidated.154 167 One potential mechanism may be differences in macula densa NOS1p
activity, since its function is central to the pathogenesis of both of these types of
hypertension in experimental studies. Indeed, deletion of NOS1f from the macula densa
enhances the TGF response, impairs natriuresis, and exacerbates the increase in blood
pressure in mice subjected to either a high salt diet or Ang Il infusions.46: 47. 141 Therefore,
recent animal studies have examined whether sex-related differences in NOS1p activity
exist.168. 169 Several studies have found no differences in renal cortical NOS1 expression
between male and female Sprague-Dawley48. 170. and spontaneously hypertensive rats’1
maintained on a normal diet. Likewise, male and female mice maintained on a normal

diet also did not exhibit significant differences in NOS1p expression levels.169 However,
this latter study took it a step further and challenged the mice with a high salt diet for 2
weeks. The females had a greater increase in 1) NOS1p expression, 2) phosphorylation of
NOS1p at Ser1417 (which increases its activityl’2-174) and 3) NO generation in the macula
densa, as compared to males when subjected to the high salt intake.189 Thus, while they
had similar NOS activity under normal conditions, they had a more robust NOS1p response
when challenged with high salt, which in turn, conferred greater protection.

Differences in macula densa-NOS1p activity, if functionally important, should translate
into differences in TGF responsiveness and GFR regulation between the sexes. As would
be expected, male and female mice maintained on normal salt diets (thus having similar
expression of NOS1p), had similar TGF responses.169: 175 However, upon subjecting the
animals to a high salt diet, the sex differences became apparent. The increased expression
of NOS1p in the females was associated with a greater resetting/blunting of their TGF
responsiveness than similarly treated male mice.16% Deleting the NOS1p gene decreased
the sexual dimorphism introduced by the salt loading. The differences in TGF responses
and blood pressure to a high salt diet16% were greatly diminished in the macula densa-
NOS1 KO mice, indicating that NOS1p is an important determinant of the sex differences.
Interestingly, the sexual dimorphism is also present in the acute setting as well. The rapid
increase in RBF, GFR and natriuresis that immediately follows the acute administration of
a volume load76-180 was also accentuated in females.169 Because blunting of TGF is a
key component of this response, it seems likely that acute regulation of TGF responses in
females is also enhanced.

Differences in macula densa-NOS response in females are not only limited to changes
induced by salt loading. They also have a more robust increase in macula densa-NOS1f
when subjected to Ang 1, which translates into blunted TGF responses and less
hypertension than males. This sexual dimorphism is present during both acute and chronic
administration of Ang Il. For instance, while an acute infusion of Ang Il augmented the
sensitivity and magnitude of the TGF response i vitroand in vivo, 181182 jt did so less

in females.1”® Likewise, a chronic infusion of a subpressor dose of Ang Il for 2 weeks
increased the expression and activity of macula densa NOS1 in male mice, but did so to a
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greater extent in the female mice. The changes in macula densa NOS1p were accompanied
by accentuated TGF responses in the males.168 As with the salt loading studies, deletion of
macula densa NOS1p abolished the sexual dimorphism in TGF and hypertensive responses
during the chronic Ang I1 infusion.168 The differences between how males and females
regulate macula densa NOS1p and/or TGF when subjected to Ang Il, may be in part

due to differences in expression of the distinct Ang Il receptors, type 1 (ATy) vs. type 2
(AT3). As mentioned before, Ang Il stimulates NOX activity resulting in increased O,~
generation, which in turn quenches NO and augments TGF responsiveness. This effect is
generally considered to be primarily mediated via the AT receptors81, However, it also
stimulates macula densa-derived NO production,183 which is thought to be due to activation
of the AT2 receptors, thus raising the possibility that the AT, receptors may be implicated
in the sex differences to TGF responses during Ang Il administration”>. Indeed, female
mice reportedly had a 3-fold higher expression of AT, receptor in the kidneys compared

to males. Moreover, the sex differences in the Ang ll-induced alterations in TGF responses
during Ang Il administration were abolished in AT, receptor knockout mice, suggesting
that differences in AT,-mediated increases in macula densa-NOS1p may play a significant
role in the sexual dimorphism observed in TGF responses during conditions associated with
elevated Ang Il levels.168 175

While the above studies establish an important role for macula densa NOS1p3-mediated
resetting of TGF in the sexual dimorphism of salt-sensitive and Ang Il-induced
hypertension, they do not explain all the differences. Other factors may also contribute

to the sexual dimorphism of the hypertension, including the diverse sex hormones and

the differential activation of their assorted receptors,184-188.189 a5 well as alterations in
downstream signaling, particularly of the PI3K/Akt and cCAMP/PKA pathway which can
modulate NOS1 expression and activity.174 190-195 | addition, recent studies demonstrated
remarkable sex differences in tubular sodium reabsorption along the nephrons96: 197 which
not only contributes to the sex dimorphism in hypertension, but also further complicates the
TGF response.

Salt-sensitive Hypertension

Hypertension is a global health problem, with a prevalence of almost 50% in American
adults, and is a leading risk factor for cardiovascular morbidity and mortality. About

half of hypertensive patients are salt-sensitive,198-201 suggesting that abnormal renal salt
handling may play a role in the pathogenesis of these patients. Increases in GFR following
a high salt diet are thought to facilitate the rapid elimination of sodium and restore salt-
water balance and a normal blood pressure.202-205 Conversely, failure of GFR to increase
normally in response to a salt loading has been observed in both humans2%4 205 and animal
models292: 203 with salt-sensitive hypertension. Because macula densa-derived NO inhibits
TGF response preventing excessive declines in GFR,8: 43. 44,206 jt js tempting to speculate
that abnormalities in the NO-TGF system may be one of the mechanisms that contribute to
salt-sensitive hypertension in general.

The initial studies examining the role of renal NOS1 in TGF and blood pressure regulation
were described in the previous section. These studies were expanded on to elucidate the
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role of the macula densa-derived NO more precisely in the chronic regulation of TGF,

salt sensitivity and blood pressure. For this, macula densa specific NOS1 KO mice were
generated*”. NKCC2 Cre mice were crossed with NOS1 floxed mice (NOS1flox/flox) \hich
targets exon-6 of NOS1.143. 150 A|| splice variants of NOS1 in the macula densa and TAL
were deleted in this strain of NKCC2¢¢/ NOS1floX/flox Because the expression of NOS1

in TAL is negligible compared with that in the macula densa297-299, this model can be
considered as a macula densa selective NOS1 KO line (MD-NOS1 KO).

MD-NOS1KO mice exhibited enhanced TGF responsiveness, both in vivo and in vitro. In
response to an acute salt loading with saline, the increase in GFR, urinary flow and sodium
excretion rate were all significantly blunted in MD-NOS1KO mice as compared to the
wildtype controls*’. Following chronic intake of a high salt diet, the mean arterial pressure
(MAP) increased by 10 mmHg in the MD-NOS1KO mice. Chronic infusion of a subpressor
dose of Ang Il increased the MAP by >30 mmHg in MD-NOS1KO mice fed a high salt diet
than the wildtype mice. However, the Ang Il infusion increased MAP to the same degree

in the MD-NOS1KO and wild-type mice maintained on a low sodium diet.#” These data
suggest that macula densa NOS1-mediated NO release not only blunts TGF responses but
prevents salt sensitivity of blood pressure.

A subsequent study further examined the role of NOS1p in the NOS1aKO strain in the
control of blood pressure. Similar to the previous studies, 140 210 3 high salt diet did not
increase blood pressure in NOS1a.KO or wildtype mice, 14! indicating that deletion of
NOS1la does not enhance salt-sensitivity of the blood pressure. However, a combination
of a high salt diet and 7-NI treatment similarly elevated MAP by about 15 mmHg in

both NOS1a.KO and wildtype mice.141 The results from this study demonstrated that
pharmacological inhibition of NOS1 with 7-NI enhanced salt sensitivity, possibly mediated
by reducing the activity of macula densa NOS1p. These data confirmed that NOS1a does
not play a significant functional role in control of sodium excretion, renal hemodynamics
and blood pressure, and further supports the notion that macula densa NOS1p-mediated
modulation of TGF response is important in the long-term control of sodium and water
excretion and salt sensitivity of blood pressure.4’- 141

Glomerular hyperfiltration in diabetes

Diabetes mellitus prevalence is increasing in most places in the world and has reached
pandemic levels. According to the American Diabetes Association (ADA), almost 40 million
people in the US are living with diabetes, giving a prevalence of more than 11% of the

US population. An adverse renal complication of diabetes is diabetic nephropathy, which is
the leading cause of end stage renal disease.211-213 A risk factor for diabetic nephropathy
is an increase in GFR known as glomerular hyperfiltration during early stage of type

1 and type 2 diabetes.214-219 The prevailing theories explaining the pathophysiology of
glomerular hyperfiltration can be divided into vascular and tubular theories. According

to the vascular theory, glomerular hyperfiltration results from an imbalance between
vasoconstrictive factors and vasodilatory factors.214: 215, 220 The tubular theory is based

on the following sequence of events. Glucose is freely filtered and reabsorbed in the
proximal tubule. The vast majority (~97%) is reabsorbed in the S1 and S2 segments via
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the sodium-glucose cotransporter 2 (SGLT2), with the remaining 2%—-3% is reabsorbed in
the S3 segment by sodium-glucose cotransporter 1 (SGLT1).221 Hyperglycemia leads to
increased filtration and thus delivery of glucose to the proximal tubule. This leads to tubular
growth and upregulation of SGLT2, resulting in increased proximal tubular Na reabsorption,
and reduced NaCl delivery to the macula densa, thereby inhibiting TGF and increasing
GFR.222-224 Thjs proposed mechanism to explain glomerular hyperfiltration in diabetes has
been named the SGLT2-NaCl-TGF mechanism.

Recently, a second tubular mechanism was introduced and dubbed the SGLT1-NOS1-TGF
pathway.225: 226 This new mechanism emphasizes the importance of SGLT1 (rather than
SGLT2) as a key determinant of GFR. It is based on the finding that SGLT1 is not only
present on the S3 segment of the proximal tubular cells, but also on the apical membrane

of macula densa cells in rodents227: 228 and in humans.22> The progression of events that
explains this model is as follows. The luminal glucose concentration at the macula densa is
usually negligible under normoglycemic conditions. However, it will raise when the amount
of filtered glucose exceeds the maximal capacity of reabsorption by the proximal tubules in
hyperglycemic states. This increase in luminal glucose at the macula densa activates SGLT1
and enhances NOS1-dependent NO formation, thereby inhibiting TGF responsiveness and
promoting glomerular hyperfiltration in diabetes. This pathway is supported by several lines
of evidence.

It has been well recognized that GFR increases in response to intravenous infusions

of glucose in humans22%-231 and experimental animals.22% 232. 233 |nhibition of the

TGF mechanism has been found to play an essential role in hyperglycemia-induced
hyperfiltration.224 TGF responses have been shown to be inhibited or reset in both type

1 and type 2 diabetic animal models.216: 222, 223, 234, 235 | these studies, the TGF
responsiveness was evaluated by measurements of proximal tubular stop flow pressure
(Psf), proximal-distal differences for single nephron GFR, or free flow perturbation analysis
of TGF efficiency at the natural operating point in db/db mice or streptozotocin-induced
diabetes in rats. In non-diabetic mice, acute hyperglycemia enhanced macula densa NOS1
expression and NO generation, inhibited TGF responses in vivo and in vitro, and quickly
increased GFR%25, Only D-glucose, but not L-glucose nor mannitol exhibited these effects
on NO, TGF and GFR. In addition, only the rise of glucose concentration at the apical
rather than the basolateral side of the macula densa influenced NO production and TGF
response?2°, All these studies indicate that TGF plays a central role in diabetes-induced
hyperfiltration.

The possibility that the SGLT1-NOS1-TGF pathway plays an important role in diabetes-
induced glomerular hyperfiltration originated, when SGLT1 was detected on the apical
membrane of the macula densa cells using single-cell RNA-sequencing profile of mouse
kidneys.236 In this study, tubular glucose transporters in the macula densa were identified
by the co-expression of NOS1 and NKCC2. SGLT1 was found to be the glucose transporter
with the highest transcriptional level. Thus, studies examining the functional role of SGLT1
on NOS1 and TGF were then undertaken. In the presence of the selective SGLT1 inhibitor
KGA-2727, the glucose-induced macula densa NO generation and TGF inhibition were
blocked.225 In addition, the glucose-induced effects on TGF response and GFR were
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absent in mice with macula densa specific NOS1 deletion (i.e. MD-NOS1K0).225 While
other mechanisms are also likely to contribute to hyperglycemia-induced hyperfiltration,
including SGLT2-mediated sodium-glucose reabsorption,221: 223. 237 yiasodilation of the
afferent arteriole via GLUT1238 and GPR91239, and insulin, 240 241 the study described?2®
provides strong evidence that glomerular hyperfiltration induced by acute hyperglycemia is
dependent on SGLT1-NOS1-TGF pathway.

Gestational Hypertension and Preeclampsia

Maternal adaption to normal pregnancy is characterized by systemic vasodilation, in

which RBF and GFR increase by 45-50 %242 243 and blood pressure decreases by 5—

10 mmHg?44 245 Inappropriate or inadequate cardiorenal adaptations during pregnancy
may lead to serious pathological consequences, such as gestational hypertension and
preeclampsia, the latter being a leading cause of maternal and fetal morbidity and
mortality.246-248 Gestational hypertension and preeclampsia are characterized by new-onset
hypertension, and increased renal vascular resistance causing reduced RBF and GFR by
20-40% in preeclampsia compared to normal pregnancies246-248 These changes may
impair sodium excretion, thereby facilitating the development and progression of gestational
hypertension.249-252 The physiological mechanisms underlying maternal adaptions in
normal pregnancy and the pathophysiological mechanisms contributing to the development
of preeclampsia are complex and involve many different components.253 Among them, NO
has been found to play a crucial role in control of hemodynamics during pregnancy.242 254
NO generation was increased in normal pregnancies?>®: 256 and reduced NO bioavailability
has been demonstrated in clinical studies of preeclampsia.2>’: 258 Indeed, inhibition of
NOS with L-NAME prevented normal pregnancy-induced elevations of GFR and RBF, and
induces hypertension?®9: 260, However, mice with deletion of any of the three NOS isoforms
(NOS1, NOS2, or NOS3) had normal pregnancies with appropriate adaptions in RBF, GFR
and blood pressure.261: 262 These findings indicate a key role for NOS1p in gestational
hypertension and and/or preeclampsia (the global NOS1 KO mice is a NOS1la KO strain
with intact NOS1).152

The role of macula densa-NOS1B-mediated TGF modulation in the development of
gestational hypertension was evaluated in a recent study.2%3 Deficient trophoblast invasion
and/or spiral artery remodeling, as well as insufficient blood supply to the fetus are
considered as causal factors for development of preeclampsia.264 265 For instance, surgical
reduction of uteroplacental perfusion (RUPP) has been shown to induce gestational
hypertension and/or preeclampsia in several mammals.266: 267,268 Mice subjected to RUUP
not only had hypertension, but also exhibited reduced expression of macula densa-NOS1p
and less NO generation, suggesting that macula densa-NOS1p may be implicated in the
abnormal renal hemodynamics and hypertension in this model.283 Interestingly, macula
densa-NOS1p was also reduced in African Green Monkeys who spontaneously developed
preeclampsia, but was increased in those who had a normal pregnancy.263 Evidence
indicating that these alterations in macula densa-NOS1p expression play a causal role in
gestational hypertension and/or preeclampsia is provided by experiments, in which macula
densa-NOS1p was genetically deleted. Mice lacking NOS1p specifically in the macula
densa, exhibited impaired adaptation to pregnancy, while they had a normal phenotype
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under non-stressed conditions. The pregnant MD-NOS1KO mice did not have the same
pregnancy-induced changes in renal parameters as the wildtypes; that is, 1) TGF responses
were not as attenuated, 2) GFR was not as elevated, 3) renal sodium excretion was impaired,
and 4) blood pressure was increased, rather than decreased.263 Hence, one can conclude
that impaired function of the macula densa NOS1 is significantly contributing to the
development of gestational renal dysfunction and hypertension in these animals. Because
animals subjected to RUPP may have additional mechanisms contributing to the gestational
hypertension (in addition to decreased macula densa-NOS1p), a RUPP procedure was
applied to the macula densa-NOS1KO mice. Subjecting pregnant, MD-NOS1KO mice with
RUPP surgery only caused a modest further alteration in TGF, GFR and blood pressure. The
lack of additive effects suggested that they were largely working via the same mechanism.
Taken together, these experimental results suggest that macula densa NOS1p-mediated
modulation of TGF and renal hemodynamic responses plays a vital role in the development
of hypertension in preeclampsia.283 One could speculate that this pathway might also be
implicated in gestational diabetes although this has never been tested.

Conclusions and Perspectives

Much progress has been made regarding the mechanisms that regulate TGF responses and
their functional significance, especially with regards to their role in the various physiologic
and pathologic conditions reviewed in this manuscript. The discovery of NOS1 splice
variants and the subsequent description of their different regulation and function have

led to novel understandings of how the kidney adapts to chronic homeostatic challenges
(such as changes in response to elevated Ang Il, high salt intake, or pregnancy), and

helps explain sex dimorphisms. Moreover, the discovery that the glucose transporter SGLT1
is present in macula densa cells and interacts with NOS1 has shed new light on how
glucosuria can lead to glomerular hyperfiltration during diabetes via the SGLT1-NOS1-TGF
pathway. The identification of the mechanisms that lead to the abnormal regulation of
macula densa-NOS1 and/or abnormal downstream signaling of this pathway, may lead to
the identification of novel therapeutic targets.

However, there are several limitations and challenges when studying the functional
significance of TGF response. One of them is the difficulty of dissecting the specific role
and contribution of the TGF response from other factors or signaling pathways in vivo.
The current best available approach is to use transgenic animal models with genetically
edited macula densa cells. However, due to the difficulties accessing the macula densa
cells, genomic profiling of these cells is incomplete. The development of single cell RNA
sequencing technique provides a unique approach for quantitatively analyzing the macula
densa gene profiles and characteristics under physiological and pathological conditions.
In addition, due to the lack of a reliable macula densa cell line, it is challenging to
examine the molecular mechanisms that regulate gene and protein expressions and functions
in the macula densa. The duration of micropuncture and microperfusion experiments are
usually limited to 3—4 hours. We believe that with the availability of these techniques and
approaches, the knowledge from basic and translational research on TGF regulation and
function will increase significantly.
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A. The kidney via its functional units, the nephrons, importantly contribute to maintain
body fluid and electrolyte homeostasis. Tubuloglomerular feedback (TGF) is operating
within the juxtaglomerular apparatus (JGA), which consists of specialized structures/cells
in the region between the thick ascending limb (TAL) of the loop of Henle and the distal
convoluted tubule, near the afferent arteriole. TGF is initiated via mechanisms located

to the macula densa sense and reacts in response to changes in tubular lumen NaCl. At
high NaCl load, a paracrine signal is generated and transferred from macula densa in the
TAL to the adjacent endothelial and vascular smooth muscle cells of the afferent arteriole.
Tuning of the TGF is modulated by the activity of the enzyme isoforms nitric oxide
synthase 1 (NOS1) and NAD(P)H oxidase 2 (NOX). The former enzyme exists in three
different splice variants, 7.e. alfa (a), beta (8) and gamma (7y), which all are known to
generate nitric oxide (NO). Bioavailability and signaling of NOS1-derived NO is dampened,
via scavenging, by NOX2-derived reactive oxygen species (ROS) including superoxide
(O27). Conditions with oxidative stress (/.e., increased ROS production, reduced antioxidant
capacity and/or decreased NO bioactivity) can sensitize TGF whereas states with increased
NO formation can attenuate the TGF response. In the JGA, particularly in the macula
densa cells, the NOS1p plays an important role in the regulation of TGF. B. Abnormal
expression and function of this splice variant of NOS1 has been associated with several
cardiovascular, renal, and metabolic disorders (e.g., hypertension, preeclampsia, kidney
disease and diabetes). Much knowledge regarding the regulation of NOS1p expression and
its interaction with other enzyme systems in the JGA (e.g., NOX2), as well as downstream
signaling, have been obtained from experimental animal models with chronic high-salt
diet treatment and infusion of subpressor doses of angiotensin Il (Ang Il) using osmotic
minipumps. Figure was created with BioRender.com
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The balance between nitric oxide synthase 1 (NOS1)-derived nitric oxide NO) and

NADPH oxidase 2 (NOX2)-derived superoxide (O,7) formation importantly influence

the responsiveness of the tubuloglomerular feedback (TGF). Emerging evidence have
demonstrated that among the different splice variants of NOS1, the p-version expressed

in macula densa cells is of particular importance in the regulation of TGF. Numerous
factors and conditions have been associated altered function and expression of NOS1p

and NADPH oxidase 2 (NOX2). A. Chronic dietary high-salt (NaCl) intake, as well as

high levels of angiotensin Il (Ang 1) and hypertension has been associated with increased
NOX2, which to some extent can be balanced by increased NOS1 expression. Ang II,

via activation of its type 1 receptor (AT1) stimulates NOX2, whereas activation of its type

2 receptor (AT>) inhibits NOX2 and may also activate NOS1. Altered balance between
ATq and AT, receptor expression/activation, in favor of the latter, has been suggested

to protect young-to-middle aged females from Ang ll-induced pathophysiological events.
Moreover, in chronic conditions with hyperglycemia (diabetes mellitus), the sodium-glucose
transporter-2 and —1 (SGLT2 and SGLT1) in the proximal tubules may be saturated, leading
to activation of SGLT1 in the macula densa cells in the thick ascending limb. Here, SGLT1
activation has been associated with increased expression and activity of the NOS1p splice
variant. B. Reduced expression of NOS1p and/or high production of O, is associated with
decreased NO bioactivity and increased TGF response, which leads to contraction of the
afferent arteriole and reduction of glomerular pressure. In pathological conditions this has
been associated with reduced kidney function (glomerular filtration rate, GFR), retention

of salt and fluid and hence elevated blood pressure (hypertension). C. Increased expression
of NOS1p and/or low production of O, is associated with increased NO bioactivity and
decreased TGF response, which leads to dilatation of the afferent arteriole and increase of
glomerular pressure. In pathological conditions this has been associated with increased GFR
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(hyperfiltration), development of glomerular and tubular injuries and kidney disease. Figure
was created with BioRender.com
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