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Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Its complex pathogenesis and phenotypic heterogeneity
hinder therapeutic development and early diagnosis. Altered RNA metabolism is a recurrent pathophysiologic theme, including distinct
microRNA (miRNA) profiles in ALS tissues. We profiled miRNAs in accessible biosamples, including skin fibroblasts and whole blood and
compared them in age- and sex-matched healthy controls versus ALS participants with and without repeat expansions to chromosome
9 open reading frame 72 (C9orf72; C9-ALS and nonC9-ALS), the most frequent ALS mutation. We identified unique and shared profiles
of differential miRNA (DmiRNA) levels in each C9-ALS and nonC9-ALS tissues versus controls. Fibroblast DmiRNAs were validated
by quantitative real-time PCR and their target mRNAs by 5-bromouridine and 5-bromouridine-chase sequencing. We also performed
pathway analysis to infer biological meaning, revealing anticipated, tissue-specific pathways and pathways previously linked to ALS,
as well as novel pathways that could inform future research directions. Overall, we report a comprehensive study of a miRNA profile
dataset from C9-ALS and nonC9-ALS participants across two accessible biosamples, providing evidence of dysregulated miRNAs in ALS
and possible targets of interest. Distinct miRNA patterns in accessible tissues may also be leveraged to distinguish ALS participants from
healthy controls for earlier diagnosis. Future directions may look at potential correlations of miRNA profiles with clinical parameters.

Introduction
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegen-
erative disease affecting motor neurons in the spinal cord, brain-
stem and brain (1). Motor neuron loss results in skeletal muscle
atrophy and weakness, ultimately leading to respiratory failure
and death within 2–4 years of diagnosis (1). ALS is familial in ∼15%
of patients and sporadic in the remaining 85%. Mutation to chro-
mosome 9 open reading frame 72 (C9orf72) is the most common
among the approximate 40 genes associated with ALS (2). Only
two drugs, riluzole (3) and edaravone (4), are approved by the US
Food and Drug Administration for treating ALS, but they only slow
disease progression modestly. Clinical trial evidence suggests that
treatment may be more effective if initiated earlier, including with
edaravone, methylcobalamin and combined taurursodiol-sodium
phenylbutyrate (4–6). However, this idea remains unproven, fur-
ther emphasizing the critical need for novel ALS therapeutic
targets as well as biomarkers to facilitate earlier diagnosis.

Unfortunately, the complex molecular mechanisms underlying
ALS hinder these goals (2). Epigenetics and RNA processing are
strong undercurrents in ALS pathogenesis since inclusion bodies
of the protein TAR DNA-binding protein 43 (TDP-43) are an almost

universal pathologic finding in ALS (2). TDP-43 binds DNA and
RNA in cells, regulating transcriptional repression, pre-mRNA
splicing, mRNA translation and microRNAs (miRNAs) biogenesis
and processing (7,8). miRNAs are approximately 22 nucleotide-
long non-coding RNAs that negatively regulate gene expression
by destabilizing mRNA, which modulates numerous physiolog-
ical processes (9–12). miRNAs are highly expressed in the ner-
vous system (13,14) and may play a role in ALS pathogenesis
through altered RNA and protein metabolism, neuromuscular
junction structure and function, neurogenesis and inflammation
(15). Additionally, miRNAs are dysregulated in ALS mouse models
(16) and human tissues (17,18) and may reflect disease state and
progression (19).

miRNA analysis in ALS can thus be leveraged for a dual pur-
pose, providing both biological insight into disease mechanisms
and serving as a diagnostic biomarker. The goal of the current
investigation was to understand differences in miRNA levels
across two tissues, skin fibroblasts and whole blood (WB), from
C9orf72 positive (C9-ALS) and negative (nonC9-ALS) participants
against age- and sex-matched controls (Fig. 1). Pathway analysis
yielded biological insights that were conserved or unique across
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Figure 1. Study design. miRNA levels in fibroblasts (FB) and WB were evaluated from two cohorts of C9-ALS and nonC9-ALS participants versus control
samples using NanoString. Differential miRNAs (DmiRNAs) were identified by NanoStringDiff and compared across tissue type and in C9-ALS and
nonC9-ALS versus controls. DmiRNAs were validated by qPCR and their predicted target mRNAs by BruChase-Seq. Biological meaning from DmiRNAs
was inferred by pathway analysis, and random forest was applied to leverage DmiRNAs as biomarkers. KEGG, Kyoto Encyclopedia of Genes and Genomes.
Generated in part using BioRender.com.

tissue types and genetic backgrounds associated with ALS and
provided information for future investigations.

Results
Cohort
Fibroblasts were obtained and cultured from C9-ALS (n = 8),
nonC9-ALS (n = 8) and controls without any neurological disorders
(n = 7). WB samples were collected from a larger cohort, includ-
ing15 C9-ALS, 50 nonC9-ALS and 27 control participants. Twelve
out of 23 fibroblast samples were from the same subjects included
in the WB samples. Demographics and clinical characteristics of
the cohort, stratified by biosample, are outlined in Table 1.

miRNA expression varies by tissue type
The two tissues were selected based on accessibility since we
sought to leverage miRNA profiles as a potential diagnostic
tool. Profiling indicated that fibroblasts and WB (all fractions
including both plasma and blood cellular components) miR-
NAs had distinct non-overlapping miRNA expression profiles
(Supplementary Material, Fig. S1A). Within each tissue type,
group-specific samples (i.e. C9-ALS, nonC9-ALS, controls) only
clustered with fibroblasts (Supplementary Material, Fig. S1B, left
panel). There was a high degree of heterogeneity among the WB
C9-ALS, nonC9-ALS and control groups (Supplementary Material,
Fig. S1B, right panel).

C9-ALS and nonC9-ALS have differential miRNA
levels in fibroblasts and WB
We identified differential miRNA (DmiRNA) levels in C9-ALS
and nonC9-ALS versus controls using NanoStringDiff (20)
(Supplementary Material, Tables S1 and S2). Raw count data
were normalized with the positive and negative control probes
as well as the reference probes, embedded in the NanoString

nCount system, which showed consistent patterns across samples
(Supplementary Material, Fig. S2). NanoStringDiff models count
data using a generalized linear model of the negative binomial
family and the likelihood ratio test, which has superior perfor-
mance for identifying differentially expressed genes (20). We
found a total of 62 fibroblast DmiRNAs (31 upregulated and
31 downregulated) in C9-ALS versus control samples (Fig. 2A).
In nonC9-ALS fibroblasts, there were 55 DmiRNAs, including
38 increased and 17 decreased miRNAs versus control samples
(Fig. 2B). WB also had slightly more DmiRNAs in C9-ALS than in
nonC9-ALS versus control samples. C9-ALS WB had 62 DmiRNAs,
of which 42 were increased and 20 were decreased in C9-ALS
(Fig. 2C). Analysis of nonC9-ALS WB samples produced a total
of 44 DmiRNAs, the majority of which (n = 40) were increased in
nonC9-ALS, with only 4 decreased relative to controls (Fig. 2D).

C9-ALS and nonC9-ALS have shared and unique
DmiRNAs in fibroblasts and WB
C9-ALS and nonC9-ALS shared four DmiRNAs (miR-30b-5p,
miR-30c-5p, miR-484, miR-92a-3p) across both fibroblasts
(decreased miRNA levels) and WB (increased miRNA levels)
(Fig. 2E, Supplementary Material, Tables S1 and S2). In fibroblasts,
30 DmiRNAs overlapped between C9-ALS and nonC9-ALS out of
87 total DmiRNAs (34%), which differed in ALS versus control
samples. All shared fibroblast DmiRNAs had the same direction
of change in C9-ALS and nonC9-ALS versus controls. In WB, 24
DmiRNAs overlapped between C9-ALS and nonC9-ALS out of 82
DmiRNAs (29%), which differed in ALS versus control samples. All
shared WB DmiRNAs differed in ALS versus control in the same
direction.

C9-ALS and nonC9-ALS share DmiRNA-regulated
biological pathways in fibroblasts and WB
Functional enrichment analysis identified 102 overrepresented
biological pathways from statistically significant DmiRNAs in
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Table 1. Demographics and clinical characteristics of ALS participants and controls

Fibroblasts WB

NonC9-ALS C9-ALS Control P-value NonC9-ALS C9-ALS Control P-value
N 8 8 7 50 15 27
Age Years (mean ± SD) 59.4 ± 6.8 58.2 ± 5.9 58.4 ± 7.2 0.71 62.9 ± 12.0 57.6 ± 5.7 61.6 ± 10.4 0.21
Sex Male 5 4 4 0.88 25 6 15 0.63

Female 3 4 3 25 9 12
Race White 8 8 7 49 14 23

African American . . . . . 4
Other/Not reported . . . 1 1 .

Onset segment Bulbar 1 1 . 1.00 21 3 . 0.27
Cervical 2 2 . 13 5 .
Lumbar 5 5 . 16 7 .

Initial El Escorial
criteria

Definite 11 2 . 0.42 . . . 0.59

Probable 15 8 . 6 5 .
Probable, lab supported 20 4 . 2 3 .
Possible/suspected 4 1 . . . .
Missing . . . . . .

Symptom duration Days (mean ± SD) 1268 ± 830 589 ± 53 . 0.04∗ 1062 ± 930 579 ± 316 . 0.08
ALS-FRS Points (median + IQR) 36.0

(34.8–40.0)
36.0
(34.5–40.5)

. 0.65 36.0
(33.0–41.0)

35.0
(33.0–44.5)

. 0.50

The significant differences among the groups (NonC9-ALS, C9-ALS and Control) were tested using one-way ANOVA for continuous variables and Chi-Square
test for categorical variables with the significance cutoff of 0.05. ∗ indicates P-value < 0.05. SD, Standard Deviation. ALS-FRS: Amyotrophic Lateral Sclerosis
Functional Rating Scale. IQR, Inter-Quartile Range.

fibroblasts and WB (Fig. 3). Of these, 44 enriched Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways were shared
across all four groups (Fig. 3; Supplementary Material, Table S3).
There were 54 KEGG pathways shared by C9-ALS and nonC9-
ALS fibroblasts, including ‘proteoglycans in cancer’ and ‘ErbB
signaling pathway’ as the top two most significant ones (Table 2).
In WB, 56 KEGG pathways were shared by C9-ALS and nonC9-
ALS, including ‘proteoglycans in cancer’, ‘morphine addiction’ and
‘GABAergic synapse’ (Table 3).

To identify the main themes of these enriched pathways, we
built an association network using our in-house tool richR from
the significant pathways in fibroblasts and WB. The generated
network clusters enriched pathways with similar gene content.
Highly interconnected subnetworks are highlighted by distinct
colors (Fig. 4). In both C9-ALS (Fig. 4A) and nonC9-ALS (Fig. 4B)
networks, subnetworks were centered around pathways related
to neuronal functions (e.g. ‘glutamatergic synapse’, ‘dopaminer-
gic synapse’, ‘long-term potentiation’), cancer or cell prolifera-
tion (e.g. ‘glioma’, ‘ErbB signaling pathway’) and metabolism and
inflammation (e.g. ‘mTOR signaling pathway’).

Fibroblast DmiRNAs inversely correspond to
target mRNA stability
miR-186-5p and miR-16-5p were underrepresented in C9-ALS
fibroblasts, while miR-543 was overrepresented in nonC9-ALS
fibroblasts by NanoString analysis (Fig. 2A and B). To validate
these findings, we used quantitative real-time PCR (qPCR) to
quantify miR-186-5p and miR-16-5p in C9-ALS and miR-543
in nonC9-ALS fibroblast RNA (Supplementary Material, Fig. S3).
As anticipated, miR-186-5p levels were lower in C9-ALS versus
control fibroblasts (P = 0.0236). Similarly, miR-16-5p transcripts
were lower in C9-ALS versus control fibroblasts, although this
only approached statistical significance (P = 0.0599). In nonC9-
ALS fibroblasts, miR-543 was higher than in controls (P = 0.0423),
whereas it did not statistically differ in C9-ALS versus control
fibroblasts (P = 0.2773) as expected.

miRNAs negatively regulate their mRNA targets. We previously
analyzed the stability of fibroblast RNA from C9-ALS and nonC9-
ALS samples by Bru-seq and BruChase-seq, techniques that quan-
titatively measure mRNAs stability (21,22). We performed a cor-
relation analysis between DmiRNA levels with their predicted
mRNA target stability in fibroblasts corresponding to a subset
of the published cohort (Fig. 5). Inverse Spearman correlations
were observed for 22 DmiRNAs, including miR-1246 and miR-515-
5p, and 35 mRNAs, including growth arrest and DNA-damage-
inducible, beta (GADD45B) and inositol hexakisphosphate kinase
2 (IP6K2) (Fig. 5). We validated the stability of GADD45B mRNA, a
predicted miR-515-5p target with the largest fold-change, and of
IP6K2 mRNA, a predicted miR-1246 target with the third largest
fold-change, in C9-ALS fibroblasts by qPCR (Fig. 6). miR-1246 was
highly upregulated in C9-ALS fibroblasts, and, as anticipated, the
stability of its mRNA IP6K2 target was significantly diminished
versus controls (P = 0.0181). Similarly, miR-515-5p transcripts were
increased in C9-ALS fibroblasts, which is reflected in a lower
GADD45B mRNA stability relative to controls, although this only
approached statistical significance (P = 0.0555).

Random forest analysis of DmiRNAs
We next performed a random forest analysis on DmiRNAs
from nonC9-ALS WB samples (n = 80) to determine whether
miRNAs can classify nonC9-ALS participants from controls.
There were too few C9-ALS samples (n = 16) for a random
forest analysis. We ran the analysis in three formats, DmiRNAs
identified by NanoStringDiff (n = 46), an additional DmiRNA
set identified by a different analysis tool (n = 60), nSolver from
NanoString, and the DmiRNAs (n = 11) overlapping between the
two tools. Overlapping DmiRNAs produced a receiver operating
characteristic (ROC) curve with the greatest area under the
curve (AUC) of 0.831 [95% Confidence Interval (CI) 0.734–0.929;
Fig. 7A], possibly because employing overlapping DmiRNAs
minimized noise. The next best ROC had AUC 0.778 (95%CI
0.664–0.892), using nSolver (Fig. 7B). Last was the ROC generated
using DmiRNAs identified by NanoStrongDiff (AUC 0.761, 95%CI

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac250#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac250#supplementary-data


Human Molecular Genetics, 2023, Vol. 32, No. 6 | 937

Table 2. Top functions of differential miRNAs from fibroblasts

Type KEGG ID Pathway description #miRNAs #genes Adjusted P-value

C9-ALS hsa05205 Proteoglycans in cancer 45 147 2.81E−10
hsa04012 ErbB signaling pathway 44 71 1.18E−06
hsa04152 AMPK signaling pathway 45 99 1.30E−06
hsa04512 ECM-receptor interaction 38 57 5.98E−06
hsa04390 Hippo signaling pathway 46 109 6.24E−06
hsa00512 Mucin type O-Glycan biosynthesis 25 21 7.77E−06
hsa05200 Pathways in cancer 48 273 7.77E−06
hsa00061 Fatty acid biosynthesis 20 9 1.12E−05
hsa04550 Signaling pathways regulating

pluripotency of stem cells
46 103 1.23E−05

hsa04261 Adrenergic signaling in
cardiomyocytes

45 105 2.94E−05

hsa04915 Estrogen signaling pathway 43 71 5.11E−05
hsa04360 Axon guidance 45 95 5.11E−05
hsa04510 Focal adhesion 44 149 5.87E−05
hsa04015 Rap1 signaling pathway 46 151 5.87E−05
hsa04150 mTOR signaling pathway 44 51 6.26E−05
hsa05214 Glioma 44 49 6.26E−05
hsa04350 TGF-beta signaling pathway 41 59 7.58E−05
hsa04520 Adherens junction 44 59 7.58E−05
hsa05215 Prostate cancer 44 69 1.22E−04
hsa04151 PI3K-Akt signaling pathway 47 231 1.34E−04

nonC9-ALS hsa00512 Mucin type O-Glycan biosynthesis 23 20 3.43E−07
hsa05205 Proteoglycans in cancer 38 135 3.43E−07
hsa04012 ErbB signaling pathway 37 68 9.17E−07
hsa04360 Axon guidance 36 91 4.44E−06
hsa05032 Morphine addiction 36 65 5.11E−06
hsa04520 Adherens junction 39 58 6.67E−06
hsa05031 Amphetamine addiction 33 49 2.33E−05
hsa04152 AMPK signaling pathway 38 90 2.33E−05
hsa04014 Ras signaling pathway 41 153 2.79E−05
hsa04915 Estrogen signaling pathway 35 65 3.85E−05
hsa04727 GABAergic synapse 36 60 3.85E−05
hsa04724 Glutamatergic synapse 37 82 3.85E−05
hsa05231 Choline metabolism in cancer 38 76 7.47E−05
hsa04261 Adrenergic signaling in

cardiomyocytes
37 99 9.34E−05

hsa00310 Lysine degradation 33 34 1.29E−04
hsa05211 Renal cell carcinoma 35 52 1.43E−04
hsa05212 Pancreatic cancer 35 49 2.08E−04
hsa04015 Rap1 signaling pathway 38 140 2.84E−04
hsa05200 Pathways in cancer 40 261 3.13E−04
hsa04350 TGF-beta signaling pathway 31 56 3.71E−04

0.645–0.877; Fig. 7C). In all instances, miR-26a-5p emerged as
the top candidate, which differentiated nonC9-ALS from control
samples, followed by miR-30c-5p (Fig. 7D). This result suggests
that the small subset of common DmiRNAs identified by the two
tools have the most classifying power between ALS and control.
Pathway analysis of genes regulated by miR-26a-5p identified
enriched pathways, including ‘protein processing in endoplasmic
reticulum’ (hsa04141, P = 6.09e−06), ‘hippo signaling pathway’
(hsa04390, P = 4.04e−05) and ‘biosynthesis of unsaturated fatty
acids’ (hsa01040, P = 0.00046).

Discussion
Familial ALS comprises ∼15% of all cases and the most common
genetic mutation is a hexanucleotide repeat expansion in
C9orf72 (2). The underlying disease etiology remains unknown
in the remaining 85% of sporadic ALS patients. Cytoplasmic

TDP-43 aggregates in motor neurons are an almost universal
feature in ALS (2), although mutations to TAR DNA binding protein
1 (TARDBP) itself (gene encoding TDP-43) are uncommon. TDP-
43 regulates miRNA processing by affecting the stability of or
binding to Drosha or Dicer (7,8). Thus, altered RNA metabolism,
including of miRNAs, may be generally disrupted in ALS. In the
current study, we found that fibroblasts and WB from C9-ALS
and nonC9-ALS patients exhibited a distinct DmiRNA profile
versus controls. There were more DmiRNAs in C9-ALS (n = 114,
total fibroblasts and WB) than in nonC9-ALS (n = 91) samples,
possibly because of the comparative heterogeneity of nonC9-
ALS samples. We also identified DmiRNAs by tissue type in
fibroblasts (31 increased, 31 decreased) and WB (42 increased,
22 decreased) from C9-ALS and nonC9-ALS patients. Of these,
four DmiRNAs were common to both tissues and groups (C9-
ALS, nonC9-ALS) and may represent an ALS-specific panel of
miR-30b-5p, miR-30c-5p, miR-484 and miR-92a-3p. Functional
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Table 3. Top functions of differential miRNAs from WB

Type KEGG ID Pathway description #miRNAs #genes Adjusted P-value

C9-ALS hsa05205 Proteoglycans in cancer 57 157 1.74E−08
hsa04012 ErbB signaling pathway 54 72 3.40E−06
hsa05032 Morphine addiction 54 72 3.40E−06
hsa04390 Hippo signaling pathway 53 113 7.86E−06
hsa04727 GABAergic synapse 51 67 9.30E−06
hsa05200 Pathways in cancer 61 286 2.39E−05
hsa04360 Axon guidance 56 97 6.49E−05
hsa00512 Mucin type O-Glycan biosynthesis 31 22 6.57E−05
hsa00533 Glycosaminoglycan

biosynthesis—keratan sulfate
17 12 8.38E−05

hsa05100 Bacterial invasion of epithelial cells 51 63 8.95E−05
hsa05211 Renal cell carcinoma 48 54 9.14E−05
hsa04520 Adherens junction 51 60 9.14E−05
hsa04120 Ubiquitin mediated proteolysis 52 106 9.14E−05
hsa04015 Rap1 signaling pathway 57 157 9.85E−05
hsa04350 TGF-beta signaling pathway 48 62 1.28E−04
hsa04068 FoxO signaling pathway 53 104 1.40E−04
hsa05033 Nicotine addiction 46 31 2.13E−04
hsa00310 Lysine degradation 48 38 2.28E−04
hsa04919 Thyroid hormone signaling pathway 55 90 2.28E−04
hsa04724 Glutamatergic synapse 56 86 2.75E−04

nonC9-ALS hsa05032 Morphine addiction 30 68 1.57E−11
hsa05205 Proteoglycans in cancer 34 140 4.15E−11
hsa04727 GABAergic synapse 28 63 3.95E−08
hsa04360 Axon guidance 33 92 4.79E−08
hsa04390 Hippo signaling pathway 33 102 4.79E−08
hsa04012 ErbB signaling pathway 34 68 4.79E−08
hsa04015 Rap1 signaling pathway 36 147 1.87E−07
hsa05200 Pathways in cancer 37 255 6.01E−07
hsa04014 Ras signaling pathway 37 150 1.33E−06
hsa00512 Mucin type O-Glycan biosynthesis 20 20 1.39E−05
hsa04724 Glutamatergic synapse 33 77 3.45E−05
hsa04510 Focal adhesion 35 139 3.52E−05
hsa04919 Thyroid hormone signaling pathway 35 81 4.76E−05
hsa04512 ECM-receptor interaction 27 51 5.02E−05
hsa05211 Renal cell carcinoma 27 50 7.22E−05
hsa05214 Glioma 28 46 9.21E−05
hsa05030 Cocaine addiction 26 34 1.47E−04
hsa04350 TGF-beta signaling pathway 29 53 1.47E−04
hsa04068 FoxO signaling pathway 32 91 1.47E−04
hsa05100 Bacterial invasion of epithelial cells 30 55 1.49E−04

enrichment identified 102 biological pathways overall, of which
44 were shared across C9-ALS and nonC9-ALS in both tissues
versus controls. Network analysis centered on pathways related
to neuronal function, metabolism and cellular proliferation and
structure. Finally, random forest of DmiRNAs produced an ROC
curve with an AUC of 0.831 for differentiating ALS patients from
control participants.

Previously, we profiled miRNA (18,23) and mRNA (23) in post
mortem spinal cord tissue from sporadic ALS patients. We found
that only miR-142-5p and miR-155-5p were upregulated in spo-
radic ALS spinal cord, but 88 miRNAs were downregulated, with
miR-577 and miR-935 as the most suppressed in ALS (18). None of
the spinal cord miRNAs overlapped with both fibroblast and WB
miRNAs in this study. It is unclear whether differences in miRNAs
between accessible biospecimens versus spinal cord tissue in ALS
stems from disease pathology or from tissue-specific biomarkers
independent of the disease process. Functional pathway anal-
ysis of spinal cord miRNAs highlighted cellular regulation and

proliferation and immune response (18,23), which partially over-
laps with fibroblast and WB miRNA pathways.

The role of miRNAs in ALS was first highlighted in mutant
Superoxide Dismutase 1 (SOD1G93A) mice, which had upregulated
skeletal muscle-specific miR-206 later in disease (24). Progression
was slowed following miR-206 knockout. Several studies have
corroborated overrepresentation of miR-206 in ALS muscle and
plasma (17), but it is non-specific to ALS since it is also altered in
muscular dystrophies (25) and other neurodegenerative diseases
(26,27). This underscores the importance of including biosam-
ples from similar yet distinct diseases to rule out miRNAs with
significant overlap, which only a few studies have considered
(28–30). Aside from miR-206, several other miRNAs are up- or
downregulated in ALS, but with very little overlap across studies,
which may be attributed to several factors. First, most studies
recruited sporadic ALS patients at distinct stages of the disease,
resulting in heterogeneous populations. Second, study sample
sizes were small and likely unrepresentative of larger populations
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Figure 2. Fibroblast and WB DmiRNAs from C9-ALS and nonC9-ALS versus control participants. Fold-change (x-axis) of differential miRNAs (DmiRNAs;
P < 0.05; y-axis) identified by NanoStringDiff. DmiRNAs that increased in ALS versus controls in yellow; DmiRNAs that decreased in ALS versus controls
in blue. Plots for fibroblasts (FB) in (A) C9-ALS and (B) nonC9-ALS versus controls; plots for WB in (C) C9-ALS and (D) nonC9-ALS versus controls; yellow,
upregulated in ALS versus controls; blue downregulated in ALS versus controls. (E) Venn diagram of the number of shared and unique DmiRNAs between
fibroblasts and WB for C9-ALS and nonC9-ALS groups.

(17). Finally, studies profile different tissues. To overcome these
limitations, we included both C9-ALS and nonC9-ALS from two
tissues, fibroblasts and WB, from a relatively large total number
of ALS samples (n = 81).

We report more DmiRNAs in C9-ALS than in nonC9-ALS versus
controls with tissue-specific differences, although there was some
overlap. This is aligned with other studies (31,32), which identified
a 30-panel DmiRNA signature in familial ALS versus controls,
but only 2 DmiRNAs in sporadic ALS versus controls, which the
authors concluded could have arisen from greater heterogeneity
of sporadic ALS. Another study of ALS muscle versus plasma
found some but incomplete overlap in miRNA profiles (33), as we
observed, indicating variation by tissue. Moving forward, it will
be important to define the best tissue for analysis and stratify a
sufficient sample size by genetic mutation to validate a strong ALS
miRNA panel.

Currently, there is no sensitive molecular diagnostic test for
ALS. With the goal of bridging this knowledge gap, we examined
ALS-associated miRNA profiles in accessible WB, an immune
cell-containing biofluid. Immune system dysfunction is a recur-
rent ALS theme (34). ALS participants exhibit distinct circulating

immune cell populations versus healthy controls (35–38), advo-
cating WB as a diagnostic medium for an ALS test. miRNAs are
also attractive because they circulate widely in WB (39) and may
represent a snapshot of disease status, including ALS (17). We
performed random forest of all DmiRNAs from nonC9-ALS WB,
which generated an ROC curve with an AUC of 0.832. The top
candidate was miR-26a-5p, followed by miR-30c-5p, which most
robustly differentiated ALS patients from control participants.
Pathway analysis of miR-26a-5p-regulated genes yielded ‘protein
processing in endoplasmic reticulum’, ‘hippo signaling pathway’
(see below) and ‘biosynthesis of unsaturated fatty acids’.

No study has identified an miRNA panel unique to nonC9-
ALS. Our top two candidates, miR-26a-5p and miR-30c-5p, were
identified in a study of 56 sporadic ALS WB samples (40) but
were downregulated rather than upregulated. Other studies have
noted miR-26a-5p downregulated in muscle (41) or upregulated
in serum (42) in ALS. Therefore, there is a lack of consensus
in the literature arising from the heterogeneity of sporadic ALS
and small sample sizes. We did not evaluate miRNA changes
longitudinally over the disease course, which may be an additional
factor affecting consensus among results. Indeed, a pilot study
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Figure 3. KEGG pathway analysis of DmiRNAs. Heat-map of significantly enriched KEGG pathways identified for each of the DmiRNA datasets
represented by a log10-based color and number index. FB, fibroblasts.

suggests that miRNAs correlate with and change over time in
relationship to clinical parameters (30). Furthermore, miRNAs
have multiple targets, so there may be overlap in downstream
biological pathways even if the overlap between DmiRNAs by
studies is lacking.

Thus, after analyzing DmiRNAs, we next examined their target
mRNAs to infer downstream biological pathways. miRNAs nega-
tively regulate their targets by recruiting Argonaute proteins and
assembling into an RNA-induced silencing complex, cleaving the
target mRNA (43). We leveraged our Bru-seq and BruChase-seq
dataset to correlate DmiRNAs to target mRNA stability (21,22).
Bru-seq and BruChase-seq label nascent mRNA followed by a
pulse with an orthogonal label after a time delay to assess stability
(21). Less stable mRNAs decrease in level to a greater extent
than more stable mRNAs over time. As anticipated, we found
that C9-ALS fibroblast miRNA levels from this study correlated
inversely with mRNA target stability from C9-ALS fibroblasts
from our previously published study (21). Presumably, high-level
miRNAs degraded their target mRNAs relatively rapidly, rendering
them of lower stability, whereas low-level miRNAs degraded their
tagets relatively more slowly, rendering them of higher stability.
DmiRNA-to-mRNA correlations did not attain 100%, likely due
to the presence of alternative mRNA-destabilizing or degrading
pathways, such as decapping and base modifcations (44,45). We
validated the DmiRNA-to-mRNA correlations by qPCR for two
target mRNAs, GADD45B and IP6K2.

However, miRNAs have multiple targets, so we performed func-
tional enrichment of all mRNA targets of significant DmiRNAs.
We then clustered biologically enriched pathways by network

analysis to identify the main themes. The subnetworks, along with
the highly inter-connected nodes, provided interesting insight into
ALS pathology. The largest inter-connected subnetwork in C9-ALS
(shaded purple) contained several cancer KEGG pathways mostly
shared by fibroblasts and WB, including ‘pathways in cancer’,
‘ErbB signaling pathway’ and ‘MAPK signaling pathway’. There
were also cancer KEGGs unique to fibroblasts, such as ‘small
cell lung cancer’. JAK–STAT signaling is central to ‘pathways in
cancer’, which is overrepresented in C9-ALS samples. We pre-
viously found that JAK–STAT signaling is also prominent upon
analysis of mRNA from sporadic ALS spinal cords (23). In an in
vitro ALS model, we found that tofacitinib-mediated blocking of
JAK–STAT signaling in natural killer cells inhibits their ability to
attack motor neurons (46). Collectively, these results suggest that
this pathway may serve as a therapeutic target in ALS, although
further studies are warranted.

ErbBs are also of particular interest; they influence cell survival
and proliferation and activate MAPK and PI3K-Akt signaling (47).
ErbB is activated by its ligand neuregulin 1, which has lower
expression in spinal cords from ALS patients and SOD1G93A mice,
a model of familial ALS (48). Promoting neuregulin 1 expression
in SOD1G93A animals slows disease progression in females. In
humans, a Japanese family with familial ALS harbors mutant
ERBB4, with a diminished capacity for neuregulin 1-mediated acti-
vation (49). MAPK signaling was also featured in this subnetwork
(50); inhibiting p38 MAPK rescues retrograde axonal transport
in SOD1G93A ALS mice (51), whereas blocking AMPKα prevents
hydrogen peroxide-induced apoptosis of SOD1G93A embryonic
neural stem cells (52). These examples illustrate how our pathway
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Figure 4. KEGG pathway association networks. Significantly enriched KEGG pathways were combined and visualized in a network for (A) C9-ALS and (B)
nonC9-ALS samples. KEGG pathways are represented by nodes; shared gene content between pathways are represented by edges. Within the network,
node shape indicates the tissue source of the enriched pathways: diamond, fibroblasts only; circle, WB only; square, both fibroblasts and WB. Node
color is based on –log10 (P-value). Node size corresponds to the number of connections each node has. All networks were organized by the inverted
self-organizing map layout with minimal manual node rearrangement for visibility. Highly inter-connected subnetworks were identified by Cytoscape
MCODE and are highlighted by various colors. Single nodes, which are not connected to other nodes, were excluded from this network visualization.
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Figure 5. Identifying potential DmiRNA as regulators of mRNA stability in fibroblasts. miRNA fold-change (FC) for differential miRNAs (DmiRNAs; top
row) in C9-ALS fibroblast. Predicted target mRNA (first column) stability values (mature/nascent; second column) are from our previously published
study (21). Values in other table cells are the significant Pearson correlation coefficients between each pair of DmiRNA and its predicted mRNA targets;
color represents the degree of differential expression in fold-changes (red up-regulation in ALS, blue down-regulation in ALS). Stability-FC and miRNA-FC
were scaled independently.

Figure 6. Validation of target mRNA in fibroblasts. Target mRNA in
fibroblasts were validated by qPCR. Results were normalized to yWHAZ
and presented as fold-change calculated by the 2-�C

T method for GADD45
[C9-ALS, n = 5; Control (Ctrl), n = 6], IP6K2 (C9-ALS, n = 5; Ctrl, n = 6). Tran-
script stability was determined as the ratio between transcript abundance
at 6 h (pulse/chase) to 0.5 h (pulse) and compared with Ctrl. Experiment
performed in duplicate; analysis by Student’s t-test; data represented as
mean ± standard error of the mean.

analysis can identify possible therapeutic ALS targets, e.g. ErbB,
MAPK, which the literature shows can be pursued as potential
therapies in pre-clinical studies with ALS mouse models.

There were two other highly inter-connected C9-ALS subnet-
works with signaling pathways known to be dysfunctional in ALS.
One subnetwork (shaded orange) was heavily centered on path-
ways in both fibroblasts and WB related to neuronal function and
signaling, such as ‘glutamatergic synapse’, ‘GABAergic synapse’
and ‘long-term potentiation’. ‘Sphingolipid signaling pathway’
was also featured, which we have identified as a recurrent dys-
regulated pathway in sporadic ALS by metabolomics analysis of
plasma (53,54). This pathway is also linked to familial ALS through
mutations to SPTLC1, involved in sphingolipid synthesis (55,56).

Additionally, the orange subnetwork contained some pathways
that were WB predominant, e.g. ‘dopaminergic synapse’, ‘cholin-
ergic synapse’. The second subnetwork (shaded green) contained
pathways previously identified in ALS and linked to development,
e.g. ‘Wnt signaling pathway’ (57) and ‘hippo signaling pathway’
(58), and is aligned with recent evidence of widespread neural
network disruption in ALS (59).

Finally, when we examined the network constructed from
nonC9-ALS KEGG pathways, similar clusters emerged as for
C9-ALS. These spanned a cancer-predominant subnetwork
(shaded blue) and a development subnetwork (shaded green).
The orange C9-ALS subnetwork splits into two subnetworks in
sporadic nonC9-ALS, one involving pathways related to neuronal
function (shaded pink), which is highly interconnected with a
second subnetwork encompassing various signaling pathways
(shaded purple). Of pathways related to ALS, ‘PI3K-Akt signaling
pathway’ (60) appeared in the nonC9-ALS network and clustered
with MAPK. ‘FOXO signaling pathway’ (61) was linked with the
neurodevelopment subnetwork in nonC9-ALS, rather than the
cancer subnetwork in C9-ALS. Another notable difference in the
nonC9-ALS network is greater integration of ‘regulation of actin
cytoskeleton’ into the green development subnetwork, which
bridges the development and cancer subnetworks in familial
C9-ALS. Several ALS mutations have been identified in genes
that regulate actin cytoskeleton (62), such as profilin 1 (PFN1),
a regulator of actin polymerization (63), and ALS2, encoding the
protein alsin, which has a RhoGEF domain for regulating Rho
and actin dynamics (64). Although preliminary, these studies
corroborate the overrepresented terms in our pathway analysis
of miRNAs in ALS and may suggest therapeutic targets.

This study benefited from several strengths. First, the ability to
access to two tissues. Second, ALS patients were stratified by the
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most prevalent C9orf72 alteration and examined DmiRNAs in the
context of both familial and sporadic ALS. Third, DmiRNAs were
identified by a multiplexed, untargeted approach, NanoString and
rigorously analyzed by NanoStringDiff. This study also suffered
limitations. Even with the large number of samples, the study still
was not powered to detect sex differences, an important consider-
ation in ALS, which is more prevalent in men (1). Moreover, familial
ALS samples were limited to C9orf72 carriers, which comprise only
half of familial cases. The qPCR validation of select DmiRNAs was
done using a single reference rather than multiple references.

One major goal of this study was to seek ALS biomarkers in
accessible tissue. Our top candidates, miR-26a-5p and miR-30c-
5p, did not find overlap with all other ALS miRNA reports in
the literature. The challenges faced for identifying a unifying
miRNA biomarker panel in ALS are substantial. ALS is highly
heterogeneous, with variation in clinical presentation (e.g. onset
segment, speed of disease progression, disease stage), underlying
genetic cause (with over 40 identified ALS mutations) and a
possible environmental contribution (1,2). It is possible that this
considerable extent of heterogeneity may defy determination
of an ALS-specific miRNA panel. Nevertheless, our study
underscores the importance of miRNAs for understanding ALS
pathophysiology by providing miRNA pathway analysis of one
of the largest ALS sample sizes to date, which uncovered both
well-known, corroborating, pathways and less-known pathways
of potential future interest.

Materials and Methods
Study participants and samples
All patients 18 years and older and able to communicate in
English attending the University of Michigan Pranger Multidisci-
plinary ALS clinic were invited to submit samples to the University
of Michigan ALS Patient Repository (UMAPR), an Institutional
Review Board (IRB)-approved repository. Control participants were
recruited separately. All participants provided written informed
consent. For this study, participant-provided biospecimens
were retrieved from UMAPR, which met the following criteria:
diagnosis of ALS based on the Gold Coast criteria (65) and further
classified by the initial and/or revised EI Escorial criteria (66). ALS
participants were distributed between the sporadic ALS cohort
(nonC9-ALS), by selecting patients without a family history of ALS
and negative for C9orf72 expansion, and the familial ALS cohort
(C9-ALS), by selecting patients with C9orf72 expansion determined
by published methods (67). Age- and sex-matched healthy
controls were then selected. Skin punch biopsy from the forearm
was collected using standard protocols and participant-derived
fibroblasts were isolated as previously reported (21). Fibroblasts
were cultured in fibroblast media: Dulbecco’s Modified Eagle
Medium (DMEM) with 4.5 g/l D-glucose, with glutamine/without
pyruvate (Gibco, Thermo Fisher Scientific, Grand Island, NY, USA),
supplemented with 10% heat-inactivated fetal bovine serum (FBS)
(Gibco, Thermo Fisher Scientific), 1X Glutamax-1 (Gibco, Thermo
Fisher Scientific) and 1X MEM NEAA (Gibco, Thermo Fisher
Scientific). Approximately 5 mL of WB was collected by standard
venipuncture into PAXgene Blood RNA Tubes (cat # 762125,
Qiagen, Germantown, MD, USA; for RNA isolation) and another
5 mL into EDTA tubes (plasma isolation by centrifugation); all
tubes were stored at −80◦C. The overall experimental outline is
presented in Fig. 1.

RNA extraction and quality determination
Total RNA for miRNA profiling was isolated from fibroblasts using
the miRNeasy Mini Kit (cat # 217004, Qiagen) and from WB with

the PAXgene Blood miRNA Kit (cat # 63134, Qiagen), according
to the manufacturer’s instructions. RNA was concentrated and
purified using the Zymo RNA Clean & Concentrator-5 (cat # R1016,
Zymo Research, Irvine ,CA, USA). RNA concentration was deter-
mined with a NanoDrop ND-1000 Spectrophotometer (NanoDrop
Technologies, Thermo Fisher Scientific, Wilmington, DE, USA)
and quality was assessed by the 260/280 and 260/230 nm ratios.
RNA integrity was measured using the Agilent Bioanalyzer 2100
(Agilent Technologies, Santa Clara, CA, USA).

miRNA expression profiling
Profiling was performed by the NanoString nCounter Human v2
(on fibroblasts) and v3 (on WB) miRNA Expression Panels (NanoS-
tring Technologies, Seattle, WA, USA), as previously described (68).
Briefly, this assay detects 800 endogenous miRNAs, 5 reference
transcripts, plus 6 positive and 6 negative controls. About 150 ng
of total RNA per sample was used as input for the nCounter
Human miRNA sample preparation and hybridized for 16 h at
65◦C. Subsequently, the strip tubes were placed into the nCounter
Prep Station for automated sample purification and subsequent
reporter capture. Each sample was scanned for 555 fields of view
on the nCounter Digital Analyzer and data were extracted using
the nCounter RCC Collector (both NanoString). A quality con-
trol step identified and eliminated unrelated samples (outliers)
using nSolver Analysis Software v3.1 (NanoString), according to
manufacturer’s instruction. Principal component analysis visu-
alized and examined the overall variation across samples. Next,
data were analyzed with NanoStringDiff, an R package specifically
designed for NanoString nCounter data (20). Data were normal-
ized using positive controls, negative controls and reference genes
(ACTB, B2M, GAPDH, RPL19, RPLP0) embedded in the nCounter
system, and differential log fold-changes and multiple testing
adjusted statistical significance q-values were obtained.

Pathway analysis
DIANA-miRPath v3.0 (69) was used to predict DmiRNA gene tar-
gets and characterize their biological functions and pathways
using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
terms. KEGG pathways with false discovery rate (FDR) < 0.05 were
considered significantly enriched among the DmiRNAs from each
tissue and genotype (C9-ALS or nonC9-ALS). To identify the overall
theme of these enriched pathways, an association network for
each tissue was generated from the gene-content overlap among
the KEGG pathways using richR, our in-house analysis R package
(https://github.com/hurlab/richR). The inter-relationship among
the significant pathways within each tissue was visualized in
Cytoscape (70) and highly-inter-connected pathway clusters were
detected by MCODE (71), a Cytoscape application for network
cluster analysis.

Fibroblast labeling and sequencing and mRNA
stability
Fibroblast mRNA stability from controls (n = 3), nonC9-ALS
(n = 4) and C9-ALS (n = 4) participants was determined by 5-
bromouridine sequencing (Bru-seq) and 5-bromouridine-chase
sequencing (BruChase-seq), as previously described (21). Briefly,
fibroblasts were grown to confluency in duplicate in 150 mm
petri dishes (Falcon/Corning, Corning, NY, USA) in fibroblast
media: DMEM with 4.5 g/l D-glucose, with glutamine/without
pyruvate (Gibco, Thermo Fisher) supplemented with 10% heat
inactivated FBS (Gibco, Thermo Fisher), 1X Glutamax-1 (Gibco,
Thermo Fisher) and 1X MEM NEAA (Gibco, Thermo Fisher), and
5-Bromouridine (2 mM; cat # 850187, Sigma-Aldrich, Burlington,
MA, USA) was added to both petri dishes and incubated for 0.5 h

https://github.com/hurlab/richR
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Figure 7. Random forest analysis using overlapping DmiRNAs. ROC curves for random forest analysis of (A) overlap DmiRNAs (shared by NanoStringDiff
and nSolver) with an AUC of 0.831 (95% CI 0.734–0.929), (B) nSolver AUC 0.778 (95%CI 0.664–0.892) and (C) NanoStringDiff AUC 0.761 (95%CI 0.645–0.877).
(D) Variable importance in projection plot ranking importance of DmiRNAs to all three classifiers, overlap (blue), NanoStringDiff (orange) and nSolver
(grey). miR-26a-5p was the top candidate, followed by miR-30c-5p, across all methods.

at 37◦C in 5% CO2 to label cells, which were either harvested
(pulsed, first petri dish) or chased for 6 h with uridine (20 mM,
second petri dish; cat # U3750, Sigma-Aldrich) at 37◦C in 5% CO2.
Cells were harvested in 3 mL of QIAzol (cat # 79306, Qiagen)
and total RNA was isolated by phenol/chloroform extraction
and resuspended in 100 μL of diethyl pyrocarbonate water. Bru-
labeled RNA was immunoprecipitated with mouse anti-BrdU
antibody (clone 3D4; cat # 555627, BD Pharmingen, Franklin
Lakes, NJ, USA) conjugated to goat anti-mouse Dynabeads (cat #
11033, Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA).
Strand-specific DNA libraries were prepared with the Illumina
TruSeq Kit (Illumina, San Diego, CA, USA) and sequenced on an
Illumina platform, as previously described (21). RNA stability was
calculated as the ratio of transcript abundance at 6 h versus
0.5 h. We used a cutoff of ≥1.5-fold-change in stability of mRNA
transcripts.

Quantitative real-time PCR
For miRNA, 30 ng of total RNA was reverse transcribed using
the High-Capacity cDNA Reverse Transcription Kit (cat # 4368814)
with Megaplex Primer Pools, Human Pools A v2.1 (cat # 4401009).
cDNA was preamplified using TaqMan PreAmp Master Mix (cat #
4391128) and Megaplex PreAmp Primers, Human Pool A v2.1 (cat #
4399233). qPCR was performed with TaqMan Universal PCR Master
Mix (cat # 4318157) and TaqMan microRNA Assays (cat # 4427975,
all Thermo Fisher Scientific, Waltham, MA, USA). Each sample was
run in triplicate. Transcripts levels were calculated by the ��CT

method and normalized to RNU48. The control group in each
comparison was used as a calibrator (��CT = 0, 2∧(−��CT) = 1).

Amplification efficiency for each miRNA was assessed by techni-
cal duplicates method on a Bio-Rad Real-Time PCR System (Bio-
Rad, Ann Arbor, MI, USA).

For mRNA stability, cDNA was generated using iScript Reverse
Transcription Supermix (cat # 1708841, Bio-Rad) on the entire
anti-Bru-immunoprecipitated pulse and pulse/chased RNA
(Fibroblast labeling and sequencing and mRNA stability section).
qPCR was performed on 2 μL of template with TaqMan Gene
Expression Master Mix (cat # 4369016, Thermo Fisher Scientific)
and TaqMan probes (Thermo Fisher Scientific) for GADD45B,
IP6K2a and YWHAZ (normalization reference). The PCR program
was 120 s at 50◦C, 10 s at 95◦C, 40x cycles (15 s at 95◦C, 60 s at
60◦C) on an Applied Biosystems StepOne Real-Time PCR system
(Thermo Fisher Scientific). Transcript stability was determined as
the ratio between transcript abundance at 6 h (pulse-chase/pulse)
to 0.5 h (pulse).

Random forest
The Classification And REgression Training (CARET) package from
R was used to build a random forest classification model (72). Ten-
fold cross-validation was performed to construct and evaluate
the model. The ROC curves were plotted for all folds’ prediction
using the pROC package from R (73). Pathway analysis for miR-
26a-5p was derived using mirPath (69). For DmiRNAs identified by
nSolver, nCounter data by sample were normalized to the top 100
most highly expressed miRNAs across all samples and differential
levels were examined by nSolver differential expression testing
menu between groups. miRNA ratios between groups and statis-
tical significance P-values were obtained, which were adjusted
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for multiple testing by the p.adjust function in R to calculate
FDRs.

Statistical analysis
Raw data were analyzed using NanoStringDiff software to
identify statistically significant DmiRNAs (P < 0.05) using nor-
malized counts between sample groups. Data were expressed as
mean ± standard error of the mean. Prism 5.01 (GraphPad, San
Diego, CA, USA) was also used to analyze statistical significance
(P < 0.05, two-tailed Student’s t-test).

Supplementary Material
Supplementary Material is available at HMG online.
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