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Abstract

Since the discovery of recurrent mutations in histone H3 variants in pediatric brain tumours, 

so-called ‘oncohistones’ have been identified in various cancers. While their mechanism of action 

remains under active investigation, several studies have shed light on how they promote genome-

wide epigenetic perturbations. These findings converge on altered post-translational modifications 

on two key lysine (K) residues of the H3 tail, K27 and K36, which regulate several cellular 

processes, including those linked to cell differentiation during development. We will review how 

these oncohistones affect the methylation of cognate residues, but also disrupt the distribution 

of opposing chromatin marks, creating genome-wide epigenetic changes which participate in the 

oncogenic process. Ultimately, tumorigenesis is promoted through the maintenance of a progenitor 

state at the expense of differentiation in defined cellular and developmental contexts. As these 

epigenetic disruptions are reversible, improved understanding of oncohistone pathogenicity can 

result in needed alternative therapies.
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A number of cancers carry recurrent, somatic, gain-of-function, heterozygous mutations in 

different histone 3 (H3)-encoding genes, which lead to amino acid substitutions on key 

residues of the H3 tail. These hotspot H3 mutations, oncohistones as we label them, were 

first identified in a deadly brain cancer, pediatric high-grade gliomas (pHGGs), where 

they account for a large proportion of these tumours. Notably, they show remarkable spatio-

temporal specificity, indicating that their pathogenesis may be closely linked to aberrant 

development [1, 2]. Indeed, HGGs of the central nervous system midline (which includes 

the pons, thalamus and spine) target younger children, and show a high frequency (~80%) 

of H3 lysine to methionine, or rarely to isoleucine, substitutions (K27M/I). These K27M/I 

mutations occur in either canonical H3.1/H3.2 variants mainly in the pons, or in the non-

canonical H3.3 variant across all brain midline structures (Figure 1) [2–6]. By contrast, in 

HGGs of the brain hemispheres, glycine 34 to arginine or valine (G34R/V) substitutions 

are specific to H3F3A, which encodes the H3.3 variant, and target primarily the temporo-

parietal cortex in adolescents and young adults, where they account for ~30% of these 

tumours [2–6]. Other hemispheric H3 wild-type gliomas of adolescents and young adults 

(mean age of 33 years) occur primarily in fronto-parietal lobes and carry non-overlapping 

truncating mutations in SETD2 [7], the only H3K36 tri-methyltransferase in humans, and/or 

hotspot somatic mutations in isocitrate dehydrogenases 1/2 (IDH1/2) [3, 6, 8–10]. IDH 

mutations generate a neomorphic enzyme and excess production of the oncometabolite 
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2-hydroxyglutarate, which competitively inhibits histone and DNA demethylases to affect 

the methylation of K residues on the H3 tail and promote a CpG island methylator 

phenotype (CIMP). Together, these findings reinforce that epigenetic perturbations are a 

major initiating factor in the development of pediatric and young adult HGGs. Furthermore, 

the regional and temporal specificity of the mutations, also reflected molecularly in distinct 

DNA methylation and gene expression profiles [5, 11], suggests different cellular origins 

during their development.

Outside of HGGs, oncohistones are the initiating driver event in other cancers. H3K27M/I 

mutations occur in rare cases of acute myeloid leukemia [12, 13] and a subgroup of 

ependymoma, Group A posterior fossa ependymomas (PFA-EPN) [14, 15]. Strikingly, 

recent studies identified that high expression of the uncharacterized gene CXorf67 
(now designated EZH2 inhibitory protein - EZHIP) predominates in PFA-EPN and are 

mutually exclusive with the rare H3K27M mutations identified in these tumours [16–18]. 

Furthermore, rare H3 wild-type diffuse midline gliomas also exhibit high expression of 

EZHIP, with data reviewed below suggesting the encoded protein has similar effects as 

H3K27M on the epigenome [16–19].

In giant cell tumour of bone (GCTB), H3.3G34 mutations constitute the singular driver 

mutation, with ~ 92% characterized by H3F3A or H3F3B (the other gene encoding 

for H3.3) glycine to tryptophan (G34W) substitutions, and rarely by leucine, arginine, 

valine or methionine (G34L/R/V/M) substitutions [20]. Moreover, K36 to methionine 

(K36M) substitutions in H3F3B occur in 95% of chondroblastomas [20], while a subset 

of undifferentiated soft tissue sarcomas [21], and of human papillomavirus (HPV)-negative 

head and neck squamous cell carcinomas (HNSCCs) [22] carry H3K36M/I mutations. 

Additionally, ~6% of osteosarcomas carry either K27M but mostly G34R or G34W H3 

mutations [23]. Last, various somatic histone mutations were recently identified at a low 

frequency across many different cancers, on residues other than H3K27, H3G34 or H3K36, 

as well as in non-H3 core histones [24]; however, for some, their role as oncogenic drivers 

remains to be experimentally validated.

The exquisite temporo-spatial distribution and the specificity of distinct histone mutations 

to certain cancer types suggests the presence of permissive windows during development 

where the cell/lineage-of-origin is vulnerable to epigenomic perturbation. We will review 

herein how post-translational modifications (PTM) on K27 and K36 are established and the 

crosstalk between these marks and Polycomb repressive complexes (PRC1/2) deposition and 

function. We will discuss recent findings on how these oncohistones and the oncohistone-

mimic EZHIP disrupt this crosstalk to stall differentiation, promoting tumour formation 

through a novel mechanism that involves deregulation of PRC functions during normal 

development.

Polycomb repressive complexes and H3K27 and H3K36 PTM

The epigenetic effects of H3K27, H3G34 and H3K36 mutations are mediated through 

H3K27 and H3K36 PTM, which regulate transcriptional activity by recruiting distinct 

reader proteins to chromatin (Figure 2). H3K27 can be acetylated by CBP and p300 

Deshmukh et al. Page 3

FEBS J. Author manuscript; available in PMC 2023 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



acetyltransferases, or methylated by PRC2 which comprises the catalytic EZH2 or EZH1 

component, as well as EED, SUZ12 and RBBP4/7 core subunits. H3K27ac is an active 

histone mark associated with cis regulatory elements such as promoters and enhancers, 

promoting the expression of genes implicated in cell differentiation [25]. The highest 

methylation state of H3K27, H3K27me3, is a repressive mark commonly occurring in 

facultative heterochromatin, and plays an important role in cell fate determination and 

differentiation during development [26, 27]. The functions of the lower methylation states 

of H3K27 (H3K27me1/2) are less understood, although the broad genomic distribution 

of H3K27me2 may serve as a protective mechanism against inappropriate activation 

of distal cis regulatory elements [28]. One of the mechanisms by which H3K27me3 

is known to repress transcription is by recruiting canonical PRC1, which deposits 

H2AK119 monoubiquitylation and contains a reader chromobox (CBX) component that 

recognizes H3K27me3 and compacts adjacent chromatin. Similarly, PRC2 is allosterically 

activated through the recognition of its own H3K27me3 product by the EED subunit, 

enabling propagation of repressive H3K27me3 [29]. H3K27me3 genomic distribution varies 

considerably by cell type and developmental stage and is impacted by the presence of other 

opposing epigenetic marks including H3K9me3 (marking constitutive heterochromatin), 

DNA methylation, H3K27ac, and H3K36me2/3.

Several methyltransferases perform H3K36 methylation in mammalian cells, including 

NSD1, NSD2, NSD3, ASH1L, and SETD2. Although H3K36me3 is considered an 

active histone mark, its deposition is likely coupled to transcription: the H3K36 tri-

methyltransferase Set2 in yeast is recruited by RNA polymerase II during transcription 

elongation along gene bodies. H3K36me3 is absent on intronless genes, more abundant 

on transcribed exons, and represses specific splicing events, suggesting it may regulate 

alternative splicing and spurious intragenic transcription. H3K36 methylation is recognized 

by various reader proteins containing PWWP domains. For example, the PWWP domain 

of the de novo DNA methyltransferase DNMT3B preferentially mediates binding to 

H3K36me3 at gene bodies [30], while the PWWP domain of DNMT3A preferentially 

recognizes H3K36me2 [31], a mark widely distributed across active intergenic regions [32]. 

H3K36me3-mediated recruitment of DNMT3B and the resulting genic DNA methylation 

may reduce aberrant, or cryptic, transcription initiation at sites other than at the canonical 

promoter [33]. Other proteins with H3K36-recognizing PWWP domains include the DNA 

mismatch repair protein MSH6 [34], and the transcriptional repressor ZMYND11 [35], 

suggesting varied roles for H3K36 methylation.

Importantly, there is considerable crosstalk between H3K27 and H3K36 methylation 

states. Patients with germline mutations in H3K27/K36 methyltransferases present with 

overlapping developmental syndromes characterized by varying degrees of intellectual 

disability, and aberrant skeletal development. Notably, neuroectoderm-derived brain and 

mesenchymal-derived bone tissues are the ones commonly implicated in H3-mutant 

cancers, suggesting their specific susceptibility to perturbations of H3K27/K36 methylation. 

Molecularly, H3K27/K36 crosstalk is exemplified by mutual exclusivity between higher 

methylation states, such that H3K27me3 and H3K36me3 and, even if less stringently, 

H3K36me2 do not coexist on the same H3 tail. NSD1 loss in mouse embryonic stem 

cells (ESCs) leads to H3K36me2 reduction genome-wide and concurrent expansion of 
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H3K27me3 domains [36]. By contrast, NSD2 overexpression in multiple myeloma promotes 

expansion of intergenic H3K36me2 domains and contraction of H3K27me3 domains [32, 

37]. This H3K27/K36 crosstalk may be mediated through a sensing pocket in EZH2 

adjacent to its catalytic site, promoting the enzyme’s catalytic activity in the presence 

of unmodified H3K36 but hindering it when H3K36 is methylated [38]. A deeper 

understanding of the chromatin dynamics of H3K27 and H3K36 PTMs and their impact 

on transcription has been provided as shown below by studies on oncohistone pathogenesis 

(Figure 3).

K-to-M oncohistones

K-to-M oncohistones have been the most extensively studied, as they have a dominant 

negative effect on levels of their cognate lysine PTMs even if they only contribute 3–18% 

of the total H3 pool [39]. Indeed, global levels of H3K27 and H3K36 methylation are 

consistently reduced in K27M and K36M-mutant cells respectively, regardless of whether 

the mutation occurs in canonical H3.1/2 or variant H3.3 genes [21, 39–43]. Canonical 

H3.1/2 histones are deposited ubiquitously in the genome in a DNA replication-coupled 

manner, while variant H3.3 histones are deposited in transcriptionally active genic and 

regulatory regions in a DNA replication-independent manner by distinct chaperones. These 

profiles reflect the deposition patterns of H3.1K27M versus H3.3K27M oncohistones [43, 

44]. However, the differing locations of H3.1K27M and H3.3K27M pHGGs in the brain, 

their distinct partner mutations, enhancer, DNA methylation and gene expression landscapes 

[44, 45] suggest a distinct cell-of-origin that has made unraveling the effects of H3.1K27M 

and H3.3K27M on chromatin challenging.

The mechanisms underlying K-to-M inhibition of cognate methyltransferases remain 

incompletely understood. Structural modelling of H3K36M/I with SETD2’s catalytic 

domain (well conserved in NSD1/2 and ASH1L) predicted enhanced association with the 

mutant H3 compared to wild-type [46]. While some structural modelling and in vitro studies 

suggest that the H3K27M histone binds with greater avidity to EZH2 than wild-type H3 

[39, 47], other studies indicate that this effect of H3K27M on PRC2 binding is minor [48]. 

Indeed, multiple studies mapping H3K27M and PRC2 on chromatin indicate that they do 

not co-localize [43, 49–52]. These data argue against sequestration of PRC2 onto H3K27M 

nucleosomes. However, transient association between PRC2 and K27M on chromatin has 

been shown to impair EZH2 catalytic activity even after PRC2 dissociates from H3K27M 

[53], possibly through persistent reduction of EZH2 automethylation in K27M cells [54]. 

While this persistent inhibition of PRC2 activity by K27M could explain its dominant 

negative effect on H3K27 methylation, the unique chromatin profile of H3K27M pHGGs 

continues to be an area of active investigation.

Mutations in PRC2 components in malignant peripheral nerve sheath tumours result in 

near-complete loss of H3K27me3 genome-wide and frequently overlap with CDKN2A 
deletions [55, 56]. In contrast, genome-wide profiling of H3K27M pHGG cells revealed that 

despite a profound global loss of H3K27me3, residual deposition of the mark persists, and 

is restricted to narrow PRC2 recruitment sites in mutant cells [41, 51, 57]. These are mainly 

at dense, unmethylated CpG islands (CGIs), which are known preferred PRC2 nucleation 
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sites from where the complex normally proceeds along adjacent nucleosomes, propelled by 

allosteric EED activation, to form broad H3K27me3 domains [58]. The long-range spread 

of the repressive H3K27 mark from PRC2 nucleation sites is thus impaired in K27M 

cells, but focal deposition of H3K27me3 at specific genomic loci in response to various 

stimuli remains possible [51, 52, 57, 59]. Notably, H3K27me2 can still be deposited widely 

in H3K27M cells in regions comprising H3K27me3 domains in H3 wild-type cells [50, 

51]. This observation further argues against chromatin sequestration of PRC2 on mutant 

nucleosomes [47], and suggests that H3K27M most severely impairs the complex’s ability 

to perform the time-consuming conversion of H3K27me2 to H3K27me3 [58, 60], possibly 

precluding mutant cells from achieving levels needed to trigger allosteric EED activation 

over the course of a cell division cycle [50, 51, 61]. The residual H3K27me3 peaks that 

maintain repression of genes such as CDKN2A are likely essential for cell survival since 

H3K27M-mutant cells are more sensitive to their further depletion using EZH2 inhibitors 

[52, 57]. Last, H3K27M is needed for initiation but also for tumour maintenance and its 

effects are reversible as experimental knock-out of the mutation in pHGG cell lines restores 

H3K27 methylation levels and deposition and strongly reduces tumour formation in murine 

orthotopic xenograft models [49, 51, 62].

H3K36M-mutant cells present inverse effects than H3K27M on the epigenetic landscape. 

They are characterized by global loss of H3K36me2/3 methylation through inhibition of 

NSD1/2 and SETD2 methyltransferase activity, and a corresponding increase in intergenic 

H3K27me3 deposition [21, 42]. Replacement of intergenic H3K36me2 with H3K27me3 in 

H3K36M cells prompts redistribution of canonical PRC1 away from its genic targets to new 

intergenic H3K27me3 domains, resulting in complex downstream effects on transcription, 

including de-repression of PRC1/2 targets and a block in mesenchymal differentiation 

[21]. In contrast H3K27me3 loss correlates with gene activation in H3K27M pHGGs and 

residual H3K27me3 peaks maintain undue gene silencing, together producing a block in 

neural differentiation [51, 63, 64]. The transcriptional consequences of K-to-M mutations 

are however still incompletely understood. The few transcriptional changes observed in 

H3K27M cells, for instance, might be explained by complex compensatory epigenetic 

mechanisms [51], such as spread of antagonistic H3K36me2 in intergenic regions [53], 

or an increase in H3K27ac levels and its distribution genome-wide leading to pervasive 

acetylation and baseline increased expression of the silent genome, including transposable 

elements [65]. Undue de-repression of repetitive elements can be further enhanced using 

DNA methylation inhibitors, which removes another layer controlling the silent genome to 

further increase expression of these repeat elements. This in turn was shown to selectively 

stimulate an endogenous anti-viral response in H3K27M cells, a finding which may provide 

novel therapeutic strategies for H3K27M pHGGs [65].

EZHIP, an endogenous H3K27M mimic

EZH1/2 inhibitory protein’s (EZHIP) involvement in cancer has provided surprising insights 

into H3K27M oncogenicity (Figure 3). While aberrant EZHIP expression occurs primarily 

in PFA-EPN, the presence of rare, mutually exclusive H3K27M-mutant PFA-EPN supports 

a convergence of their effects on chromatin. The EZHIP protein is present in placental 

mammals and is largely unstructured. It contains however 12 conserved amino acids at 
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the C-terminus that show similarity to the histone H3 N-terminal tail surrounding K27 

[18]. Curiously, the residue in EZHIP corresponding to H3K27 is a methionine (M406), 

which inhibits PRC2 in a similar manner as H3K27M [17, 18]. Indeed, EZHIP interacts 

with, and has a high affinity for, allosterically activated PRC2 [61]. Like K27M, EZHIP 

promotes global loss of H3K27me3 and retention of the mark selectively at unmethylated 

CGIs [18, 66]. Unlike H3K27M, EZHIP is likely not incorporated into chromatin, favoring a 

model where transient association of EZHIP or H3K27M with PRC2 can persistently impair 

catalytic function. During normal development, EZHIP is selectively expressed in germ 

cells, where it acts as an endogenous mechanism aimed at restricting PRC2 activity; thus, 

inactivation of EZHIP in oocytes leads to reduced fertility [67]. The mechanisms enabling 

aberrant EZHIP expression in PFA-EPN and rare diffuse midline gliomas remain unknown, 

even if EZHIP’s effects on the epigenome mimic to a large extent what is observed in 

H3K27M.

H3.3G34 oncohistones

The H3.3G34R/V/W/L mutations occur on a residue which does not undergo PTM. They 

are further distinguished from K-to-M mutations by their occurrence solely in noncanonical 

H3.3, which implies a specific role for this H3 variant in their pathogenicity. H3.3 differs 

from canonical H3.1 and H3.2 by a mere four and five amino acids respectively and has 

several distinct properties. Unlike H3.1/H3.2, it is synthesized in a replication-independent 

manner and needs chaperones for deposition on chromatin, in euchromatin at actively 

transcribed genes, the HIRA complex, and in telomeric/pericentromeric heterochromatin 

and endogenous retroviral elements, a complex containing the Alpha Thalassemia Mental 

Retardation Syndrome X-linked (ATRX) chromatin remodeler. The epigenetic effects of 

H3.3G34 mutations are largely unknown but are presumed to arise from their impact 

on H3K36 methylation (Figure 3). Structural studies suggest that mutation of the small 

glycine residue to bulky arginine, valine or tryptophan residues creates steric interference 

within a narrow channel of the catalytic domain of H3K36 methyltransferases like SETD2 

or H3K36 demethylases like KDM2A. Indeed, H3.3G34R/V/W/L histones display local 

loss of H3K36me3 and resultant gain of H3K27me3 specifically in cis on the mutant 

histone tail, contrasting with the dominant-negative effects of K-to-M oncohistones [39, 68]. 

The mutual exclusivity between H3.3G34R/V-mutant HGGs and the subset of hemispheric 

HGGs carrying SETD2 loss-of-function mutations further supports a convergence of effect 

on H3K36me3.

The diversity of H3K36me3’s downstream effects has prompted several lines of 

investigation for H3.3G34 oncohistones. Splicing defects were identified in H3.3G34W 

isogenic lines, likely through increased interaction between H3.3G34W and components of 

the spliceosome [69]. H3.3G34R/V/D mutations were also shown to prevent H3K36me3 

recognition by DNA mismatch repair machinery, resulting in an elevated mutation rate 

[70]. Moreover, binding of the H3.3K36me3-specific reader and transcriptional repressor 

ZMYND11 was impaired by H3.3G34R/V mutations [35], whereas H3.3G34R promoted 

aberrant interaction with the enhancer-associated ZMYND8/RACK7 repressor [71]. 

H3.3G34R was additionally suggested to inhibit activity of the KDM4 family of H3K9/K36 

demethylases, promoting increased H3K36me3 and H3K9me3 at select loci [72]. Recent 
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data indicate that, H3.3G34R/V in neuronal progenitors [73], or H3.3G34W in mesenchymal 

progenitors may promote altered splicing [74]. A unifying mechanism reconciling these 

disparate models of H3.3G34-mutation induced epigenetic perturbation is still lacking. In a 

recent study, loss of H3.3K36me3 induced by H3.3G34W promoted H3.3 and H3K27me3 

redistribution, resulting in dilution of PRC2 from the intergenome and enrichment at gene 

bodies, thereby blocking differentiation programs in the mesenchymal progenitors carrying 

this mutation [75]. In H3.3G34R/V HGGs, similar redistribution of H3K27me3 resulted in 

blocking terminal differentiation of the mutant interneuron progenitor cells [76], suggesting 

that aberrant PRC2 recruitment and titration of this complex from its original targets 

promotes stalled development.

In all, oncohistones and the oncohistone mimic EZHIP seem to converge on stalling 

differentiation and impairing normal development. This is through undue retention of PRC2 

at its nucleation sites at CGIs for H3K27M/I and EZHIP, or redistribution and titration of 

this complex following H3.3K36me3 loss in H3.3G34R/V/W and H3K36M/I mutants. The 

crosstalk of these changes with the redistribution of other opposing chromatin marks also 

plays a major role in the oncogenic process and is being actively investigated.

Intersection of oncohistone mutations with developmental lineages and 

oncogenic partners

The remarkable tissue, regional and temporal specificity of histone-mutant cancers has led 

to an appreciation of the developmental and cellular contexts permissive to oncohistone-

mediated tumorigenesis (Figure 4). Characterization of H3K27M gliomas using single-

cell transcriptomics revealed a proliferative population of malignant cells resembling 

pontine oligodendrocyte precursor cells (OPCs), with the potential to differentiate to 

oligodendrocyte-like or astrocyte-like cells [64, 77]. Experimental data confirm that 

H3K27M impairs differentiation to maintain the progenitor state [49, 63]. Similarly, bulk 

and single-cell transcriptomes of EZHIP-expressing PFA-EPN share features of prenatal 

gliogenic progenitors [78]. Interestingly, the age of diagnosis of pediatric H3K27M gliomas 

coincides with a period of pontine expansion during normal development linked primarily 

to increased myelination from proliferating and differentiating OPCs [79]. This normal 

proliferative activity may be key to acquiring additional oncogenic partner mutations 

since rare incidental reports of H3K27M-mutant diffuse midline gliomas in asymptomatic 

individuals [80], or in initial low-grade gliomas that transform on recurrence [81], suggest 

that there may be a significant latency between acquisition of the early clonal H3K27M 

mutation [82] and the rapid tumour growth associated with high-grade gliomas.

The unique association of oncohistone mutation with specific tissue/cell contexts is further 

supported by the consistent co-occurrence of frequent or obligate oncogenic partners (Figure 

4A). These partnerships are exemplified by histone-mutant HGGs which are commonly 

associated with specific loss-of-function mutations in the TP53 cell-cycle pathway (e.g. 

TP53, PPM1D, CHECK2) and activating mutations in genes encoding growth factors (e.g. 

ACVR1, PDGFRA, PIK3CA) [3, 6, 83]. TP53 mutations, PDGFRA and EGFR activation 

more commonly occur in H3.3K27M gliomas, whereas PPM1D and ACVR1 mutations 
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preferentially associate with canonical H3.1/2 K27M gliomas [10, 19]. This is consistent 

with distinct enhancer landscapes identified in H3.3 and H3.1/2 K27M gliomas supporting a 

distinct cell-of-origin [44]. Furthermore, some cooperating mutations are clonal events that 

are present throughout disease progression, underscoring their importance for both tumour 

development and maintenance [82].

Similarly, H3.3G34R/V HGGs invariably co-occur with mutations of TP53 and the 

chromatin remodeler ATRX [1]. Inactivating ATRX mutations enable neoplastic cells to 

achieve immortality by promoting an alternative lengthening of telomeres phenotype [84], 

likely through destabilization of telomeric nucleosomal organization upon H3.3 loss. These 

mutations frequently occur in thalamic and hemispheric HGGs of all subtypes; however, 

their obligate partnership in H3.3G34R/V HGGs is unique. ATRX deficiency may serve to 

potentiate the in cis epigenetic effects of H3.3G34 mutations by promoting HIRA-mediated 

deposition of H3.3G34R/V oncohistones into active transcriptional or regulatory regions of 

the genome. By contrast, H3.3G34W GCTBs do not require TP53 or ATRX partners for 

tumorigenesis, but are also less aggressive tumours occurring in cells of mesenchymal origin 

[75]. Last, recent data indicate that G34R/V HGGs are in fact neuronal in origin, as they 

arise in interneuron progenitors [73, 76] in the ventral forebrain during early development 

or in the sub-ventricular zone shortly after birth [76]. The chromatin conformation in 

these progenitors, in combination with H3.3G34R/V mediated effects on specific chromatin 

marks, co-opt PDGFRA by allowing aberrant overexpression and mutations of this growth 

factor receptor, such that half of all H3.3G34R/V HGGs carry mutations of PDGFRA. 

Ultimately, mutant-PDGFRA provides the astrocytic features that classify these tumours as 

glial and is a potent oncogene, as the H3.3G34R/V mutations are poorly tumorigenic on 

their own [76].

Thus, the dependence of histone-mutant cancers on specific oncogenic partners reinforces 

the importance of the cell-of-origin/tissue context, which is best illustrated by attempts to 

model H3K27M gliomagenesis in vivo (Figure 4B). Endogenous knock-in of H3.3K27M in 

mouse ESC resulted in embryonic lethality at the four-cell stage [59]. Neonatal expression 

of H3.3K27M together with p53 loss in murine nestin+ neural progenitor cells (NPCs) 

resulted in ectopic clusters of proliferating cells in the brainstem [39, 59]. Notably, in 
utero electroporation of H3.3K27M and p53 loss in murine hindbrain and cortex at 

E12.5 or E13.5 promoted fully penetrant tumours in mice resembling phenotypically and 

molecularly H3K27M HGGs; additional overexpression of wild-type Pdgfra in this context 

significantly reduced tumour latency [59]. Transplantation of human ESC-derived NPCs 

carrying H3.3K27M, shRNA against Trp53, and mutant PDGFRA (p.D842V) into the pons 

of immunocompromised mice promoted the formation of tumours resembling low-grade 

gliomas, with some transcriptional similarities to H3K27M diffuse midline gliomas [63]. 

In another model, neonatal induction of H3.3K27M expression alone at the endogenous 

locus in nestin+ NPCs produced tumours predominantly resembling medulloblastomas 

when combined with p53 loss [85]. Addition of mutant Pdgfra (p.V544ins) in this case 

pushed gliogenesis, resembling HGGs. In summary, these different in vivo models highlight 

the complexity of H3K27M gliomagenesis and reinforce the importance of selecting 

the appropriate developmental period, cell-of-origin, and necessary oncogenic partners to 

accurately recapitulate the oncogenic process in patient tumours.
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Concluding remarks

Many unanswered questions related to oncohistone pathogenicity remain and range from 

their predicted molecular effects on the epigenome to their exquisite partnership of genetic 

alterations and cell/tissue specificities. Further studies will undoubtedly clarify the manner 

of epigenetic dysregulation mediated by H3.3G34 onco-mutations, while providing insights 

into the exquisite preference for H3.3G34R/V mutations in HGGs and H3.3G34W/L in 

GCTBs. Similarly, deeper characterization of neural cell types during normal development 

and comparison with neoplastic cell signatures may shed light on the origin of high 

frequency of EZHIP overexpression in PFA-EPN and why these tumours do not seem 

to need additional genetic alterations compared to H3K27M in diffuse midline gliomas, 

despite both having seemingly similar effects on the epigenome. Analysis of comprehensive 

single-cell transcriptomic atlases of the developing brain and experimentally induced loss in 

specific cell types may also reveal the cell types, developmental periods, and brain regions 

that are most susceptible to epigenetic perturbation causing brain tumours. The rare cancers 

driven by H3 mutations are likely intimately linked with restricted developmental contexts 

and cell type lineages that are permissive to their chromatin remodeling effects, as also 

suggested by a recent study [86]. These altered chromatin states may be promoting indefinite 

progenitor cell renewal, cell proliferation and acquisition of subsequent genetic alterations, 

ultimately leading to tumour formation.

Mutations in epigenetic modifiers have also provided insights into convergent mechanisms 

in oncohistone-mutant cancers. For instance, the presence of SETD2 mutations in non-

G34R/V hemispheric HGGs suggests convergence through H3K36me3 loss in both HGG 

subtypes. NSD1 mutations in non-K36M HNSCCs similarly implies convergence through 

H3K36me2 loss for K36M HNSCCs. The paucity of mutations in components of the PRC2 

complex in HGGs or PFA-EPN suggests that H3K27M and EZHIP have distinct and more 

complex effects on the epigenome than a complete loss of H3K27me3 levels. Therefore, 

further studies of relevant epigenetic modifiers and the dynamics of H3K27/K36 PTMs will 

undoubtedly expand our understanding of oncohistone-mutant cancers.

Finally, insights into oncohistone-mediated epigenetic perturbations and obligate oncogenic 

partnerships in specific developmental contexts will be essential to developing targeted 

therapies for these cancers. Indeed, several clinical trials are ongoing: using an H3.3K27M 

peptide vaccine (NCT02960230), histone deacetylase inhibitors like panobinostat and 

vorinostat targeting increased acetylation (e.g. H3K27ac) observed in H3K27M gliomas 

(NCT02717455, NCT02420613, NCT01189266, NCT03566199), or inhibitors of the 

oncogenic partner PDGFRA (NCT03352427). EZH2 inhibitors like tazemetostat are 

currently being tested in lymphomas carrying gain-of-function EZH2 mutations; potential 

future applications of EZH2 inhibitors could include the suppression of residual H3K27me3 

peaks in H3K27M gliomas.

Last, oncohistones are a seminal discovery as they can also serve as tools to reveal 

physiological patterns for multiple chromatin marks and provide new insight into PRC 

regulation and function that would have been otherwise very difficult to assess. Indeed, 

their discovery and data generated on their pathogenesis go beyond the cancers they 
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drive and will benefit treatment of other disorders where the epigenome is misregulated. 

These range from genetic overgrowth syndromes, other neurodevelopmental diseases where 

in rare cases germline H3.3 mutations have been recently identified [87], to aging and 

neurodegenerative diseases where PRC functions seem deregulated. As more becomes 

known about oncohistones, it is likely that targeted therapies will translate to the bedside 

and help improve clinical outcomes for patients with these disorders.
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Figure 1. Histone mutations in cancers
Schematic of the histone H3.3 tail above, highlighting key residues (K27, G34, K36) 

recurrently mutated in cancers and their associated post-translational modifications. 

Depicted below is the regional tissue specificity of oncohistone mutations and their 

occurrence in specific cancer types.
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Figure 2. Relationships between H3K27, H3K36 and DNA methylation
A. Methyltransferases performing the steps of de novo DNA methylation, H3K36 and 

H3K27 methylation.

B. An example of repressed chromatin mediated by the PRC2 and PRC1 complexes, as 

initiated by PRC2 recruitment to unmethylated CpG islands (CGIs) and consequent spread 

of H3K27 methylation, and followed by chromatin compaction by canonical PRC1 which 

recognizes H3K27me3 through its CBX subunit.

C. An example of active chromatin, illustrated by co-regulation of intergenic domains by 

H3K36me2- and H3K27ac-depositing enzymes, whereas genic deposition of H3K36me3 

recruits various readers with distinct functions.
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Figure 3. Epigenetic mechanisms of oncohistone mutants
Schematic illustrating immediate consequences of oncohistone mutations on 

methyltransferase function (left), followed by downstream effects (right) resulting from 

disrupted boundaries and genomic redistribution of methyltransferases, or disruption of local 

reader recruitment.
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Figure 4. Intersection of oncohistone mutations with developmental lineages and oncogenic 
partner mutations
A. Oncohistone mutations occurring in high-grade gliomas follow a specific temporal and 

regional pattern with specific oncogenic partners, consistent with a distinct cell-of-origin.

B. Murine models of H3.3 K27M using different techniques and in combination with 

oncogenic partner mutations, to achieve similarity with H3.3 K27M high-grade gliomas.

Deshmukh et al. Page 23

FEBS J. Author manuscript; available in PMC 2023 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical Abstract
	Polycomb repressive complexes and H3K27 and H3K36 PTM
	K-to-M oncohistones
	EZHIP, an endogenous H3K27M mimic
	H3.3G34 oncohistones
	Intersection of oncohistone mutations with developmental lineages and oncogenic partners
	Concluding remarks
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.

