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Abstract

Abnormalities in renal electrolyte and water excretion may result in inappropriate salt and water 

retention, which facilitates the development and maintenance of hypertension, as well as acid-base 

and electrolyte disorders. A key mechanism by which the kidney regulates renal hemodynamics 

and electrolyte excretion is via tubuloglomerular feedback (TGF), an intrarenal negative feedback 

between tubules and arterioles. TGF is initiated by an increase of NaCl delivery at the macula 

densa cells. The increased NaCl activates luminal Na-K-2Cl cotransporter (NKCC2) of the macula 

densa cells, which leads to activation of several intracellular processes followed by production 

of paracrine signals that ultimately result in a constriction of the afferent arteriole and a tonic 

inhibition of single nephron glomerular filtration rate. Neuronal nitric oxide (NOS1) is highly 

expressed in the macula densa. NOS1β is the major splice variant and accounts for most of NO 

generation by the macula densa, which inhibits TGF response. Macula densa NOS1β-mediated 

modulation of TGF responses play an essential role in control of sodium excretion, volume 

and electrolyte hemostasis, and blood pressure. In this article, we describe the mechanisms that 

regulate macula densa-derived NO and their effect on TGF response in physiologic and pathologic 

conditions.
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INTRODUCTION

Tubuloglomerular feedback (TGF) response is one of the sophisticated and orchestrated 

mechanisms in the kidney that regulate sodium excretion. TGF is a negative feedback loop 

between tubules and the glomerular arterioles1–11. This feedback loop is initiated by an 

increase in NaCl delivery to the macula densa, a small cluster of modified thick ascending 

limb (TAL) cells located near the distal end of the TAL, adjacent to the arterioles of 

its parent glomerulus. The increase in NaCl delivery to this segment enhances luminal 

Na-K-2Cl cotransporter (NKCC2) activity of the macula densa cells, consequently raising 

their intracellular NaCl concentration. This increase in intracellular NaCl leads to several 

responses including stimulation of basolateral Cl− efflux, which depolarizes the macula 

densa cell,12, 13 and activation of the luminal Na/H exchanger (NHE), thereby alkalinizing 

the macula densa cell14, as well as alteration in intracellular calcium15, 16. The net 

effect of the increased NaCl transport mechanisms across the macula densa cells induces 

release of ATP and/or adenosine from the basolateral membrane of the macula densa,17 

which constrict the afferent arteriole18–21 and may also dilate the efferent arteriole,22 thus 

decreasing GFR and returning tubular flow to normal levels. In this way, TGF response 

protects against large fluctuations in distal tubular flow and excessive changes in NaCl 

excretion.

However, the relationship between NaCl delivery and the TGF response cannot be rigid. 

It must adapt to a number of physiological conditions (e.g., renal growth, pregnancy, 

volume expansion and depletion), otherwise, it could become detrimental. For instance, 

volume expansion increases NaCl delivery to the macula densa, thus triggering TGF-induced 

decreases in glomerular filtration rate (GFR), tubular flow, and NaCl excretion. This 

response, if unopposed, would cause sodium retention and ultimately volume overload. 

However, this adverse relationship does not normally occur because the macula densa 

possesses mechanisms that modulate TGF responsiveness, thus permitting it to adapt 

to diverse levels of salt intake as well as other physiologic conditions2, 23. Indeed, 

TGF responsiveness is regulated by many factors, including angiotensin II11, 24, 25, 

adenosine26–29, arachidonic acid metabolites30–33, ATP18–20, 34, atrial natriuretic factor35, 

superoxide (O2
−)7, 36, 37 and nitric oxide (NO)6–8, 14, 38, 39. Consequently, abnormalities 

in any of these factors can impair normal adaptation of TGF response to physiologic 

conditions, and thus lead to impaired NaCl excretion, salt-sensitivity, and/or hypertension.

In this article, we summarize the modulatory effect of macula densa-derived NO on TGF 

responses in health and disease. The first section provides an overview of macula densa-

derived NO during acute TGF responses, whereas the latter sections summarize the role 

of macula densa-derived NO during different physiologic and pathophysiologic conditions 

including adaptation to high salt intake, sex differences, salt-sensitive hypertension, 

glomerular hyperfiltration, and gestational hypertension as described in Figures 1 and 2.

ROLE OF MACULA DENSA-DERIVED NO ON ACUTE TGF RESPONSES

A variety of cells adjacent to the macula densa (particularly endothelial and TAL cells) are 

capable of generating sufficient NO via NOS3 to potentially alter TGF responsiveness40, 41. 
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However, it is the NO generated by the macula densa cells per se via its abundantly 

expressed NOS142, 43 that is likely to be the main modulator of TGF responsiveness under 

normal physiologic conditions. Indeed, the same increase in NaCl delivery to the macula 

densa that triggers the TGF response also increases local NO levels.1, 44 This NO can 

then either act directly on the macula densa cells by activating cGMP-dependent protein 

kinase, or diffuse to the afferent arterioles directly blunting the ensuing vasoconstriction, 

either of which will reduce the magnitude of the TGF response.8, 14, 36, 45 Indeed, eliciting 

the TGF response in isolated-perfused juxtaglomerular apparatus (JGA) was accompanied 

by an increase in NO levels in the macula densa. Blocking NOS1 with 7-nitroindazole 

(7-NI; a selective inhibitor of NOS1) prevented the increase in NO in the macula densa 

cells and augmented the magnitude of the TGF response.1, 44 Since the macula densa 

is the primary source of NOS1 in the normal renal cortex,46, 47 the results strongly 

suggest that the macula densa cells themselves are the primary source of the NO, and that 

macula densa-derived NO provides an intrinsic feedback mechanism that modulates TGF 

responsiveness.1, 44,8, 14, 36, 45, 48–50 Consequently, factors that alter NOS1 activity or NO 

levels in the macula densa will be quite influential in determining TGF responsiveness.

NOS1 is a constitutively expressed enzyme whose activity is regulated by a variety 

of pathways, including via calcium-calmodulin mediated mechanisms, posttranslational 

modifications, and/or protein-protein interactions, which have been thoroughly reviewed 

by others.51–54 One mechanism that is triggered by the same stimulus as the TGF response 

(and is thus of special interest) is cellular alkalinization. Increased NaCl delivery increases 

the activity of NHE2 and NHE4, on the apical and basolateral sides of the macula densa, 

respectively17, 55. The increased NHE activity in the macula densa cells increases their 

intracellular pH from 7.0–7.2 to 7.4–7.8,14, 56, 57 which in turn increases NOS1 activity 

by up to 5-fold (maximal activation occurs at a pH of 8).58–60 Evidence supporting a key 

role for NHE-dependent alkalinization of macula densa cells to generate NO is provided 

by the following. First, directly elevating intracellular pH by using nigericin enhanced NO 

generation from NOS1 in the macula densa cells14. Second, inhibiting apical NHE with 

amiloride reduced macula densa-derived NO generation and enhanced the TGF response, 

in a similar manner to 7-NI,41 but by only 40–60%,14 thus suggesting that NHE is only 

partially responsible for the increase in NOS1 activity. The relative contributions of diverse 

stimuli of NOS1 activity during different physiologic conditions remain incompletely 

understood.

The Importance of O2
− in Modulating Macula Densa-Derived NO.

The bioavailability of NO (the amount available to interact with its target) in the macula 

densa is not only determined by NOS1 activity, but also by increased degradation of NO, 

which will largely be determined by the levels of reactive oxygen species, in particular 

superoxide (O2
−).61–63,64 O2

− generation by the macula densa is increased by the same 

stimuli as the TGF response. Indeed, like the TGF response, NaCl-induced O2
− generation is 

prevented by blocking NKCC2 with furosemide. Moreover, it is also blocked by apocynin (a 

NOX inhibitor), suggesting that activation of NKCC2 stimulates NOX thus increasing O2
− 

generation.65–67
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There are several mechanisms known by which stimulation of the TGF response leads to 

increased O2
− generation. The first is investigated by membrane depolarization. Correlation 

between changes in membrane potential and O2
− production was first found in human 

granulocytes68 and later confirmed in endothelial cells.69 Macula densa cells behave 

similarly in response to depolarization. The sequence of events is as follows. Increases 

in luminal NaCl concentrations activate NKCC2 activity which results in depolarization of 

the macula densa cells by up to 31 mV (as measured via micro-electrodes).12 Depolarization 

of the macula densa cells via increased NKCC2 activity (or independently via valinomycin) 

leads to translocation of Rac to the apical membrane, and a subsequent increase in macula 

densa-derived NOX activity and O2
− generation.70,65

The second mechanism that leads to increased NOX activity is similar to that of NOS1, 

that is, via NHE-induced increases in intracellular pH. This is because NOX is highly 

pH sensitive.71–74 Its activity, in human eosinophils or neutrophils, is directly correlated 

with intracellular pH between 7.0 to 8.1, above or below which, its activity decreases 

drastically.71, 72 Because the intracellular pH of macula densa cells fluctuates between these 

levels depending on TGF activity, O2
− generation by the macula densa may be dependent 

on TGF-induced changes in intracellular pH. Indeed, the pH of macula densa cells during 

low TGF activity is between 7.0–7.2. Activation of the TGF response immediately increased 

intracellular pH to 7.4–7.8,14, 56, 57 and O2
− production by 5-fold (in the presence of the 

NOS inhibitor N-nitro-l-arginine methyl ester), thus demonstrating a correlation between 

intracellular pH and O2
− production. To determine whether the changes in intracellular pH 

were causing the changes in O2
− production, experiments were carried out in the isolated 

perfused JGA preparation. The delivery of NaCl to the macula densa was fixed, but the 

intracellular pH was increased by either increasing the pH of the tubular perfusate or 

clamping it using nigericin, a K+/H+ ionophore. The two methods of increasing intracellular 

pH were equally effective at increasing O2
− production by the macula densa, despite 

the absence of changes in NaCl delivery. Tempol and apocynin completely blocked the 

pH-induced O2
− production by the macula densa, whereas blocking NHE with dimethyl-

amiloride inhibited NaCl-induced O2
− production by about 40%.56 It is important to note 

that the two mechanisms, depolarization and alkalinization of macula densa cells do not 

act on NOX activity independent of each other. For instance, alkalinization of the macula 

densa cells only stimulated O2
− generation when the cells were perfused with 80 mM, rather 

than 10 mM NaCl.56,107 The macula densa cells are depolarized when exposed to 80 mM 

NaCl, but hyperpolarized when perfused with 10 mM NaCl. Together, the above results 

suggest that increasing NaCl delivery depolarizes the macula densa cells and activate NOX. 

In addition, it stimulates NHE activity, which in turn increases intracellular pH and further 

increases NOX activity.

The generated O2
− does not appear to increase TGF responses directly, rather by 

counteracting the actions of NO on TGF. Specifically, O2
− binds to NO, thereby reducing 

its bioavailability and effect on TGF responses.1, 8, 36, 37, 56, Conversely, in the absence of 

O2
−, NO will have an unopposed buffering effect on TGF. This concept is supported by the 

finding that tempol (a stable membrane-permeant superoxide dismutase mimetic) prevented 

TGF-induced generation of O2
− and potentiated the buffering effect of NO on TGF36. It is 

noteworthy that the tempol’s ability to blunt TGF responses occured only in the presence 
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of intact NO synthesis, concomitant administration of the NOS1 blocker (7-NI) abolished 

tempol’s effect on TGF.36 Together, the above studies suggest that the ratio between NO and 

O2
− levels determines TGF responsiveness in a variety of conditions.1, 14, 36, 44, 56, 67

Under physiological conditions, the balance between NO and O2
− is heavily tilted towards 

NO; in fact, O2
− in the macula densa is largely undetectable when the NOS activity is intact. 

However, if NOS is inhibited or generation of O2
− is enhanced (e.g. in conditions associated 

with hypertension, diabetes, and kidney injury75–85) the balance between NO to O2
− may 

be shifted in favor of O2
−. For instance, mice rendered hypertensive by infusing angiotensin 

II (Ang II) had greatly increased expression and activity of the NAD(P)H oxidase isoforms 

NOX2 and NOX4 and consequently O2
− generation in the macula densa.86, 87,88 This 

increase in NOX-derived O2
− production was sufficient to make NO levels in the macula 

densa undetectable,89 despite increased macula densa-NOS1 activity90. Consequently, this 

inversion of the NO/O2
− ratio led to significantly enhanced TGF response.89, 91 Indeed, the 

reduction in single nephron GFR in Ang II-treated rats was significantly reduced when they 

were concomitantly treated with a siRNA against a membrane NOX subunit p22phox.92 

Several studies have demonstrated the importance of the NOX isoforms in regulating 

glomerular hemodynamics particularly through their actions on TGF, but also via direct 

vascular effects.92–99 Importantly, the reaction of NO with O2
− generates peroxynitrite, 

which has been demonstrated to modulate NOS2 and NOS3 expression and activity, as well 

as play an important role in many pathophysiological conditions.100–102 However, the role of 

peroxynitrite in the regulation of NOS1 and TGF response has not been investigated.

Because of the significance of O2
− in modulating TGF, it is important to understand its 

sources and the regulation of these sources in the kidney. Uncoupling of NOS1 due to 

decreased availability of its substrate (L-arginine) and/or other cofactors (BH4, NAD, etc.) 

not only decreases generation of NO, but is also a potential source of O2
−.103–106 However, 

the majority of O2
− appears to be generated by the NOX isoforms,7, 37, 107 which are 

widely expressed in the vasculature and tubules in the cortex and the medulla.36, 43, 108, 109 

Of the five NOX isoforms (NOX1 – NOX5)110–116 and the two gp91phox isoforms 

(DUOX1 and DUOX2)117,118, 119, only NOX1, NOX2 and NOX4 have been found in adult 

kidneys.107, 114, 120, 121,113, 116–118 Experiments that combined laser-capture microdissection 

together with real PCR revealed that the macula densa expresses NOX2 and NOX467, 88. 

NOX4 was responsible for basal O2
− production, whereas NOX2 was the main source for 

NaCl-induced O2
− generation;67 both contributed to macula densa-derived O2

− in Ang II-

dependent hypertension.88,98 Any O2
− produced in the macula densa cells by these isoforms 

will be restricted to the cells where it was produced, because O2
− is not membrane-permeant 

and is therefore restricted to the compartment where it is generated.61–63, 122 Likewise, the 

O2
− produced by surrounding cells, such as TAL in response to NaCl123, 124 will not likely 

affect TGF, at least directly via the macula densa (Fig 1).
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ROLE OF MACULA DENSA-DERIVED NO IN MODULATING TGF 

RESPONSES DURING CHRONIC PHYSIOLOGIC CONDITIONS - THE 

IMPORTANCE OF THE SPLICE VARIANTS OF NOS1

Chronic Adaptation of NOS1 Activity during High Salt Intake

In the acute setting, TGF-induced decreases in GFR make perfect sense. It prevents large 

fluctuations in the delivery of NaCl to the distal segments and provides fine tuning of 

the autoregulatory response. However, if sustained, it becomes maladaptive. An obvious 

example is that of a high dietary salt intake. This initially would increase the delivery of 

NaCl to the macula densa, decrease GFR, and facilitate sodium retention. However, resetting 

or adaption of the TGF response via the interactions between NO and O2
−, prevent this 

from occurring. For instance, the TGF response must be reset so that it is reduced during 

a high NaCl diet. This resetting occurs in a large part due to enhanced NO generation at 

the macula densa. This notion was first supported by several lines of evidence; 1) early 

studies found that rodents fed a high salt diet had evidence of enhanced NO generation, 

including increased plasma levels and renal excretion rates of nitrite and nitrate (NO 

metabolites),125–128 as well as increased cGMP levels (a downstream signaling molecule 

of NO).125 2) Increased distal tubular flow enhanced NOS1 activity at the macula densa. 3) 

Pharmacological inhibition of macula densa NOS1 in vitro augmented TGF responses to a 

greater extent in animals on a high salt diet, suggesting increased activity of NOS.3, 129. 4) 

Inhibition of NOS had a greater effect on renal blood flow (RBF), GFR and renal vascular 

resistance in animals fed a high salt diet.125, 127, 130, 131 5) In normal and hypertensive 

humans, a high salt diet was usually associated with an elevation in GFR, RBF, sodium 

and cGMP excretion compared with low-salt dietary conditions. Moreover, these effects are 

significantly enhanced by L-arginine administration132, 133. 6) Finally, several hypertensive 

rodent strains, such as Dahl salt-sensitive, as well as Milan and spontaneously hypertensive 

rats, exhibit impaired NOS1 expression and/or activity.7, 38, 39 Taken together, these data 

provide strong evidence that a high NaCl intake increases NOS activity, which in turn 

influences renal regulation of Na excretion.

Despite this compelling evidence, several well-done studies found a significant discrepancy 

with the above results. They found that mRNA and protein levels of NOS1 in the renal 

cortex and macula densa decreased, rather than increased by a high salt diet. In fact, those 

animals on a low salt diet had a higher NOS1 level.134–136 A second discrepancy arose 

when comparing studies that blocked NOS1 using pharmacological vs genetic techniques. 

Chronic pharmacologic inhibition of NOS1 with 7-NI triggered hypertension in Sprague 

Dawley rats6 and caused salt-sensitive hypertension in Dahl salt-resistant rats,137 again 

suggesting an important role for NOS1 in regulating blood pressure. However, mice with 

global NOS1 deletion were not hypertensive, salt-sensitive, or have renal hemodynamic 

abnormalities.138–140 Thus, these studies suggested that macula densa NOS1 and NOS1-

mediated TGF response did not play an important role in the regulation of sodium 

excretion, volume homeostasis and blood pressure.138–140 The reason for the discrepant 

results between the two approaches was finally resolved with the identification of the NOS1 

splice variants in the macula densa cells.46, 47, 141
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NOS1 Splice Variants in the Macula Densa in Chronic Adaptation to Salt Intake.

One of the unique characteristics of NOS1 is the alternate splicing, which can produce 

several NOS1 mRNA variants and protein isoforms, while NOS2 and NOS3 do not exhibit 

this splicing phenomenon. Identified splice variants of NOS1 include α, β, γ, and μ. NOS1μ 

is only expressed in myocytes. NOS1β exhibits about 80% enzymatic activity of NOS1α, 

while NOS1γ only has 3% activity of NOS1α.54, 142–144 NOS1β has been found to be a 

functional enzyme both in vitro and in vivo studies.51, 143–147 Splice variants of NOS1 have 

been found in the kidneys, e.g. Baylis’s group reported NOS1α and β proteins in the renal 

cortex. They showed reduced mRNAs of NOS1α and upregulated NOS1β were found in 

tubules in a rat model of chronic kidney disease.146, 148, 149 NOS1β in collecting ducts has 

been reported by Pollock’s laboratory150, 151. They demonstrated that the collecting-duct 

NOS1β played an important role in the control of fluid-electrolyte balance.

The expressions of NOS1 splice variants in the macula densa were examined with laser 

capture microdissection of the macula densa cells from frozen kidney slices.46 NOS1α, 

β, and γ mRNAs were detected in isolated macula densa cells, and the protein isoforms 

of NOS1α and NOS1β, but not NOS1γ, were detected in renal cortex (mainly from the 

macula densa).42, 43, 46 Considering the scarce expression level and low enzymatic activity 

of NOS1γ, it is unlikely to play an important role in the NO generation, and thus was 

not further considered. Expression levels of NOS1β mRNA and protein were 30- and 

5-fold higher, respectively, than those of NOS1α in the renal cortex of C57BL/6 mice. 

Furthermore, macula densa NO production was similar in the isolated perfused JGAs from 

wild-type and NOS1α-knockout mice, whose NOS1β is intact47. Finally, NOS1β exhibited 

a 2–3 fold increase in its levels in the macula densa of rats fed a high salt diet, while NOS1α 
significantly decreased.46 These results provided strong evidence that macula densa NOS1β 
is the major splice variant of NOS1 and accounts for most of the NO generation by the 

macula densa46, and is largely responsible for blunting of TGF during salt loading.

The above results also provided a potential answer for the conflicting data about salt-induced 

changes in NOS1 expression and activity, as well as the disparate results found between 

the studies that used pharmacological vs. genetic approaches. First, studies that reported 

decreased NOS1 expression in response to a high salt diet likely used antibodies that 

targeted the N-terminal of NOS1, and thus identified only the NOS1α splice variant,54, 142 

which decreased during the high salt diet46. Second, the global NOS1 KO mouse line used 

in the previous studies targets exon-2 thus only deletes the NOS1α isoform152. NOS1β is 

still intact and the NO generated by the macula densa is not affected in the NOS1α KO 

mice.46, 47, 141 Therefore, no changes in salt sensitivity or blood pressure would be expected. 

Note that 7-NI blocks the whole enzymic activity of NOS1, thus likely explaining its effects 

on TGF, salt-sensitivity and blood pressure, albeit an unrecognized non-renal effect of 7-NI 

cannot yet be ruled out. While the above studies demonstrated that the NOS1α KO mouse 

line is not a valid strain to study the significance of macula densa NOS1, they do provide 

strong evidence that NOS1 in the CNS does not play a significant role in control of blood 

pressure, since NOS1α is the dominant splice variant in the brain.142, 152, 153
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Sexual Dimorphism in Salt-Sensitive and Ang II-Dependent Hypertension

Experimental and clinical evidence shows that females have a lower risk of developing 

several forms of hypertension, including salt-sensitive154–162 and Ang II-induced 

hypertension.163–166 However, the underlying mechanisms behind this protection are not 

elucidated.154, 167 One potential mechanism may be differences in macula densa NOS1β 
activity, since its function is central to the pathogenesis of both of these types of 

hypertension in experimental studies. Indeed, deletion of NOS1β from the macula densa 

enhances the TGF response, impairs natriuresis, and exacerbates the increase in blood 

pressure in mice subjected to either a high salt diet or Ang II infusions.46, 47, 141 Therefore, 

recent animal studies have examined whether sex-related differences in NOS1β activity 

exist.168, 169 Several studies have found no differences in renal cortical NOS1 expression 

between male and female Sprague-Dawley148, 170, and spontaneously hypertensive rats171 

maintained on a normal diet. Likewise, male and female mice maintained on a normal 

diet also did not exhibit significant differences in NOS1β expression levels.169 However, 

this latter study took it a step further and challenged the mice with a high salt diet for 2 

weeks. The females had a greater increase in 1) NOS1β expression, 2) phosphorylation of 

NOS1β at Ser1417 (which increases its activity172–174), and 3) NO generation in the macula 

densa, as compared to males when subjected to the high salt intake.169 Thus, while they 

had similar NOS activity under normal conditions, they had a more robust NOS1β response 

when challenged with high salt, which in turn, conferred greater protection.

Differences in macula densa-NOS1β activity, if functionally important, should translate 

into differences in TGF responsiveness and GFR regulation between the sexes. As would 

be expected, male and female mice maintained on normal salt diets (thus having similar 

expression of NOS1β), had similar TGF responses.169, 175 However, upon subjecting the 

animals to a high salt diet, the sex differences became apparent. The increased expression 

of NOS1β in the females was associated with a greater resetting/blunting of their TGF 

responsiveness than similarly treated male mice.169 Deleting the NOS1β gene decreased 

the sexual dimorphism introduced by the salt loading. The differences in TGF responses 

and blood pressure to a high salt diet169 were greatly diminished in the macula densa-

NOS1 KO mice, indicating that NOS1β is an important determinant of the sex differences. 

Interestingly, the sexual dimorphism is also present in the acute setting as well. The rapid 

increase in RBF, GFR and natriuresis that immediately follows the acute administration of 

a volume load176–180 was also accentuated in females.169 Because blunting of TGF is a 

key component of this response, it seems likely that acute regulation of TGF responses in 

females is also enhanced.

Differences in macula densa-NOS response in females are not only limited to changes 

induced by salt loading. They also have a more robust increase in macula densa-NOS1β 
when subjected to Ang II, which translates into blunted TGF responses and less 

hypertension than males. This sexual dimorphism is present during both acute and chronic 

administration of Ang II. For instance, while an acute infusion of Ang II augmented the 

sensitivity and magnitude of the TGF response in vitro and in vivo,181,182 it did so less 

in females.175 Likewise, a chronic infusion of a subpressor dose of Ang II for 2 weeks 

increased the expression and activity of macula densa NOS1β in male mice, but did so to a 
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greater extent in the female mice. The changes in macula densa NOS1β were accompanied 

by accentuated TGF responses in the males.168 As with the salt loading studies, deletion of 

macula densa NOS1β abolished the sexual dimorphism in TGF and hypertensive responses 

during the chronic Ang II infusion.168 The differences between how males and females 

regulate macula densa NOS1β and/or TGF when subjected to Ang II, may be in part 

due to differences in expression of the distinct Ang II receptors, type 1 (AT1) vs. type 2 

(AT2). As mentioned before, Ang II stimulates NOX activity resulting in increased O2
− 

generation, which in turn quenches NO and augments TGF responsiveness. This effect is 

generally considered to be primarily mediated via the AT1 receptors181. However, it also 

stimulates macula densa-derived NO production,183 which is thought to be due to activation 

of the AT2 receptors, thus raising the possibility that the AT2 receptors may be implicated 

in the sex differences to TGF responses during Ang II administration175. Indeed, female 

mice reportedly had a 3-fold higher expression of AT2 receptor in the kidneys compared 

to males. Moreover, the sex differences in the Ang II-induced alterations in TGF responses 

during Ang II administration were abolished in AT2 receptor knockout mice, suggesting 

that differences in AT2-mediated increases in macula densa-NOS1β may play a significant 

role in the sexual dimorphism observed in TGF responses during conditions associated with 

elevated Ang II levels.168, 175

While the above studies establish an important role for macula densa NOS1β-mediated 

resetting of TGF in the sexual dimorphism of salt-sensitive and Ang II-induced 

hypertension, they do not explain all the differences. Other factors may also contribute 

to the sexual dimorphism of the hypertension, including the diverse sex hormones and 

the differential activation of their assorted receptors,184–188,189 as well as alterations in 

downstream signaling, particularly of the PI3K/Akt and cAMP/PKA pathway which can 

modulate NOS1 expression and activity.174, 190–195 In addition, recent studies demonstrated 

remarkable sex differences in tubular sodium reabsorption along the nephrons196, 197, which 

not only contributes to the sex dimorphism in hypertension, but also further complicates the 

TGF response.

Salt-sensitive Hypertension

Hypertension is a global health problem, with a prevalence of almost 50% in American 

adults, and is a leading risk factor for cardiovascular morbidity and mortality. About 

half of hypertensive patients are salt-sensitive,198–201 suggesting that abnormal renal salt 

handling may play a role in the pathogenesis of these patients. Increases in GFR following 

a high salt diet are thought to facilitate the rapid elimination of sodium and restore salt-

water balance and a normal blood pressure.202–205 Conversely, failure of GFR to increase 

normally in response to a salt loading has been observed in both humans204, 205 and animal 

models202, 203 with salt-sensitive hypertension. Because macula densa-derived NO inhibits 

TGF response preventing excessive declines in GFR,8, 43, 44, 206 it is tempting to speculate 

that abnormalities in the NO-TGF system may be one of the mechanisms that contribute to 

salt-sensitive hypertension in general.

The initial studies examining the role of renal NOS1 in TGF and blood pressure regulation 

were described in the previous section. These studies were expanded on to elucidate the 
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role of the macula densa-derived NO more precisely in the chronic regulation of TGF, 

salt sensitivity and blood pressure. For this, macula densa specific NOS1 KO mice were 

generated47. NKCC2 Cre mice were crossed with NOS1 floxed mice (NOS1flox/flox), which 

targets exon-6 of NOS1.143, 150 All splice variants of NOS1 in the macula densa and TAL 

were deleted in this strain of NKCC2cre/ NOS1flox/flox. Because the expression of NOS1 

in TAL is negligible compared with that in the macula densa207–209, this model can be 

considered as a macula densa selective NOS1 KO line (MD-NOS1 KO).

MD-NOS1KO mice exhibited enhanced TGF responsiveness, both in vivo and in vitro. In 

response to an acute salt loading with saline, the increase in GFR, urinary flow and sodium 

excretion rate were all significantly blunted in MD-NOS1KO mice as compared to the 

wildtype controls47. Following chronic intake of a high salt diet, the mean arterial pressure 

(MAP) increased by 10 mmHg in the MD-NOS1KO mice. Chronic infusion of a subpressor 

dose of Ang II increased the MAP by >30 mmHg in MD-NOS1KO mice fed a high salt diet 

than the wildtype mice. However, the Ang II infusion increased MAP to the same degree 

in the MD-NOS1KO and wild-type mice maintained on a low sodium diet.47 These data 

suggest that macula densa NOS1-mediated NO release not only blunts TGF responses but 

prevents salt sensitivity of blood pressure.47

A subsequent study further examined the role of NOS1β in the NOS1αKO strain in the 

control of blood pressure. Similar to the previous studies,140, 210 a high salt diet did not 

increase blood pressure in NOS1αKO or wildtype mice,141 indicating that deletion of 

NOS1α does not enhance salt-sensitivity of the blood pressure. However, a combination 

of a high salt diet and 7-NI treatment similarly elevated MAP by about 15 mmHg in 

both NOS1αKO and wildtype mice.141 The results from this study demonstrated that 

pharmacological inhibition of NOS1 with 7-NI enhanced salt sensitivity, possibly mediated 

by reducing the activity of macula densa NOS1β. These data confirmed that NOS1α does 

not play a significant functional role in control of sodium excretion, renal hemodynamics 

and blood pressure, and further supports the notion that macula densa NOS1β-mediated 

modulation of TGF response is important in the long-term control of sodium and water 

excretion and salt sensitivity of blood pressure.47, 141

Glomerular hyperfiltration in diabetes

Diabetes mellitus prevalence is increasing in most places in the world and has reached 

pandemic levels. According to the American Diabetes Association (ADA), almost 40 million 

people in the US are living with diabetes, giving a prevalence of more than 11% of the 

US population. An adverse renal complication of diabetes is diabetic nephropathy, which is 

the leading cause of end stage renal disease.211–213 A risk factor for diabetic nephropathy 

is an increase in GFR known as glomerular hyperfiltration during early stage of type 

1 and type 2 diabetes.214–219 The prevailing theories explaining the pathophysiology of 

glomerular hyperfiltration can be divided into vascular and tubular theories. According 

to the vascular theory, glomerular hyperfiltration results from an imbalance between 

vasoconstrictive factors and vasodilatory factors.214, 215, 220 The tubular theory is based 

on the following sequence of events. Glucose is freely filtered and reabsorbed in the 

proximal tubule. The vast majority (~97%) is reabsorbed in the S1 and S2 segments via 
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the sodium-glucose cotransporter 2 (SGLT2), with the remaining 2%–3% is reabsorbed in 

the S3 segment by sodium-glucose cotransporter 1 (SGLT1).221 Hyperglycemia leads to 

increased filtration and thus delivery of glucose to the proximal tubule. This leads to tubular 

growth and upregulation of SGLT2, resulting in increased proximal tubular Na reabsorption, 

and reduced NaCl delivery to the macula densa, thereby inhibiting TGF and increasing 

GFR.222–224 This proposed mechanism to explain glomerular hyperfiltration in diabetes has 

been named the SGLT2-NaCl-TGF mechanism.

Recently, a second tubular mechanism was introduced and dubbed the SGLT1-NOS1-TGF 

pathway.225, 226 This new mechanism emphasizes the importance of SGLT1 (rather than 

SGLT2) as a key determinant of GFR. It is based on the finding that SGLT1 is not only 

present on the S3 segment of the proximal tubular cells, but also on the apical membrane 

of macula densa cells in rodents227, 228 and in humans.225 The progression of events that 

explains this model is as follows. The luminal glucose concentration at the macula densa is 

usually negligible under normoglycemic conditions. However, it will raise when the amount 

of filtered glucose exceeds the maximal capacity of reabsorption by the proximal tubules in 

hyperglycemic states. This increase in luminal glucose at the macula densa activates SGLT1 

and enhances NOS1-dependent NO formation, thereby inhibiting TGF responsiveness and 

promoting glomerular hyperfiltration in diabetes. This pathway is supported by several lines 

of evidence.

It has been well recognized that GFR increases in response to intravenous infusions 

of glucose in humans229–231 and experimental animals.225, 232, 233 Inhibition of the 

TGF mechanism has been found to play an essential role in hyperglycemia-induced 

hyperfiltration.224 TGF responses have been shown to be inhibited or reset in both type 

1 and type 2 diabetic animal models.216, 222, 223, 234, 235 In these studies, the TGF 

responsiveness was evaluated by measurements of proximal tubular stop flow pressure 

(PSF), proximal-distal differences for single nephron GFR, or free flow perturbation analysis 

of TGF efficiency at the natural operating point in db/db mice or streptozotocin-induced 

diabetes in rats. In non-diabetic mice, acute hyperglycemia enhanced macula densa NOS1 

expression and NO generation, inhibited TGF responses in vivo and in vitro, and quickly 

increased GFR225. Only D-glucose, but not L-glucose nor mannitol exhibited these effects 

on NO, TGF and GFR. In addition, only the rise of glucose concentration at the apical 

rather than the basolateral side of the macula densa influenced NO production and TGF 

response225. All these studies indicate that TGF plays a central role in diabetes-induced 

hyperfiltration.

The possibility that the SGLT1-NOS1-TGF pathway plays an important role in diabetes-

induced glomerular hyperfiltration originated, when SGLT1 was detected on the apical 

membrane of the macula densa cells using single-cell RNA-sequencing profile of mouse 

kidneys.236 In this study, tubular glucose transporters in the macula densa were identified 

by the co-expression of NOS1 and NKCC2. SGLT1 was found to be the glucose transporter 

with the highest transcriptional level. Thus, studies examining the functional role of SGLT1 

on NOS1 and TGF were then undertaken. In the presence of the selective SGLT1 inhibitor 

KGA-2727, the glucose-induced macula densa NO generation and TGF inhibition were 

blocked.225 In addition, the glucose-induced effects on TGF response and GFR were 
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absent in mice with macula densa specific NOS1 deletion (i.e. MD-NOS1KO).225 While 

other mechanisms are also likely to contribute to hyperglycemia-induced hyperfiltration, 

including SGLT2-mediated sodium-glucose reabsorption,221, 223, 237 vasodilation of the 

afferent arteriole via GLUT1238 and GPR91239, and insulin,240, 241 the study described225 

provides strong evidence that glomerular hyperfiltration induced by acute hyperglycemia is 

dependent on SGLT1-NOS1-TGF pathway.

Gestational Hypertension and Preeclampsia

Maternal adaption to normal pregnancy is characterized by systemic vasodilation, in 

which RBF and GFR increase by 45–50 %242, 243 and blood pressure decreases by 5–

10 mmHg244, 245. Inappropriate or inadequate cardiorenal adaptations during pregnancy 

may lead to serious pathological consequences, such as gestational hypertension and 

preeclampsia, the latter being a leading cause of maternal and fetal morbidity and 

mortality.246–248 Gestational hypertension and preeclampsia are characterized by new-onset 

hypertension, and increased renal vascular resistance causing reduced RBF and GFR by 

20–40% in preeclampsia compared to normal pregnancies246–248. These changes may 

impair sodium excretion, thereby facilitating the development and progression of gestational 

hypertension.249–252 The physiological mechanisms underlying maternal adaptions in 

normal pregnancy and the pathophysiological mechanisms contributing to the development 

of preeclampsia are complex and involve many different components.253 Among them, NO 

has been found to play a crucial role in control of hemodynamics during pregnancy.242, 254 

NO generation was increased in normal pregnancies255, 256 and reduced NO bioavailability 

has been demonstrated in clinical studies of preeclampsia.257, 258 Indeed, inhibition of 

NOS with L-NAME prevented normal pregnancy-induced elevations of GFR and RBF, and 

induces hypertension259, 260. However, mice with deletion of any of the three NOS isoforms 

(NOS1, NOS2, or NOS3) had normal pregnancies with appropriate adaptions in RBF, GFR 

and blood pressure.261, 262 These findings indicate a key role for NOS1β in gestational 

hypertension and and/or preeclampsia (the global NOS1 KO mice is a NOS1α KO strain 

with intact NOS1β).152

The role of macula densa-NOS1β-mediated TGF modulation in the development of 

gestational hypertension was evaluated in a recent study.263 Deficient trophoblast invasion 

and/or spiral artery remodeling, as well as insufficient blood supply to the fetus are 

considered as causal factors for development of preeclampsia.264, 265 For instance, surgical 

reduction of uteroplacental perfusion (RUPP) has been shown to induce gestational 

hypertension and/or preeclampsia in several mammals.266, 267,268 Mice subjected to RUUP 

not only had hypertension, but also exhibited reduced expression of macula densa-NOS1β 
and less NO generation, suggesting that macula densa-NOS1β may be implicated in the 

abnormal renal hemodynamics and hypertension in this model.263 Interestingly, macula 

densa-NOS1β was also reduced in African Green Monkeys who spontaneously developed 

preeclampsia, but was increased in those who had a normal pregnancy.263 Evidence 

indicating that these alterations in macula densa-NOS1β expression play a causal role in 

gestational hypertension and/or preeclampsia is provided by experiments, in which macula 

densa-NOS1β was genetically deleted. Mice lacking NOS1β specifically in the macula 

densa, exhibited impaired adaptation to pregnancy, while they had a normal phenotype 
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under non-stressed conditions. The pregnant MD-NOS1KO mice did not have the same 

pregnancy-induced changes in renal parameters as the wildtypes; that is, 1) TGF responses 

were not as attenuated, 2) GFR was not as elevated, 3) renal sodium excretion was impaired, 

and 4) blood pressure was increased, rather than decreased.263 Hence, one can conclude 

that impaired function of the macula densa NOS1β is significantly contributing to the 

development of gestational renal dysfunction and hypertension in these animals. Because 

animals subjected to RUPP may have additional mechanisms contributing to the gestational 

hypertension (in addition to decreased macula densa-NOS1β), a RUPP procedure was 

applied to the macula densa-NOS1KO mice. Subjecting pregnant, MD-NOS1KO mice with 

RUPP surgery only caused a modest further alteration in TGF, GFR and blood pressure. The 

lack of additive effects suggested that they were largely working via the same mechanism. 

Taken together, these experimental results suggest that macula densa NOS1β-mediated 

modulation of TGF and renal hemodynamic responses plays a vital role in the development 

of hypertension in preeclampsia.263 One could speculate that this pathway might also be 

implicated in gestational diabetes although this has never been tested.

Conclusions and Perspectives

Much progress has been made regarding the mechanisms that regulate TGF responses and 

their functional significance, especially with regards to their role in the various physiologic 

and pathologic conditions reviewed in this manuscript. The discovery of NOS1 splice 

variants and the subsequent description of their different regulation and function have 

led to novel understandings of how the kidney adapts to chronic homeostatic challenges 

(such as changes in response to elevated Ang II, high salt intake, or pregnancy), and 

helps explain sex dimorphisms. Moreover, the discovery that the glucose transporter SGLT1 

is present in macula densa cells and interacts with NOS1 has shed new light on how 

glucosuria can lead to glomerular hyperfiltration during diabetes via the SGLT1-NOS1-TGF 

pathway. The identification of the mechanisms that lead to the abnormal regulation of 

macula densa-NOS1β and/or abnormal downstream signaling of this pathway, may lead to 

the identification of novel therapeutic targets.

However, there are several limitations and challenges when studying the functional 

significance of TGF response. One of them is the difficulty of dissecting the specific role 

and contribution of the TGF response from other factors or signaling pathways in vivo. 

The current best available approach is to use transgenic animal models with genetically 

edited macula densa cells. However, due to the difficulties accessing the macula densa 

cells, genomic profiling of these cells is incomplete. The development of single cell RNA 

sequencing technique provides a unique approach for quantitatively analyzing the macula 

densa gene profiles and characteristics under physiological and pathological conditions. 

In addition, due to the lack of a reliable macula densa cell line, it is challenging to 

examine the molecular mechanisms that regulate gene and protein expressions and functions 

in the macula densa. The duration of micropuncture and microperfusion experiments are 

usually limited to 3–4 hours. We believe that with the availability of these techniques and 

approaches, the knowledge from basic and translational research on TGF regulation and 

function will increase significantly.
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Figure 1. 
A. The kidney via its functional units, the nephrons, importantly contribute to maintain 

body fluid and electrolyte homeostasis. Tubuloglomerular feedback (TGF) is operating 

within the juxtaglomerular apparatus (JGA), which consists of specialized structures/cells 

in the region between the thick ascending limb (TAL) of the loop of Henle and the distal 

convoluted tubule, near the afferent arteriole. TGF is initiated via mechanisms located 

to the macula densa sense and reacts in response to changes in tubular lumen NaCl. At 

high NaCl load, a paracrine signal is generated and transferred from macula densa in the 

TAL to the adjacent endothelial and vascular smooth muscle cells of the afferent arteriole. 

Tuning of the TGF is modulated by the activity of the enzyme isoforms nitric oxide 

synthase 1 (NOS1) and NAD(P)H oxidase 2 (NOX). The former enzyme exists in three 

different splice variants, i.e. alfa (α), beta (β) and gamma (γ), which all are known to 

generate nitric oxide (NO). Bioavailability and signaling of NOS1-derived NO is dampened, 

via scavenging, by NOX2-derived reactive oxygen species (ROS) including superoxide 

(O2
−). Conditions with oxidative stress (i.e., increased ROS production, reduced antioxidant 

capacity and/or decreased NO bioactivity) can sensitize TGF whereas states with increased 

NO formation can attenuate the TGF response. In the JGA, particularly in the macula 

densa cells, the NOS1β plays an important role in the regulation of TGF. B. Abnormal 

expression and function of this splice variant of NOS1 has been associated with several 

cardiovascular, renal, and metabolic disorders (e.g., hypertension, preeclampsia, kidney 

disease and diabetes). Much knowledge regarding the regulation of NOS1β expression and 

its interaction with other enzyme systems in the JGA (e.g., NOX2), as well as downstream 

signaling, have been obtained from experimental animal models with chronic high-salt 

diet treatment and infusion of subpressor doses of angiotensin II (Ang II) using osmotic 

minipumps. Figure was created with BioRender.com

Liu et al. Page 28

Compr Physiol. Author manuscript; available in PMC 2023 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://BioRender.com


Figure 2. 
The balance between nitric oxide synthase 1 (NOS1)-derived nitric oxide NO) and 

NADPH oxidase 2 (NOX2)-derived superoxide (O2
−) formation importantly influence 

the responsiveness of the tubuloglomerular feedback (TGF). Emerging evidence have 

demonstrated that among the different splice variants of NOS1, the β-version expressed 

in macula densa cells is of particular importance in the regulation of TGF. Numerous 

factors and conditions have been associated altered function and expression of NOS1β 
and NADPH oxidase 2 (NOX2). A. Chronic dietary high-salt (NaCl) intake, as well as 

high levels of angiotensin II (Ang II) and hypertension has been associated with increased 

NOX2, which to some extent can be balanced by increased NOS1β expression. Ang II, 

via activation of its type 1 receptor (AT1) stimulates NOX2, whereas activation of its type 

2 receptor (AT2) inhibits NOX2 and may also activate NOS1β. Altered balance between 

AT1 and AT2 receptor expression/activation, in favor of the latter, has been suggested 

to protect young-to-middle aged females from Ang II-induced pathophysiological events. 

Moreover, in chronic conditions with hyperglycemia (diabetes mellitus), the sodium-glucose 

transporter-2 and −1 (SGLT2 and SGLT1) in the proximal tubules may be saturated, leading 

to activation of SGLT1 in the macula densa cells in the thick ascending limb. Here, SGLT1 

activation has been associated with increased expression and activity of the NOS1β splice 

variant. B. Reduced expression of NOS1β and/or high production of O2
− is associated with 

decreased NO bioactivity and increased TGF response, which leads to contraction of the 

afferent arteriole and reduction of glomerular pressure. In pathological conditions this has 

been associated with reduced kidney function (glomerular filtration rate, GFR), retention 

of salt and fluid and hence elevated blood pressure (hypertension). C. Increased expression 

of NOS1β and/or low production of O2
− is associated with increased NO bioactivity and 

decreased TGF response, which leads to dilatation of the afferent arteriole and increase of 

glomerular pressure. In pathological conditions this has been associated with increased GFR 
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(hyperfiltration), development of glomerular and tubular injuries and kidney disease. Figure 
was created with BioRender.com
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