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Abstract

Research in computational psychiatry is dominated by models of behavior. Subjective experience 

during behavioral tasks is not well understood, even though it should be relevant to understanding 

the symptoms of psychiatric disorders. Here, we bridge this gap and review recent progress in 

computational models for subjective feelings. For example, happiness reflects not how well people 

are doing, but whether they are doing better than expected. This dependence on recent reward 

prediction errors is intact in major depression, although depressive symptoms lower happiness 

during tasks. Uncertainty predicts subjective feelings of stress in volatile environments. Social 

prediction errors influence feelings of self-worth more in individuals with low self-esteem despite 

a reduced willingness to change beliefs due to social feedback. Measuring affective state during 

behavioral tasks provides a tool for understanding psychiatric symptoms that can be dissociable 

from behavior. When smartphone tasks are collected longitudinally, subjective feelings provide 

a potential means to bridge the gap between lab-based behavioral tasks and real-life behavior, 

emotion, and psychiatric symptoms.
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1. Introduction on psychiatric symptoms and subjective feelings

Research on psychiatric disorders is complicated by the complexity and heterogeneity 

of psychiatric symptoms. For example, following the current symptom-based diagnostic 

system, researchers observe substantial heterogeneity among individuals diagnosed with 
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mood disorders (Gillan & Rutledge, 2021; Hitchcock et al., 2022; Huys et al., 2016; Yip 

et al., 2022). One of the most widely used diagnostic tools, the Diagnostic and Statistical 

Manual of Mental Disorders (DSM-5) (American Psychiatric Association, 2013), allows 

for at least 256 symptom phenotypes that can be diagnosed as major depressive disorder 

(MDD). This heterogeneity is thought to be related to variation in symptom trajectory and 

treatment responses (Buch & Liston, 2021; Drysdale et al., 2017; Fried & Nesse, 2015).

Researchers in the emerging field of computational psychiatry suggest that psychiatric 

disorders result from aberrant computations that lead to variation in decision making (Huys 

et al., 2016; Montague et al., 2012). For example, anxiety is associated with increased risk 

aversion but not loss aversion (Charpentier et al., 2017) and these distinct effects on risky 

decision making are captured in the Prospect Theory model (Kahneman & Tversky, 1979). 

Individuals with high compulsion-related symptoms exhibit lower goal-directed control 

during learning in a two-step task with fixed probabilities of state transitions (Brown et al., 

2020; Gillan et al., 2016; Patzelt et al., 2019). Furthermore, chronic worry is associated 

with greater perseveration on punishment avoidance goals in a learning environment where 

the probability of state transitions changes (Sharp et al., 2022). Social tasks can also lead 

to selective effects, with higher depression associated with lower learning rates only for 

choices from a virtual partner but not from choices made by participants (Safra et al., 2019).

In contrast to a vast literature on cognitive models evaluated in relation to mental health, 

there have been few studies using computational models to quantify affective dynamics 

during tasks. Given that psychiatric disorders often feature aberrant mood dynamics, a 

better understanding of those disorders may arise from a more precise understanding of 

how affective dynamics change in well-controlled task environments. We can then ask how 

affective dynamics during tasks relate to and provide insight into the origin of affective 

dynamics outside of the lab as well as variation in psychiatric symptoms. Furthermore, 

do affective dynamics explain unique variance in symptoms beyond what is explained by 

behavior in the same tasks? Addressing these questions requires adopting paradigms that 

sequentially sample affective states during decision-making tasks.

In this review, we argue that measuring and modeling momentary subjective feelings during 

decision-making tasks can help to elucidate the affective processes influenced by psychiatric 

disorders. In this review, we will discuss findings from studies of both emotion and mood 

to describe the benefits of measuring subjective feelings to address a variety of questions. 

One way to distinguish affective states and moods from emotions is that affective states 

can depend on multiple independent events, and any associated stimuli may no longer be 

present. In contrast, emotions can be thought of as primarily responses to a specific event. 

Both emotions and affective states lead to subjective feelings and can be studied with 

questions of a subjective nature. When studying affective states, these questions should not 

make reference to any specific events or clearly be about a specific event. This distinction 

is consistent with recent proposed theoretical framework for emotions and moods (Eldar 

et al., 2021). For obvious reasons, mood dynamics may be particularly relevant to our 

growing understanding of mood disorders. Computational models that explain behavior in 

decision-making tasks provides a useful starting point for understanding affective dynamics, 

because the same variables that influence behavior should also be relevant to affect. For 
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example, the prediction errors that quantify the difference between received and expected 

outcomes in reinforcement learning models can also account for momentary mood dynamics 

in reinforcement learning tasks (Blain & Rutledge, 2020).

Modeling momentary subjective feelings can improve our understanding of affective 

processes because computational models can quantify the simultaneous influence of 

multiple factors on affective dynamics. For example, happiness in a social context can 

depend on outcomes that happen to another person (Rutledge et al., 2016). The extent 

to which advantageous and disadvantageous inequality impact happiness predicts social 

preferences. These types of inequality have been linked to the social emotions of guilt and 

envy, respectively. Participants may be reluctant to honestly report on how much envy they 

are currently feeling when asked directly. Computational modeling of affective dynamics 

allows affective impacts of inequality to be quantified in a way that avoids potentially 

sensitive questions. Some individuals may misrepresent how they emotionally respond to 

aspects of a task. Tasks with many emotionally relevant events preceding each affective 

rating may be particularly well suited for obscuring the subject of study. Further studies 

can delineate under which circumstances and for which populations tasks with affective 

state ratings have advantages over simpler tasks. In more naturalistic tasks, computational 

modelling may be particularly useful for quantifying latent affective and cognitive dynamics.

Mood is not only a product of the computations that underlie decision making but 

can be dissociable from behavior and also have a different relationship to psychiatric 

symptoms. During reinforcement learning, learning-irrelevant potential rewards can 

influence participant choices, but not influence momentary happiness (Blain & Rutledge, 

2020). In a social context, social prediction errors that are the difference between expected 

and observed social feedback can lead to dissociable impacts on feelings of self-worth 

and the predictions that participants make about future social feedback (Will et al., 2020). 

Distinct cognitive and affective mechanisms can show impairments in psychiatric disorders. 

People with depression showed lower general mood during a risk-taking task while there 

was no difference in the influence of reward prediction errors on their mood ratings 

(Rutledge et al., 2017). In an ultimatum game, two people split a certain amount of money, 

with one person proposing how to split and the other person accepting or rejecting the 

offered amount. Both depressed and non-depressed individuals tended to reject offers when 

the experienced offers were worse than expected. Non-depressed individuals tended to reject 

offers after emotional prediction errors (e.g., the experienced emotion was more negative 

than expected) whereas this influence of emotional prediction errors is reduced in depressed 

individuals (Heffner et al., 2021).

If affect is to play an adaptive role in behavior, affective state should interact with decision 

making. This also implies that assessing affective dynamics could capture unexplained 

variance in behavior in any task where affective state varies. In an ultimatum game, 

emotional prediction errors predicted participants’ rejections of unfair offers (Heffner et al., 

2021). A recent proposal also argues that mood represents the momentum of rewards in an 

environment (Bennett et al., 2022; Blain & Rutledge, 2020; Eldar et al., 2016; Eldar & Niv, 

2015). The momentum of rewards reflects the moving average of recent prediction errors, a 

measure that relates to whether an environment is getting better or worse. In the proposal, a 
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positive mood could then influence behavior by increasing the perceived value of rewards, 

thereby increasing the rate of value updates after unexpected rewards and exploiting actual 

momentum in the environment if it exists (Eldar et al., 2016, 2021). However, this could 

have unintended consequences and increase risk taking in other domains. After surprising 

positive events such as sport team winning or a sunny day, increased mood is associated 

with purchase of lottery tickets (Otto & Eichstaedt, 2018). In mood disorders characterized 

with high mood instability such as bipolar disorder, mood could distort reward perception 

in a way that leads to extreme value estimates and behavior (Eldar & Niv, 2015; Mason et 

al., 2017). Thus, measuring mood dynamics during cognitive tasks could clarify the latent 

mechanisms that underlie aberrant choice behavior.

Sequential sampling of subjective mood ratings can be conveniently implemented both in 

the lab and in tasks implemented on mobile devices such as smartphones or tablets. Moving 

toward large-scale and longitudinal data collection through online platforms and smartphone 

devices can resolve shortcomings from cross-sectional clinical datasets collected at a single 

time point in a controlled lab environment (Gillan & Rutledge, 2021; Hitchcock et al., 

2022). High accessibility facilitates dense sampling of momentary subjective feelings during 

behavioral tasks, and it allows researchers to conduct longitudinal studies that probe both 

cognitive and affective processing in psychiatric disorders with low financial and patient 

burden (Gillan & Rutledge, 2021; Harari et al., 2016). In addition, smartphones are useful 

for ecological momentary assessment, and can measure affect in the same participant in 

different real-life contexts (Killingsworth & Gilbert, 2010; MacKerron & Mourato, 2013).

In this review, we discuss how the dynamics of subjective experience during tasks have been 

assessed through momentary ratings of subjective feelings and utilized in computational 

psychiatry research. We also show how computational modeling of affective dynamics 

during tasks has contributed to a better understanding of emotions in psychiatric disorders. 

We specifically focus on three widely used decision-making contexts: risky decision making 

(section 2), reinforcement learning (section 3), and decision making in social contexts 

(section 4). We suggest potential implications of subjective mood modeling for dissecting 

heterogeneous symptoms of psychiatric disorders like major depression (section 5). We 

describe how smartphones can be utilized to improve research in computational psychiatry 

that bridges between behavioral models and subjective experience as it relates to both 

real-world emotions and psychiatric symptoms (section 6). Lastly, we suggest guidelines for 

developing computational models of subjective feelings and propose some future directions 

for this growing field (section 7).

2. Computational models of subjective feelings: risky decision making

2.1 Risky decision making

Decision making under risk or uncertainty was initially thought to be primarily about 

maximization of expected values (Bernoulli, 1954; Von Neumann & Morgenstern, 1944). 

More recently, emotion research has inspired more realistic economic theories including in 

the field of behavioral economics. Prospect theory is a widely used model for economic 

decision making under risk, inspired by ideas about anticipated emotions and the role 

they might play in subjective risk preferences (Kahneman & Tversky, 1979). This theory 
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formally describes risky decision making and focuses in particular on two phenomena: the 

diminishing subjective utility of increasing outcome magnitudes that explains risk aversion 

in gains and risk seeking in losses, and the tendency to weigh potential losses more heavily 

than potential gains, which is referred to as loss aversion (Kahneman & Tversky, 1979; 

Sokol-Hessner & Rutledge, 2019). By expressing the concepts that comprise decision 

making under risk in mathematical form, psychologists have been able to rigorously test 

hypotheses about how these components may differ between individuals and could relate to 

brain function or mood (De Martino et al., 2010; Tom et al., 2007). Recently, researchers 

have increasingly considered a potential relationship between feelings and choice, motivated 

by theories like the “risk-as-feelings” hypothesis (Loewenstein et al., 2001; Loewenstein 

& Lerner, 2003) and consistent with research linking risky choice to subjective feelings 

(Charpentier et al., 2016).

2.2 Mood depends on reward prediction errors

While it seems intuitive that happiness is influenced by reward, and increased wealth should 

lead to improved mood, empirical evidence suggests that reward alone does not capture 

the full picture and that the relationship between wealth and happiness is not a simple one 

(Easterlin et al., 2010; Kahneman et al., 2006; Kahneman & Deaton, 2010). The emotional 

response to a gamble’s outcome depends on the value of the obtained outcome and also its 

likelihood (Mellers et al., 1997). For example, it feels better to win $50 when the odds are 

10% compared to when the odds are 90%. Using computational modeling, researchers have 

recently formalized a model for happiness incorporating a role for expectations (Rutledge 

et al., 2014). Happiness is suggested to be a recency-weighted average of chosen certain 

rewards (CR), the expected values of chosen gambles (EV), and reward prediction errors 

(RPE), the difference between the received reward and the expected value of chosen gambles 

(Equation 1) (Rutledge et al., 2015, Rutledge et al., 2014). In addition, a baseline mood 

parameter (w0) captures overall mood during the task after accounting for the mood 

fluctuations that can be attributed to task events. Thus, it may reflect overall how a 

participant experiences a task and could differ between tasks for an individual. Researchers 

found that, despite no immediate impact on current wealth, expectations about the future 

influence happiness, but prediction errors have an even stronger impact (Figure 1A). These 

results were replicated by an independent group in a pre-registered study (Vanhasbroeck et 

al., 2021).

Happinesst = w0 + w1 ∑
j = 1

t
γt − jCRj + w2 ∑

j = 1

t
γt − jEV j + w3 ∑

j = 1

t
γt − jRPEj (1)

Using computational modeling allows researchers to quantify the different factors that 

influence happiness and help to bridge the gap between subjective emotional experience and 

the neurophysiology of affective processing during risky decision making. Using functional 

magnetic resonance imaging (fMRI), blood oxygen level dependent (BOLD) activity in the 

ventral striatum preceding happiness ratings was found to correlate with later self-reported 

happiness ratings (Figure 1B) (Rutledge et al., 2014). Furthermore, activity in the ventral 

striatum also correlated with the magnitude of certain rewards, expected values, and reward 
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prediction errors that all influence momentary happiness. Neurons that release dopamine 

show activity patterns that resemble these reward prediction errors (Schultz et al., 1997) 

and this is consistent with BOLD responses in the ventral striatum thought to be due to 

dopaminergic input (Caplin et al., 2010). Moreover, right anterior insula activity at the time 

when participants were asked to rate their current happiness was positively correlated with 

happiness ratings (Rutledge et al., 2014), consistent with evidence that this area supports 

interoceptive awareness (Critchley et al., 2004; Damasio, 1999).

Examining the relationship between happiness and risk taking can inform our understanding 

of how mood disorders influence affective experiences and behavior in a context that is 

well understood from a psychological and neurobiological perspective. While depressive 

symptom severity negatively correlates with overall happiness during risk-taking tasks, 

the neural and emotional impact of reward prediction errors is intact in major depression 

(Rutledge et al., 2017). This result suggests that the aberrant processing of reward prediction 

errors during reinforcement learning tasks in previous studies may reflect more downstream 

impairments in behavior or cognitive appraisal (Kumar et al., 2018). Clinical anxiety is 

linked to increased risk aversion (Maner et al., 2007), but not loss aversion (Charpentier et 

al., 2017), although it is less clear whether risk taking is influenced by depression (Chung 

et al., 2017). Affective experience has only been evaluated in a small number of risk-taking 

paradigms but modeling the dynamics of subjective feelings like happiness first in these 

well-understood decision paradigms will be a key step in understanding how these dynamics 

become dysfunctional in psychopathology.

2.3 Mood is influenced by counterfactual outcome

Mood can also depend on the unobtained outcome of unchosen options. Several studies 

have shown how emotions can relate to comparisons between the outcome of the chosen 

option and the unobtained outcome in the unchosen option (Bennett et al., 2022; Coricelli et 

al., 2005; Mellers et al., 1997). For example, participants make a choice between option 

A and option B. Option A can win $50 or lose $50 and option B can win $200 or 

lose $200. After choosing option A, participants feel better after a $50 win than a $50 

loss. Seeing the unobtained outcome from the unchosen option B influences emotions. 

They feel better if the unobtained outcome is losing $200 than if the unobtained outcome 

is winning $200. Considering the unobtained outcome introduces counterfactual thinking 

about what they would have obtained if they made a different choice, and this counterfactual 

outcome can influence emotions (Coricelli et al., 2007; Coricelli & Rustichini, 2010). 

Furthermore, participants report disappointment when the obtained outcome is worse than 

they expected, and regret when the obtained outcome from the chosen option is worse 

than the unobtained outcome from the unchosen option. Greater regret was associated 

with elevated activity in orbitofrontal cortex, anterior cingulate cortex, and hippocampus 

(Coricelli et al., 2005). Regret for counterfactual outcomes has also been shown to be 

reduced in depressed patients (Chase et al., 2010). Obsessive-compulsive disorder patients 

showed more extreme emotional responses to counterfactual outcome than healthy controls 

but no difference for outcomes from chosen options (Gillan et al., 2014). These findings 

suggest that subjective feelings for counterfactual outcomes may be relevant to a deeper 

understanding of psychiatric disorders.
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2.4 Interactions between mood and risky decision making

Mood could also influence subsequent risky decisions. The “mood maintenance theory” 

proposed that people in happy moods are actually more reluctant to take risks because 

they want to avoid undermining their positive emotional state (Isen et al., 1988). This 

tendency to overweigh the pain of potential losses relative to gains is consistent with 

heightened loss aversion, attributed to a raised reference point (Mellers et al., 2021). 

However, some researchers have found the opposite relationship. Elevated mood has been 

related to increased risk seeking (Forgas, 1995; Stanton et al., 2014). This effect is consistent 

with analyses of real-world urban populations, which showed that positive incidental 

outcomes like local sporting events and weather patterns predict greater participation in 

lottery gambling (Otto et al., 2016). Analyses of day-to-day mood language extracted from 

Twitter and localized to the same location established that such surprising positive outcomes 

increase mood, and this increased mood is associated with increased gambling (Otto & 

Eichstaedt, 2018). Consistent with the theory that mood represents momentum of reward 

(see section 1 for more information of the theory), a positive mood reflects increasing 

overall reward availability, and risky options may represent a novel reward source to be 

approached. Consistent with this possibility, people choose more novel stimuli in a positive 

mood (Dreisbach & Goschke, 2004).

Affective experience is also amenable to intentional cognitive regulation. Notably, 

researchers have found that cognitive regulation strategies such as “perspective-taking” 

reduce physiological arousal to losses, and this has the effect of reducing loss aversion 

(Sokol-Hessner et al., 2009). These findings demonstrate that emotions influence subjective 

valuations of risk and behavior just as the positive and negative outcomes of those risks 

have an influence on emotions. Moreover, subjective feeling associated with potential risky 

options can be used to predict risky taking better than using the established Prospect Theory 

model (Charpentier et al., 2016).

3. Computational models of subjective feelings: learning and uncertain 

environments

3.1 Learning in uncertain environments

In an uncertain environment, values of options are often not observable. Under the 

framework of reinforcement learning, people can learn these values by trial and error, and 

make adaptive decisions that maximize cumulative expected reward (Sutton & Barto, 2018). 

When the received outcome is better than predicted (i.e., a positive prediction error), the 

value of the chosen option should be increased, leading to an increase in the probability 

of repeating the same behavior. When the received outcome is lower than expected (i.e., a 

negative prediction error), the value of the chosen option should be decreased.

3.2 Mood depends on prediction errors during learning

Subjective feelings should play a role in adaptive behavior, but it remains unclear what this 

role is. Many studies show that physiological arousal changes during learning in response to 

prediction errors, surprise, and uncertainty. For example, pupil diameter increases as belief 
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surprise or belief uncertainty increases (Nassar et al., 2012). A recent study measured skin 

conductance, pupil diameter, and subjective ratings of stress during learning (de Berker et 

al., 2016). Participants predicted whether pictures of rocks would lead to a snake, which 

resulted in a mild electrical shock when it was present. The probability of the snake 

for these stimuli changed occasionally during the task. This study explores three types 

of uncertainty: irreducible uncertainty, estimation uncertainty, and volatility uncertainty. 

Irreducible uncertainty emerges from the probabilistic association between action and 

outcome. It is highest when the probability of shock is 50% and gradually decreases as 

the probability of shock goes to 0% or 100%. Estimation uncertainty reflects imprecision 

in estimated shock probability and decreases with learning. Volatility uncertainty captures 

imprecision in the estimated volatility, which reflects instability in the shock probability. 

As irreducible uncertainty estimated from participant predictions increased, subjective 

stress, skin conductance, and pupil diameter also increased. The influence of irreducible 

uncertainty on subjective stress was associated with the influence of irreducible uncertainty 

on both skin conductance and pupil diameter, supporting a link between subjective stress 

and physiological arousal in uncertain environments. Stress has also been shown to affect 

decision processes including valuation, learning, and risk taking in the lab and real life 

(Morgado et al., 2015; Porcelli & Delgado, 2017).

In addition to risky decision making (section 2.2), the influence of prediction errors on 

momentary happiness has also been shown during learning in uncertain environments 

(Blain & Rutledge, 2020; Eldar & Niv, 2015). In these studies, participants made a 

choice from multiple options with different reward probabilities. Trial-by-trial expected 

probabilities and prediction errors were estimated from a reinforcement learning model that 

best explained choice. During learning, participants were asked periodically about their 

momentary happiness. Their mood dynamics were driven both by expected probabilities 

and experienced prediction errors (Blain & Rutledge, 2020). These findings are consistent 

with a recent theory that mood represents the momentum of reward (see section 1 for more 

information of the theory).

Building on this work, Bennett and colleagues proposed that mood depends on the 

integration of advantages from multiple sources (Bennett et al., 2022). Advantage captures 

the difference between the value of taking a specific action in a specific state and the value 

of that state. Thus, a positive advantage indicates that this action can increase expected 

reward. People can adjust behavior based on this advantage to maximize expected future 

reward. Recent studies show that this advantage can influence mood (Equation 2) (Bennett et 

al., 2022).

Moodt + 1 = Moodt + ηmood Advantaget − Moodt (2)

This model considers multiple sources for advantage. The first advantage is the reward 

prediction error of the chosen action. The second advantage is the difference between the 

learned value of the chosen action and the learned value of the unchosen actions. The third 

advantage is the difference between the learned value of the chosen action and the actual 

outcomes of the unchosen actions when participants receive this counterfactual information. 
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In this model, mood can be simultaneously influenced by these three advantages with 

different weights that capture the influence of multiple factors (e.g., expectation, prediction 

errors, counterfactual outcomes) on mood identified in past studies.

Mood dynamics during learning may not reflect the momentum of all recent outcomes but 

instead specifically the prediction errors that are relevant to learning. In a recent study 

(Blain & Rutledge, 2020), participants chose between two options with different reward 

probabilities, and each option was randomly assigned a potential reward. Participants must 

integrate their current beliefs about the probability of reward with the potential rewards 

on each trial to make decisions. In this task, there are two sources of prediction errors. 

One is the probability prediction error, which indicates the difference between whether 

participants receive a reward and the expected probability of the chosen option. This 

probability prediction error can be used to update beliefs about the reward probability of 

the chosen option. The reward prediction error is the difference between the magnitude 

of a received reward and the expected value of the chosen option. This reward prediction 

error is not informative in learning because the potential rewards are randomly assigned 

on each trial. Participants were asked to rate their happiness periodically during the task. 

The model that included probability prediction errors performed better than the model that 

instead included reward prediction errors in both stable and volatile environments (Figure 

2A). Reward magnitude influenced participant choices but did not influence momentary 

happiness. This was consistent for the stable environment (where the reward probabilities 

of the two options was stable for the entire task) and the volatile environment (where the 

reward probabilities of the two options switched periodically during the task).

Modeling subjective feelings during learning could help to understand the aberrant beliefs 

and decisions present in psychiatric disorders. For example, using computational models to 

evaluate the baseline mood parameters in stable and volatile environments separately (Blain 

& Rutledge, 2020) showed differences related to depression. Depressive symptoms were 

associated with lower baseline mood parameters in volatile but not stable environments 

(Figure 2B). In volatile environments, anxiety symptoms are associated with irregular 

learning (Browning et al., 2015), and subjective feelings measured in different types 

of uncertain environments could help in understanding the experience of people with 

psychiatric disorders.

3.3 Interactions between mood and learning

Mood is not just a byproduct during learning but can also influence learning. Manipulating 

mood with task-irrelevant stimuli can influence later preferences (Eldar & Niv, 2015; 

Michely et al., 2020). In a learning task (Eldar & Niv, 2015), participants learned to choose 

among three slot machines with reward probabilities of 20%, 40%, or 60%. In the middle 

of the task, people played a task-irrelevant wheel of fortune. Participants were happier 

after winning than losing the wheel of fortune. After this wheel of fortune, participants 

learned to choose among three new slot machines with reward probabilities of 20%, 40%, 

and 60%. In the test phase, participants chose between pairs of slot machines they had 

learned about but in the absence of any additional feedback. For people with high trait 

mood instability, indicating vulnerability for bipolar disorder, preferences were influenced 
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by the wheel of fortune outcome. For the slot machines with the same reward probabilities, 

they preferred the one learned after winning the wheel of fortune to the matched ones 

learned before winning the wheel of fortune (Eldar & Niv, 2015). Conversely, they preferred 

the slot machines learned before losing the wheel of fortune to matched ones learned 

after losing the wheel of fortune. Even though the wheel of fortune was not relevant to 

learning, mood changed as a result might have influenced perceived outcomes and biased 

subsequent preferences. Additionally, this mood impact also modulated the neural encoding 

of reward in striatum during learning. People with high trait mood instability showed 

stronger neural responses to reward after winning compared to before winning the wheel of 

fortune. Conversely, they showed weaker neural responses to reward after losing compared 

to before losing the wheel of fortune.

Computational models help in understanding the association between mood dynamics 

and learning dynamics. A mood bias parameter in this model influenced the perception 

of a received reward (Eldar & Niv, 2015). As learning is driven by prediction errors 

between expectations and rewards, this biased perception on received reward can influence 

learning. The mood bias parameter was associated with trait mood instability. Moreover, this 

theoretical framework suggested that a high mood bias parameter is a risk factor of bipolar 

disorder (Mason et al., 2017). For example, a positive prediction error leads to higher mood. 

The higher mood biases the perception of received outcome to generate larger positive 

prediction errors, and then this large positive prediction error updates expectation upward 

more than they would have otherwise. As expectation becomes excessively high, individuals 

could enter a manic phase where they expect everything to go well and experience any 

small reward as being large. However, this state would increase the probability of large 

negative prediction errors and eventually could contribute to a depressive phase. A number 

of large negative prediction errors together lead to low mood, and this low mood biases 

the perception of received outcomes downwards and thereby expectations. Stronger mood 

bias parameters could lead to stronger positive feedback dynamics that encourage manic and 

depressive phases.

4. Computational models of subjective feelings: social environments

4.1 Decision making in social contexts

Decision making in social contexts is complex because people care not only about their own 

choices and outcomes but also the choices and outcomes of others. In real life, we make 

many decisions involving interaction with others, from negotiating salary for a new job, to 

responding to a tweet, to asking someone out on a date. Such decisions recruit a broad range 

of cognitive processes, including mental state inference and the evaluation of social norms 

(Lee, 2008; Lee & Harris, 2013; Rilling & Sanfey, 2011; Xiang et al., 2013). Computational 

modeling is increasingly being used to understand how these processes contribute to social 

decision making (Cheong et al., 2017; Cushman & Gershman, 2019; FeldmanHall & Nassar, 

2021). Emotional expressions and how they change over time could reflect recent events like 

self-reports of mood. Individuals can use emotional expressions to infer the likely causes 

(Ong et al., 2019; Wu et al., 2021). Computational models can test to what extent multiple 

past events influence current expressions, allowing tests of whether others can infer the 
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causes of emotional expressions in a way that matches the factors that are most predictive of 

expressions.

A prominent finding is that social decisions often deviate from normative theories of reward 

maximization (Bernoulli, 1954; Kahneman & Tversky, 1979; Von Neumann & Morgenstern, 

1944). This has been shown empirically using the ultimatum game, a two-player economic 

choice paradigm in which a proposer decides how to split money with another player and a 

responder decides whether to accept or reject the offer (Güth et al., 1982; Harsanyi, 1961; 

van ‘t Wout et al., 2006). Responders reject around half of all offers that fall below 20% of 

the total, even though the rational (i.e., reward-maximizing) choice strategy in non-repeated 

interactions is to accept any non-zero offer (Nowak et al., 2000). Rejected offers result in no 

money for either player, and are believed to reflect negative emotions (i.e., anger) that relate 

to a desire to punish the proposer (Nelissen & Zeelenberg, 2009; Pillutla & Murnighan, 

1996). Neuroimaging using fMRI suggests a link between heightened activity in anterior 

insula, dorsolateral prefrontal cortex, and anterior cingulate cortex and increased rejection of 

unfair offers, and this signal, as well as rejection rates, are increased during interaction with 

a human compared to a computer player (Sanfey et al., 2003).

Computational modeling has led to progress understanding disorders with a social 

dimension, such as autism, social anxiety, and borderline personality disorder, which 

have been linked to differences in learning and decision making in interpersonal settings 

(Fineberg et al., 2018; Forgeot d’Arc et al., 2020; Henco et al., 2020; Hopkins et al., 

2021; King-Casas et al., 2008; Siegel et al., 2020). An ongoing challenge is to understand 

the mechanisms by which affective experience during social decision making is related 

to psychiatric disorders, something that computational models of subjective feelings have 

begun to shed light on.

4.2 Mood is influenced by social comparison

Mood dynamics are influenced by comparison between outcomes for the self and for other 

people, consistent with ongoing affective experience being influenced by other reference 

points than just expectations. This is also consistent with measures of subjective well-being 

at a population level, where how satisfied people are with their lives depends partially on 

how they compare to others in their social environment (Boyce et al., 2010; Luttmer, 2005). 

In an ultimatum game, people exhibited stronger arousal-related skin conductance responses 

when rejecting versus accepting an offer proposed by a human partner (van ‘t Wout et 

al., 2006). In contrast, there was no difference in skin conductance between rejecting and 

accepting an offer proposed by a computer. Momentary happiness in individuals also reflects 

social comparison (Rutledge et al., 2016). Participants rated their momentary happiness 

as they played a risky decision-making task in which they saw the outcomes not only of 

their own choices, but also those of a social partner. Happiness was predicted best by a 

model that accounted for subjective feelings elicited by social comparison, revealing that 

both advantageous inequality (i.e., conditions that could elicit guilt) and disadvantageous 

inequality (i.e., conditions that could elicit envy) reduced happiness (Figure 3A). Model 

parameters also predicted how generous participants were in a separate dictator game: 

greater guilt was associated with more generous decisions, and greater envy with less 
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generous decisions (Figure 3B). This pattern of results highlights how computational models 

can be used to distinguish many simultaneous influences on happiness, including some that 

may be socially undesirable to admit (e.g., envy).

Previous work has shown that generosity itself is associated with greater happiness (Dunn et 

al., 2008). In one study, participants were instructed that they would receive a monetary 

endowment to spend over a period of four weeks, allocating one group to pledge to 

spend the money on other people (experiment group) and a separate group to pledge to 

spend the money on themselves (control group) (Park et al., 2017). Participants made a 

series of choices to accept or reject proposals from a social partner while undergoing an 

fMRI scan. Each proposal consisted of a monetary benefit for their social partner and a 

monetary cost to themselves. The researchers found that participants who had pledged to 

spend money on others made more generous decisions, and reported a greater increase in 

happiness over the course of the experiment (Park et al., 2017). Generous decision making 

corresponded to increased BOLD activity in the temporoparietal junction, and increased 

connectivity between that area and ventral striatum. Remarkably, these effects were seen 

after participants had made a commitment to being generous, but before they had spent any 

money.

4.3 Mood is modulated by social norms

Mood dynamics can also be influenced by social norms. One approach has been to model 

social emotions as affective and motivational state changes in response to violations of 

social norms. This builds on functional theories that compare emotions to homeostatic 

mechanisms (Chang & Smith, 2015; Damasio, 1999; Seth, 2013), positioning social norms 

such as “fairness” as learned set points (Montague & Lohrenz, 2007). In a variation of the 

ultimatum game, participants acted as responders to offers from a computer (Xiang et al., 

2013). Offers from the computer were drawn from a Gaussian distribution, the mean and 

variance of which differed between the first and second half of the experiment. Throughout 

the task, participants rated their subjective feelings about the current offer using emoticons 

(Lang, 1980). Using computational models of subjective ratings, the researchers found 

that momentary happiness depended not only on the fairness of the current offer, but on 

how much that offer deviated from the fairness norm established in the first half of the 

experiment (Xiang et al., 2013). The extent to which each offer deviated from this model-

based norm covaried with BOLD activity in medial prefrontal cortex, nucleus accumbens, 

and posterior cingulate cortex.

Prediction errors derived from social feedback can also influence momentary feels of self-

worth (Will et al., 2017, 2020). Participants received a series of “likes” and “dislikes” that 

they were told were from people who had viewed a social media profile they had previously 

submitted to researchers. On each trial, participants were presented with the name of the 

rater, and a color cue indicating which of four groups the rater belonged to based on how 

likely they were to like profiles in general. The researchers found that self-esteem was not 

only sensitive to social approval or disapproval, but to social approval prediction errors: 

receiving a like resulted in a bigger increase in self-esteem if it came from a rater who 

liked few profiles in general, compared to a rater who liked most profiles. Social approval 
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prediction errors modulated BOLD activity in ventral striatum, but changes in self-esteem 

modulated ventromedial prefrontal cortex activity.

These findings are consistent with the notion that self-esteem is shaped over time by social 

evaluation by others (Gruenenfelder-Steiger et al., 2016), suggesting that self-esteem may 

serve as a type of dynamic learning signal used to update beliefs about changes in one’s own 

social standing (Low et al., 2022). Low self-esteem is an important risk factor across a range 

of psychiatric disorders (Orth et al., 2012), which raises the possibility that such disorders 

are driven in part by aberrant cognitive or affective processes during social learning. Indeed, 

participants with low trait self-esteem exhibited impaired social learning and tended to 

persist in their expectations of disapproval (Will et al., 2020). At the same time, momentary 

feelings of self-worth in this group were more volatile and susceptible to change based on 

social prediction errors, identifying a dissociation between the impact of social prediction 

errors on learning and feelings that relate to trait self-esteem (Will et al., 2020). Participants 

reported feelings of self-worth throughout the experiment, and computational modeling was 

used to explain fluctuations in self-worth in relation to recent task events. The researchers 

then used canonical correlation analysis to derive a computational phenotype based on 

both psychiatric symptoms and parameters from the computational model. Participants with 

high scores on a single dimension of “interpersonal vulnerability” not only had lower trait 

self-esteem, but also exhibited attenuated BOLD signal in ventromedial prefrontal cortex, 

which corresponded to lower expectations of positive social approval during the task (Figure 

4) (Will et al., 2020).

4.4 Interactions between mood and social decision making

Social behavior varies widely across individuals, but subjective feelings do not always 

track decision making. In a social context, subjective feelings of self-worth can be highly 

reactive to social feedback in individuals with low self-esteem who do not update their 

expectations about future social feedback, despite both expectations and subjective feelings 

of self-worth being subject to the same social prediction errors (Will et al., 2020). Another 

study investigated the role of reward prediction errors and also emotion prediction errors 

in a non-learning social context (Heffner et al., 2021). In an ultimatum game, participants 

rated their momentary affect along valence and arousal dimensions twice on each trial: 

once before the offer was made, capturing emotion expectations, and once after the offer 

was made, capturing emotion experience. Reward prediction errors between the observed 

offer and expected offer were predictive of rejection. Differences between experienced and 

expected emotion were computed as valence prediction errors and arousal prediction errors, 

whose role in decisions was distinct from reward prediction errors. Participants were more 

likely to reject offers (and thus punish their partner) after experiencing less valence or more 

arousal than expected. Critically, depressed participants showed diminished use of emotion 

prediction errors in guiding decisions, but intact use of reward prediction errors (Figure 5). 

Moreover, depression was associated with a reduced overall range of reported emotional 

experience (Heffner et al., 2021). Together, these results suggest that emotional responses 

to social feedback can be blunted in depression even if responses to some types of reward 

feedback are not (Rutledge et al., 2017).
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5. How computational models of subjective feelings could help us 

understand mood disorders

Despite the fact that mood disorders are diagnosed based on self-reported subjective 

symptoms, there has been little research on using computational models to understand 

subjective feelings in controlled task conditions. Experience sampling provides information 

about emotional variability but does so in an uncontrolled environment with minimal 

information as to ongoing experience. Measuring affective states with questionnaires 

depends on how well individuals remember past emotions. Measuring momentary mood 

changes during different tasks provides a way to measure affective experience in controlled 

task conditions that is complementary to standard approaches to measuring emotion.

Psychiatric disorders such as major depressive disorder or generalized anxiety disorder 

have shown a wide range of neurocomputational deficits in behavior (Hitchcock et al., 

2022). However, there is considerable heterogeneity and the underlying mechanisms are 

not well understood. For example, there was mixed evidence about model parameters in 

reinforcement learning tasks in depression (Chen et al., 2015). Compared with control 

participants, a meta-analysis showed that depressed patients showed higher learning rates for 

punishments and slightly lower learning rates for reward (Pike & Robinson, 2022). However, 

there was considerable variability across studies. Investigating subjective feelings during 

tasks may help to resolve the inconsistency of these findings. For example, different effects 

of learning rates for punishment and reward may only be shown on participants who change 

their mood in response to punishment and reward, but not on the participants who showed no 

change in affective state.

The link between cognitive and affective mechanisms can be influenced by psychiatric 

disorders. Psychiatric disorders may lead to different impacts on behavior and subjective 

feelings. For example, depressive symptoms did not lead to impairments in performance 

in risk-taking tasks (Rutledge et al., 2017) (see section 2.2 for more information of the 

study) or reinforcement learning tasks (Blain & Rutledge, 2020) (see section 3.2 for 

more information of the study). However, higher depressive symptoms were associated 

with lower baseline mood parameters, suggesting that depression influences the affective 

experience of individuals completing these tasks. In a learning task, mood instability 

assessed with a standard clinical questionnaire was associated with a mood bias parameter 

quantifying the impact of mood on learning (Eldar & Niv, 2015) (see section 3.3 for more 

information of the study). These findings suggest that measuring affective processes can 

reveal distinct cognitive and affective mechanisms in psychiatric disorders. Furthermore, 

modeling subjective feelings has the potential to disentangle the stable and dynamic 

components of affective processes. For example, bipolar disorder and borderline personality 

disorder are both characterized by high mood variability. Modeling daily mood ratings 

collected for a long time period revealed that mood changes in bipolar disorder persist 

(i.e., mood volatility) longer than mood changes in borderline personality disorder (i.e., 

mood noise) (Pulcu et al., 2022). Baseline mood parameters could capture relatively more 

stable components, although drift in mood can also be modeled, providing useful additional 
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information. For example, a higher decay on mood over time during rest is associated with 

lower depression risk (Jangraw et al., 2021).

Having these affective measures aid in the identification of subtypes for different disorders. 

Past studies have used self-report scores to cluster depressed patients along anxiety and 

anhedonia dimensions, and revealed putative neural subtypes based on brain functional 

network connectivity (Drysdale et al., 2017). We can apply dimensional approaches to 

both cognitive and affective measures. These components can be linked to specific neural 

subtypes or aid in the identification of new subtypes that reflect brain, behavior, and 

emotion. In addition, subjective feelings can be investigated in relation to brain network 

measurements. Greater daily variability in physical location was related to increased positive 

affect and this link was stronger for people who show greater functional connectivity 

between ventral striatum and hippocampus (Heller et al., 2020).

More dimensional data are required to understand the heterogeneity of mood disorders. 

Bigger data sets are useful for increasing statistical power, but only if they measure the 

right things. Especially because subjective feelings should relate to subjective symptoms, 

adding ratings of subjective feelings to existing tasks is an intuitive and efficient way 

to collect additional data that should be highly relevant to psychiatric disorders. Given 

such multi-dimensional data from individuals, we could make better symptom predictions 

(Rutledge et al., 2019). Furthermore, using parameters estimated from computational models 

for behavior and subjective feeling can increase power over machine-learning approaches 

that do not employ computational models to reduce the dimensionality of the data (Rutledge 

et al., 2019). Computational models can help to better understand and categorize individuals 

and be useful in designing effective interventions for specific individuals (Nair et al., 2020). 

For example, the adaptation of learning rate to the volatility of rewards is intact for greater 

anxiety symptoms but the adaptation of learning rate to punishments was impaired for 

greater anxiety symptoms (Pulcu & Browning, 2017). Compulsivity is associated with 

impaired model-based learning (Gillan et al., 2016). In a volatile environment, compulsivity 

was associated with impaired learning (Sharp et al., 2021; Vaghi et al., 2017) but confidence 

ratings in response to volatility were unchanged (Vaghi et al., 2017). In addition, adaptation 

of learning rate to reward or punishment volatility was not associated with depressive 

symptoms (Blain & Rutledge, 2020; Pulcu & Browning, 2017), but greater depressive 

symptoms were associated with lower baseline mood parameters reflecting a different 

affective experience (Blain & Rutledge, 2020). Understand this computational heterogeneity 

can inspire different intervention for different individuals (Pulcu & Browning, 2017).

6. The value of smartphones for computational models of subjective 

feelings

Smartphone-based research methods have the potential to dramatically advance our 

scientific understanding of subjective feelings and mental health (Gillan & Rutledge, 2021). 

Research in mental health today has focused on making descriptive claims about mental 

illness and its contributing factors in the population. For the field to provide insights that 

are clinically useful, a major paradigm shift is needed that can move the field beyond 
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description and toward prediction (Browning et al., 2020). The highly individualized nature 

of subjective experiences makes it a good candidate for being relevant to this problem of 

predicting treatment responses and symptom severity.

Subjective well-being is complex, and it is influenced by a large array of competing 

and interacting factors such as sleep, stress, early life trauma, social factors, and 

diet. It is challenging to make advances in understanding mental illnesses because 

large comprehensive studies that can capture different dimensions of mental illness and 

lifestyle are difficult to conduct in traditional lab settings. Due to the wide availability 

of smartphones, which offer capabilities like sleep monitoring, geolocation tracking, 

accelerometer data, and social media activity logs, smartphones are uniquely positioned to 

deliver substantially larger and richer multivariate datasets than feasible through traditional 

single-site studies. As people experience a wide range of emotions in daily life, smartphone 

can also provide a convenient tool to measure the richness of real-life subjective feelings 

(Trampe et al., 2015). Smartphone-based experiential sampling can be used in innovative 

combinations with neuroimaging methods to reveal the links between lifestyle, brain 

connectivity, and mental health outcomes. Greater diversity of daily-life activities predicts 

positive affect in humans and increased hippocampalstriatal functional activity (Heller et 

al., 2020). Daily-life activities can be used to estimate an individual-specific mobility 

“footprint” and the more consistent and distinctive the footprint, the lower the mood 

instability. This footprint was also predictive of sleep irregularity and functional brain 

network connectivity (Xia et al., 2022).

Self-reported symptom inventory scores capture a static snapshot in time that can be related 

to task data. However, when administered only once, these scores fail to encompass the 

reality that mood disorders follow dynamic trajectories over time, and that the instruments 

themselves might not be accurately capturing the latent traits that are most important for 

predicting future outcomes (Sharp et al., 2020). Formal computational models can be 

used to relate internal traits to symptom change over time. In addition to the dynamics 

of mood in tasks, the dynamics of traits or symptoms over time can be important 

features of psychiatric disorders. Furthermore, understanding the association between mood 

and symptom dynamics can help to predict future symptoms changes. Smartphone-based 

methodologies are especially useful because they lower practical barriers to acquire densely 

sampled datasets, and have advantages over in-lab data collection in allowing ecological 

experience sampling during daily life on the same platform. Several studies have shown how 

smartphones can conveniently collect subjective feelings over a long period (e.g., hours or 

days). In one study, students reported their positive and negative affect periodically over 

several hours each day on several days, and showed that real-life prediction errors resulting 

from exam results influenced mood for multiple days (Villano et al., 2020). Another study 

used smartphone data collection to show that electroencephalographic measurements of 

neural responses to reward prediction errors during learning tasks predicted mood changes 

up to 24 hours later (Eldar et al., 2018). These studies illustrate the value of employing 

longitudinal techniques on smartphones to understand real-world mood and behavior.
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7. Future directions

Adding subjective ratings to existing tasks provides additional data that can be used to 

understand psychiatric disorders. Different subjective feelings can be measured depending 

on the disorders or processes under study. Different questions can probe specific 

types of emotion (Heffner et al., 2021; Heffner & FeldmanHall, 2022), which have 

different relationships with decision making (Heffner & FeldmanHall, 2022). For example, 

researchers interested in the conditions that make people angry might consider repeatedly 

asking questions about anger. Researchers interested in social behavior could ask questions 

about self-esteem. Different tasks should modulate different kinds of subjective feelings. 

For example, subjective stress during learning was associated with uncertainty (de Berker 

et al., 2016) (see section 3.2 for more information of the study). Subjective feelings of 

self-worth were related to trait self-esteem (Will et al., 2017, 2020) (see section 4.3 for more 

information of the study).. Valence prediction errors were more related to rejecting offers 

from other people compared with arousal prediction errors (Heffner et al., 2021) (see section 

4.4 for more information of the study). Future studies can also investigate decision making 

in more complicated situations where people may form a cognitive map of the environment 

(Behrens et al., 2018). For example, how does momentary happiness changes in response to 

map complexity and deviations from the learned cognitive map?

To model subjective feelings, a good setting for measuring subjective feelings is required. 

While emotion researchers have often focused on affective responses to specific events, less 

is understood about affective states like moods which often change more slowly (see section 

1 for the distinction between emotion and mood). For any task in which affective state might 

vary in relation to multiple previous events, we recommend the following guidelines for 

developing computational models of affective states:

1. Questions that probe affective state can be included in a wide variety of tasks, but 

the task should be such that affective state varies over time for most participants. 

For example, probabilistic reward is a reliable way to influence happiness. Even 

if the major focus of the study is not reward, probabilistic reward can be a way 

to keep participants engaged and to provide a reference point to compare affect 

in other domains. For example, the happiness related to a task that only some 

participants found intrinsically rewarding can be related to the happiness derived 

from a probabilistic reward task that most people found extrinsically rewarding 

(Chew et al., 2021).

2. Affective state questions should be related to participant affective state and 

not mention task events. For example, for happiness, participants can rate 

between “very unhappy” and “very happy” for the question “How happy are you 

right now?” (Blain & Rutledge, 2020; Rutledge et al., 2014). For self-esteem, 

participants can rate between “very bad” and “very good” for the question “How 

good do you feel about yourself at this moment?”(Will et al., 2017, 2020). 

A continuous scale without numbers or markings reduces the probability that 

participants remember previous ratings.
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3. Affective state questions should not be asked too frequently. For most paradigms, 

no more than twice per minute is a good rule of thumb. For a trial-based 

paradigm, there should always be at least two trials between each rating. 

Computational modeling can be used to separate out the influences of multiple 

previous events. Questions asked more frequently risk annoying participants.

4. Repeatedly answering affective state questions is an additional task that 

participants perform. When asked only a single question repeatedly, participants 

typically respond quickly and without substantial reflection. Asking multiple 

types of questions can introduce additional task switching costs that reduce 

participant engagement and data quality. Thus we recommend sticking to 

one question per experiment. Rating along valence and arousal dimensions 

simultaneously does offer one way to get multiple measures without 

overcomplicating the task (Heffner et al., 2021).

5. Task-relevant information should not be presented on the screen when 

participants answer affective state questions. Any task cues or information about 

overall performance (e.g., total score), could lead to an additional impact on 

affective state different from the subject of study.

These guidelines may be useful for investigating the roles of emotion and mood in 

decision making. A recent theoretic framework mapped different types of emotion to 

different computations during decision making (Emanuel & Eldar, 2022). Under this 

proposed framework, decision making is decomposed into multiple processes: outcome 

evaluation, value learning, policy learning, and planning. Pleasure and pain relate to 

outcome evaluation; happiness and sadness relate to value learning; frustration and content 

are related to outcomes due to our actions; anger and gratitude relate to outcomes due 

to others’ actions; desire and hope relate to plans to realize uncertain outcomes; fear and 

anxiety relate to avoiding uncertain outcomes. Future studies following our guidelines 

can test specific predictions of this framework by measuring feelings associated with 

specific emotions in environments where behavior can be explained by the emotion-relevant 

computations.

One important question is whether the subjective feelings we measure reflect the latent 

state we wish to study. First, we can evaluate the model fit on momentary mood. If model 

performance and reliability are high when considering data collected at different times, this 

suggests that task events can be related to self-reports in a consistent way. Second, we can 

evaluate how ratings respond to specific task events. For example, people should be happier 

after wins compared to losses. Third, we can evaluate baseline mood parameters across 

tasks. If correlations are high, that suggests this measure is coherent across tasks. Fourth, 

we can directly manipulate mood with standard manipulations. For example, people felt 

happier for multiple ratings after winning a wheel of fortune (Eldar & Niv, 2015). Fifth, 

we can evaluate whether self-report ratings are associated with subsequent behavior. For 

example, low mood in the current situation (e.g., mood in the current job) can be associated 

with change from the current situation (e.g., switching jobs) (Kaiser & Oswald, 2022). 

Participants in a high mood act as if rewards are perceived as better than they are, choosing 

rewarded options more frequently (Eldar & Niv, 2015). Last, we can collect questionnaires 
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specifically about emotion awareness. High emotion awareness is associated with insula 

activity (Sharp et al., 2018), and insula activity is associated with self-report happiness 

(Rutledge et al., 2014). Here, there is overlap with the issues concerning other subjective 

reports including confidence (Vaghi et al., 2017) and metacognitive awareness (Fleming & 

Lau, 2014). A detailed understanding of affective states will benefit from use of the tools 

developed to study other kinds of subjective self-reports.

Researchers should characterize affective processing across a wide variety of tasks in 

relation to psychiatric disorders. Research Domain Criteria (RDoC) provides a research 

framework to study psychiatric disorders (Cuthbert & Insel, 2013; Insel et al., 2010). 

For example, Positive Valence Systems delineate several constructs relevant for decision 

making: reward responsiveness (including reward anticipation, initial response to reward, 

reward satiation), reward learning (including probabilistic and reinforcement learning, 

reward prediction error, habit), and reward valuation (including reward, probability, delay, 

effort). These constructs are shared between multiple decision-making tasks. Past studies 

based on this framework have focused on behaviors and not subjective feelings. In the 

same way that behavioral processes should be shared across tasks, affective processes 

(e.g., affective responses to reward prediction error) should be shared between tasks (e.g., 

between risk-taking and reinforcement learning tasks). Studies of subjective feelings also 

provide insight into neurobiological processes that contribute to subjective symptoms but are 

difficult to evaluate in animal models where selfreports of affective states are unavailable. 

A focus in pharmaceutical research on animal models means that drug development has 

focused primarily on behavioral differences and largely ignored subjective aspects of 

psychiatric disorders, despite subjective aspects being a major source of patient distress 

(LeDoux & Pine, 2016). The neural circuits that generate aberrant behaviors should 

overlap with but not be identical to those that generate aberrant feelings. Any difference 

in symptom-behavior and symptom-feeling associations are an indication of how much 

the processes are dissociable. A goal of psychiatry is to treat subjective symptoms, and 

thus adding measurements of subjective feelings to established tasks can enrich the RDoC 

framework and improve our understanding of psychiatric disorders and design of effective 

treatments.

With the collection of larger datasets, we can enrich transdiagnostic dimensional approaches 

to understand symptoms instead of focusing on specific disorders. For example, past studies 

used factor analysis on multiple self-report questionnaires to extract three factors (e.g., 

compulsive behavior and intrusive thought, anxious depression, and social withdrawal), 

and then evaluated the association between these factors and task performance (Gillan et 

al., 2016; Gillan & Seow, 2020). Given anxiety as an example, past studies discussed 

cognitive and neural difference between two anxiety subtypes: anxious apprehension and 

anxious arousal (Sharp et al., 2015). Anxious apprehension is related to worry while anxious 

arousal is related to fear and panic. This distinction can be computationally linked to 

different decision-making processes. High chronic worry was associated with difficulty in 

disengaging from the goal of punishment avoidance when the current goal has changed to 

seek reward (Sharp et al., 2022). In an aversive environment, high physiological symptoms 

of anxiety were associated with enhanced learning from safety (Wise & Dolan, 2020). 

These approaches can help to understand individual processes and symptoms. As we 
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collect affective measures in addition to cognitive measures, we can expand transdiagnostic 

dimensions and better stratify patients, aiding in the design of effective treatment to 

target different individuals. Additionally, with increasing data from cognitive and affective 

perspectives, we will need tools for integrating diverse information to account for current 

symptoms and to predict future symptoms. Theory-driven approaches allow task data to be 

compactly summarized with a small number of parameters. Data-driven machine learning 

approaches are complimentary in allowing parameters estimated from multiple tasks to be 

combined with other data sources to make predictions (Rutledge et al., 2019). In large data 

sets, machine learning approaches can also account for behavioral and affective variability 

in complicated tasks in ways that lie outside of existing computational models (Dezfouli et 

al., 2019). Using these approaches on data sets including both task and non-task data will 

improve predictions and aid in the design effective treatments for psychiatric disorders.

Subjective feelings are not just a byproduct of behavior but may be our best way of 

understanding emotional process that play an important role in behavior. Task-irrelevant 

information to manipulate mood is one way to test for an influence of mood on behavior. 

After a positive mood manipulation, people more quickly update the value of option 

upwards (Eldar & Niv, 2015; Vinckier et al., 2018). Subjective feelings can also better 

predict participant risky choices compared with the Prospect Theory model (Charpentier 

et al., 2016). Approaches that change task conditions as a result of past affective reports 

(e.g., to increase or decrease happiness) are one way to understand how mood and behavior 

interact (Keren et al., 2021). Another view of the relationship between mood and behavior is 

the idea of mood homeostasis which suggests that people stabilize their mood by engaging 

in mood-modifying activities such that they are more likely to engage in activities that 

should increase mood while in a low mood state and more likely to engage in activities 

that lower mood (i.e., washing dishes) while in a high mood state (Quoidbach et al., 

2019; Taquet et al., 2016). This mood regulation appeared to be impaired in people with 

depression (Taquet et al., 2021). These findings together illustrate the importance of using 

measurements of subjective feelings to understand the relationship between emotion and 

behavior. Furthermore, the association between emotion and behavior could change in 

psychiatric disorders. This has been found to be the case for other types of subjective 

reports. In a perceptual task, through transdiagnostic dimensional approaches, high anxious 

depression was related to low confidence level and high metacognitive efficiency whereas 

high compulsive behavior and intrusive thought was related to high confidence level and 

low metacognitive efficiency (Rouault et al., 2018). However, none of these transdiagnostic 

symptoms was correlated with task accuracy. Additionally, patients with high compulsivity 

showed weaker associations between changes in behavior in a volatile environment and 

changes in confidence (Seow & Gillan, 2020; Vaghi et al., 2017).

Computational models of subjective feelings in tasks can also be applied to real life. 

Using smartphone-based measurement of emotions over multiple days, emotional responses 

of students receiving exam results was found to depend strongly on expectations and 

resulting prediction errors (Villano et al., 2020) (see section 6 for more information about 

smartphone-based research methods). This measure of real-life emotional response could 

be considered in relation to psychiatric disorders. Prediction errors can also derive from 

successfully performing a learned skill (e.g., cooking, playing piano, riding a bicycle) in a 
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manner that might be thought of as more intrinsically than extrinsically rewarding (Chew 

et al., 2021). Greater modulation of BOLD activity in ventromedial prefrontal cortex by 

a motor performance aspect of a task was associated with a greater influence of motor 

performance on mood. Individuals with a more consistent and distinct mobility “footprint” 

had lower mood instability (Xia et al., 2022). Furthermore, subjective feelings can also help 

to predict city-level behaviors. Real-world unexpected positive outcomes (e.g., sport results 

or weather) can increase mood states and risk-taking behaviors in a city (Otto et al., 2016; 

Otto & Eichstaedt, 2018). Better study of these relationships could help in understanding 

societal mental health and guiding policymakers. Many studies focus on the association 

between tasks and individuals, but within-subject variance is just as important. Little is 

known about the temporal dynamics of symptoms within subjects (Sharp et al., 2020). 

With smartphones, it is easier to measure dense longitudinal data from individuals. If we 

repeatedly collect data in a wide variety of tasks, we can better understand how cognitive 

and affective processes relate to changes in symptoms. In addition to mood in the tasks, it is 

also important to understand mood dynamics outside of tasks. The pattern of real-life mood 

dynamics may be a marker of psychiatric disorders. For example, bipolar disorder may 

lead to mood fluctuations that do not affect subjective feelings during tasks (Pulcu et al., 

2022). We can collect mood at different times (e.g., morning, evening), days (e.g., weekday, 

weekend), seasons (e.g., summer, winter), and in relation to major societal or personal 

events. Computational models of subjective feelings have the possibility to bridge the gap 

between behavior and symptoms, offering a new way to understand the heterogeneity of 

psychiatric disorders and to better predict treatment outcomes.
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Highlights:

• Models of subjective feelings can quantify the influence of many factors.

• Subjective feelings can be dissociable from behavior in psychiatric disorders.

• Smartphones can be used to measure subjective feelings in tasks and real life.

Kao et al. Page 29

Neurosci Biobehav Rev. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Computational modeling of subjective well-being and fMRI analysis of striatal activity 
during risky decision making.
(A) The computational model that explained happiness had positive weights for certain 

reward, gamble expected value, and gamble reward prediction errors. (B) Neural responses 

in the ventral striatum preceding happiness ratings correlated with later self-reported 

happiness. These neural responses were explained by the same task variables used to explain 

happiness in the computational model (Rutledge et al., 2014).
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Figure 2. Momentary happiness in a learning task
(A) The model including probability prediction errors (PPE) performed better than the 

model including reward prediction errors (RPE) in both stable and volatile environments. 

Each data point indicates a participant. (B) The happiness constant or baseline mood 

parameter was correlated with depressive symptoms in volatile but not stable environments. 

This parameter was estimated from the happiness model that simultaneously quantifies the 

influence of expected probabilities and probability prediction errors on happiness (Blain & 

Rutledge, 2020). * p < 0.05.
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Figure 3. Computational modeling of affective responses to inequality during social decision 
making.
(A) Consistent with previous work modeling subjective feelings in a risky decision task, 

happiness depended on the value of recent chosen rewards (CR), the expected value of 

recent gambles (Gamble EV), and reward prediction errors resulting from gambles (Gamble 

RPE). Critically, in addition to these reward values, more negative parameter estimates of 

guilt (orange) and envy (green) predicted lower happiness. (B) Guilt and envy parameter 

estimates predicted generosity in a separate dictator game, as measured by the percentage 

of a monetary sum that participants allocated to their social partner. Participants whose 

happiness was reduced more by guilt than envy gave more on average compared to 

participants whose happiness was reduced more by envy (Rutledge et al., 2016). * p<0.05.
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Figure 4. Self-esteem was associated with an “interpersonal vulnerability” dimension reflecting 
both model parameters and symptoms.
Will et al. (2020) derived a computational phenotype with a single dimension of 

“interpersonal vulnerability”. (A) BOLD activity in ventromedial prefrontal cortex 

correlated with the extent to which participants expected approval on the current trial. 

(B) Higher scores on this dimension predicted attenuated expected approval signal in 

ventromedial prefrontal cortex (Will et al., 2020).

Kao et al. Page 33

Neurosci Biobehav Rev. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Emotion prediction errors in the ultimatum game.
Emotion prediction errors were computed as the difference between expected and 

experienced emotion. People were more likely to reject unfair offers when experiencing 

less valence or more arousal than expected. This influence of emotion prediction errors was 

significantly reduced in depression. (Heffner et al., 2021). * p<0.05, ** p<0.01.
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