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Abstract

In order to keep up with a changing environment, mobile organisms must be capable of deciding 

both where and when to move. This precision necessitates a strong sense of time, as otherwise 

we would fail in many of our movement goals. Yet, despite this intrinsic link, only recently 

have researchers begun to understand how these two features interact. Primarily, two effects have 

been observed: movements can bias time estimates, but they can also make them more precise. 

Here we review this literature and propose that both effects can be explained by a Bayesian cue 

combination framework, in which movement itself affords the most precise representation of time, 

which can influence perception in either feedforward or active sensing modes.

Time and movement are intertwined

Continuous interaction with a dynamic world requires organisms to make precise temporal 

measurements of sensory input and directed motor output. As such, sensorimotor coupling 

is vital in multiple levels of organization in the nervous system, from spinal reflexes to 

complex motor sequences [1]. These intertwined sensorimotor processes have potential 

implications in the study of time perception [2]; however, the link between action and time 

perception has, until recently [3], been relatively unexplored. Current studies demonstrate 

that action exerts a wide range of effects on subjective time by biasing (i.e., affecting 

accuracy; see Glossary) or improving sensitivity (i.e., precision) of estimates and that these 

effects are not restricted to concurrent movement, but can exhibit robust effects before 

and after movement. Notably, a unifying account does not yet exist for these effects - a 

challenge for current models of timing (Box 1). Here, we propose a basic framework to 

base future studies upon; specifically, we suggest that movement provides a new channel of 

temporal information that is (i) evaluated by its reliability and (ii) integrated into temporal 

estimates optimally, in line with Bayesian cue combination (Box 2). This is a prominent idea 

in multisensory research that has been demonstrated previously in time perception across 

distinct sensory modalities [4].
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Motor systems are invoked during time perception

Given the necessity of time and movement in everyday interactions, it is not surprising that 

the brain areas involved in these processes greatly overlap (Figure 1A). Timing relies on 

several brain systems traditionally thought to be dedicated to motor control [5,6], and that 

are activated during timing tasks where no overtly timed motor response is required (Figure 

1A). The main cortical area implicated in temporal processing is the supplementary motor 

area (SMA). The SMA is often split into two main components by the anterior commissure: 

SMA-proper, bordering the primary motor cortex, and pre-SMA, located more anteriorly [7] 

and has been shown to be chronotopically organized in a rostrocaudal gradient, in that rostral 

clusters of neurons encode shorter durations and caudal clusters encode longer durations 

([8]; see Figure 1B). More specifically, the SMA-proper is implicated in motor timing 
tasks, timing of single events [9], timing of shorter durations, stimulus-driven movements, 

and motor preparation [7], whereas the pre-SMA is implicated in perceptual timing tasks 

[10,11], sequence processing [12], self-initiated movements, response inhibition, timing of 

longer durations, and task switching. The SMA also appears to have a gradient for time 

and space, with SMA-proper neurons encoding longer-duration actions in navigating the 

environment [13]. Further, recordings in the SMA of non-human primates demonstrate 

duration tuning of individual neurons [14], as well as neurons that encode the categorical 

boundary between duration ranges that are predictive of temporal categorization [15].

Subcortical motor systems, such as the basal ganglia (BG) and cerebellum also play a 

prominent role in timing. Innervation of the BG by dopamine neurons has demonstrated 

a close link with timing functions [16,17]. In animals, dopamine availability is strongly 

linked to the direction of temporal distortions; artificially increasing or decreasing striatal 

dopamine leads to overestimation and underestimation of time intervals, respectively [18]. 

Recent work has demonstrated a dissociation between these sub-cortical structures (BG 

and cerebellum) for timing in rhythmic and single-interval contexts [19]; further, both 

structures have been found to impact activity putatively within the SMA [20,21]. These 

findings suggest that time perception is instantiated in motor circuits between the SMA and 

subcortical regions, via cortical-striato-thalamic connections.

Given the strong overlap between motor and timing regions in the brain, it should be 

expected that disorders of movement also exhibit timing impairments [21,22]. Importantly, 

these impairments persist in perceptual timing tasks when movement is irrelevant or 

unnecessary [23]. For example, Parkinson’s Disease is associated with timing that is both 

less precise and less accurate, although deficits are heterogenous [24]. Huntington’s Disease 

patients display similar timing deficits, including greater response variability in interval 

(i.e., absolute) and beat-based (i.e., relative) timing [23]. Additional timing deficits have 

been observed in patients with Tourette’s Syndrome [25], Essential Tremor [26], Cerebellar 

Degeneration [20], Dystonia [27], and those with lesion damage affecting motor regions 

[28].

De Kock et al. Page 2

Trends Cogn Sci. Author manuscript; available in PMC 2023 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Concurrent movements bias time perception

Despite the involvement of motor regions in time perception, until recently movements were 

not specifically studied in the context of timing. Models of time perception typically set 

movements to represent the end-point of a timed process, with motor variance existing as 

a nuisance to be partialed out (Box 1). Yet, early evidence of this relationship came in the 

form of the chronostasis phenomenon, wherein saccading to a target induced a stereotyped 

expansion of visual time [30]. Post-action temporal expansion was also found for tactile 

feedback after manual movement to a target [31], auditory stimuli following a saccade 

[32], and spontaneous blinking [33]. A separate finding, intentional binding, describes a 

process by which an action and its sensory consequence are ‘pulled’ towards each other in 

time [34,35]. More recent work suggests that both phenomena may reflect distinct aspects 

of the same underlying process [36]; that is, the combination of disparate sensory and 

motor representations [37]. These representations may be combined in a manner that is also 

optimal with respect to Bayesian computations [38]. Yet, we note that both are examples in 

which timing is causally tied to the sensory consequences of actions, which we suggest are 

distinct from studies of explicit timing [39].

Within the realm of explicit timing, initial evidence that actions could lead to shifts 

in perceived time came from work demonstrating that, when asked to perform a time 
reproduction task, the length of that interval is longer when its initiation is triggered 

by a subject’s action [40]. Yet, while this established a link between motor timing and 

movements, a connection with perceptual timing would not come until a later study [41] 

in which the duration of tactile vibrations applied to the finger while performing a large 

single-movement lift were dilated compared to being at rest. Several follow-up experiments 

replicated this effect, demonstrating that the duration of an avatar hand performing a finger 

movement that was congruent with the movement was similarly dilated. This latter finding 

was similar to another motor timing study in which subjects reproduced auditory durations 

encoded while watching videos of broad hand gestures; longer-distance hand movements 

were associated with longer reproduced intervals [42].

An additional number of studies have also found that concurrent movements during time 

perception can compress or dilate time estimates (Figure 2) depending on various factors; 

the most significant contributor seems to be the influence of magnitude. It is implicitly 

understood that short, fast, or near movements take less time, and long, slow, or far 

movements take more time. This implicit knowledge may be at least partially instantiated in 

motor circuitry [43] and is necessary to evaluate one’s movements in the environment [44]. 

Therefore, studies that use actions that imply a particular movement magnitude could bias 

the perception of other magnitudes. For example, sensory events that appear in reachable 

space are perceived as having a shorter duration than those in unreachable spaces [45].

Further, when subjects performed either short and long, or slow and fast finger 

hyperextensions, as well as near and far hand reaching movements while judging the 

duration of auditory stimuli, perceived time was dilated when longer, slower, or farther 

movements were performed ([46]; Figure 2E). By contrast, another study found when 

subjects performed either slow, medium, or fast hand circles while judging the duration 
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of visual stimuli, faster hand movements were associated with a compression of perceived 

time [47]. However, in this case, subjects were restricted to making movements within a 

constrained area. As such, faster hand movements may have led to compression due to 

a reduced sampling of the environment; indeed, slow, deliberate movements have been 

shown to provide more information than faster ones [48,49], within a certain limit [50]. 

Other studies have also shown that, within the same area of space, slower movements 

lead to time dilation effects [42,46]. More recently, we performed a series of experiments 

in which subjects were required to move a robotic handle to explore a flat workspace 

while performing either a temporal bisection task or time reproduction task with auditory 

intervals [51]. Crucially, increasing resistance (i.e., viscosity) of the robotic handle resulted 

in shorter movement paths and subsequently shorter perceived durations. Computational 

modelling further suggested that the time compression effects occurred at the level of 

perception, rather than decision or production levels.

Other possible explanations for movement-related temporal biases include at what point 

during the movement the interval occurred [52], the type of stimuli [53], and the sense 

of agency of the movement [54]. For example, when subjects performed a synchronization-
continuation task using finger taps-during which a separate visual temporal interval to be 

judged occurred randomly during the continuation sequence- the direction and strength of 

the bias depended on the point during the finger tap the interval occurred ([52]; Figure 2F).

Concurrent movements improve time perception

In addition to the work cited above showing the biasing effects of movement, there is also 

evidence that concurrent movements can enhance timing (Figure 3). This secondary finding 

is an essential component of Bayesian cue combination, in which greater precision leads to 

greater bias.

In one study [56], subjects were more precise timing auditory intervals when the stimulus 

onset was determined by the subject (Figure 3B). Further studies [57] found that subjects 

were more precise timing auditory tones when they freely moved compared to remaining 

stationary. In both bisection and reproduction experiments, precision improved without 

affecting accuracy (Figure 3A), independent of movement strategies or proximity to choice 

targets. Further, time estimates could be decoded from the movements, suggesting that 

movements were actively engaged in the timing process, rather than reflecting its output. A 

similar finding was recently observed for facial muscles recorded during a visual temporal 

bisection task [58].

Similarly, in a recent experiment, rats learned to approach a goal location after a fixed 

interval (7 seconds in most experiments) to obtain a reward. They were positioned on a small 

treadmill that began moving backward during the interval period. Over many trials, rats 

learned to keep time by employing a stereotyped ‘wait-and-run’ strategy - they started at the 

front of the treadmill, allowed it to take them backwards, and ran to the goal location. Rats 

using this strategy displayed higher accuracy and precision than rats not using the strategy 

(Figure 3E). Additionally, accuracy and precision were lower when treadmill movement 

was omitted; however, trials with more movement were more accurate, demonstrating that 
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movement improved timing overall, but performance was highest when temporal regularities 

in the external environment could be used in tandem with movement [59]. In another rodent 

experiment, rats performing a temporal bisection task adopted stereotyped head movements 

as measured by motion tracking, with virtually no between-subject similarities. Importantly, 

movement patterns, even early in the trial or prior to stimulus onset, were predictive of the 

eventual choice [60]. A similar finding in humans is that when tracking a moving target 

with the hand, the perceived duration is also more precise [61], particularly when the target 

moves in a compatible way with human movement [62].

In addition to enhancing precision for interval timing, research on beat-based timing 

demonstrates several advantages of sensorimotor synchronization in timing rhythmic stimuli 

[63]. More specifically, actively tapping along with a rhythm leads to greater accuracy [64–

66] and precision [67] at detecting rhythmic deviants.

These considerations are additionally interesting between movements that have explicit 

temporal properties versus emergent temporal properties, whereby rhythmic properties in the 

former require ‘event timing’ -explicit temporal representations of each cycle (e.g., tapping) 

-and in the latter, temporal properties emerge as a byproduct of other motor goals (e.g., 

maintaining constant velocity during circle drawing; [68]). Further, emergent timing (in a 

rhythmic context) is thought to evolve from an initial explicit representation (e.g., during the 

first cycle of circle-drawing) that is thereafter replaced by emergent timing [69]. So far, we 

have highlighted instances of emergent motor ‘strategies’ that aided in concurrent interval 

timing, and although these timing distinctions have not been investigated in the majority of 

studies, they are an interesting future research direction.

Of note, improved timing abilities during action have additionally been observed in 

individuals with highly trained motor skills, such as elite athletes [70], expert drummers 

[71], and professional dancers [72]. This highlights the plasticity of time-keeping that 

evolves with motor experience; indeed, research in children also suggests that temporal 

concepts are built upon an understanding of actions and their consequences [73]. 

Further, movement training also enhances other perceptual discrimination abilities [74,75]. 

Conversely, subjects trained to discriminate a time interval become better at reproducing it 

with a motor action [76].

Pre-action and post-action effects on timing

In addition to the effects of concurrent action, there are also distinct effects on perceived 

duration during pre-action and post-action periods, yet with notable inconsistencies. For 

pre-action periods, in some cases durations are compressed [77–79] and in others dilated 

[29,80,81]. Various factors lead to these differential effects, including whether the temporal 

stimulus is a filled interval or an empty interval [29,81] as well as the intended direction of 

a planned movement [79].

It has been suggested that pre-action visual processing is accelerated to maximize 

opportunities for stopping or changing a planned action, thus leading to longer perceived 

intervals. This idea was originally supported when subjects perceived filled visual 
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intervals as longer during preparation of ballistic reaching movements during a temporal 
discrimination task [80]. Additionally, when viewing flickering visual stimuli during the 

same period, flicker frequencies were perceived as slower, and subjects displayed increased 

detection rates for flickering letter displays compared to when passively viewing the stimuli. 

Notably, this effect appears to only extend to filled intervals, whereas empty intervals are 

not affected [81]. In addition, magnetoencephalography (MEG) activity revealed ramping 

activity in the SMA during filled intervals only (Figure 1C) as well as asymmetric 

suppression of visual 10Hz alpha rhythms. This interaction between motor and visual factors 

reveals a selective role of alpha rhythm for neural communications across visual, motor, and 

time-processing regions [29].

In contrast to these pre-action effects, temporal shifts are also observed after actions 

are initiated [30,32,82]. Often, motor plans are executed with a goal and predicted 

sensory consequences. As such, these consequences are initially processed separately from 

externally-generated sensory signals in the brain [83]. Additionally, sensory feedback is 

used to evaluate the accuracy of goal-directed movements and calibrate internal models 

to perform future movements more effectively [84–87]. These specialized evaluation 

mechanisms accompanied by selective suppression or amplification of sensory signals may 

have implications in time perception.

Taken together, the discussed temporal shifts induced during pre- and post-action periods 

are indicative of dynamic neural encoding of time with respect to action onset. This is 

compatible with general principles of motor control, such as anticipatory and predictive pre-

action signals, and evaluative and corrective post-action signals [86] - measures that have 

rarely been examined in the context of explicit timing. Given the nuances of action-locked 

temporal distortions, dynamical system analysis techniques may elucidate trial-by-trial 

contributions of evolving movement states to perceived time. These have been used in motor 

control to understand the evolution of motor ‘states’, both behaviorally [88] and neurally 

[89]. Dynamical systems models have also been used to understand interval timing [90] and 

beat-based timing [91], but only recently to study the interactions of movement and time 

perception [3,92]. This would be a productive area for future research, and highlights the 

necessity of collaborative efforts with complementary motor control and timing expertise.

A framework for movement and time

As described above, movement effects on explicit time estimates, both perceived 

and produced, can lead to both biases and enhancements under particular conditions. 

Additionally, these effects are predicted using a Bayesian cue combination framework 

(Box 2). Yet, cue combination has traditionally been formulated as one in which disparate 

channels of sensory information are combined to a unified percept. In our framework, 

movement itself serves as an additional channel for duration information. Accordingly, 

the brain integrates the statistics of body movements, which are affected by the speed, 

length, direction, and area covered. As such, the sampling of positional information in space 

provides a vector [93] ‘readout’ of elapsed time across a neuronal population. Further, given 

the high temporal fidelity and precision of motor movements, with some estimates below 

10ms [94,95], the variance of movement time estimates is also predicted to be very low. 
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Indeed, motor neurons have demonstrated tuning properties related to both upcoming and 

preceding movement in time at different lags relative to the present moment [96]. Further, 

SMA firing rates themselves exhibit multidimensional trajectories that provide tracking and 

scaling of movements [97], suggesting this region is continuously evaluating the temporal 

statistics of the environment. This final point is critical; previous studies have demonstrated 

a ‘modality-appropriateness’ effect in time perception, such that, when measuring a time 

interval presented with multiple sensory modalities, time estimates gravitate towards the 

modality with the lower variance [98]. Across sensory modalities, auditory time estimates 

have been shown as more precise than visual time estimates [99], with tactile estimates 

in between [100]. Yet, movements have been found to affect visual, tactile, and auditory 

estimates, suggesting that movements afford a precision that is better or at least as precise as 

any other sensory domain.

We suggest that a Bayesian cue combination process can explain disparate findings across 

the literature. In some ways, these effects appear to be universal to time estimates; 

movement-related effects have been found to influence sensory time estimates across 

sensory domains, task designs, and also at both sub- and supra-second intervals. The latter 

effect is particularly relevant, given that sub-second interval timing has been shown to rely 

more on subcortical structures traditionally associated with movement [5]. By contrast, 

many common movements span the multi-second domain, and so movement-related effects 

on longer intervals may not be surprising. Nevertheless, the above literature highlights the 

fact that not all movements are equal with respect to influencing time. Indeed, we suggest 

time can be affected differently across movement direction, rhythmicity, effector, and vigor. 

These differences may arise from the natural variance of particular movements [101], which 

may relate to how commonly they are employed [102]. Notably, these differential effects 

of movement parameters may arise as a result of magnitude-based priors leading to a bias 

in time estimates in certain directions (e.g., shorter movements take less time than longer 

movements; [103]).

As stated above and in Box 2, Bayesian cue combination can provide a method by which 

noisy sensory estimates are combined optimally. In this case, movements shift timing by 

pulling estimates towards their (more precise) duration. No studies that we are aware of 

have investigated how well humans can time the duration of their own movements, however, 

according to MLE predictions, movement timing should have a precision that is equal to 

or better than auditory timing precision. A further prediction is that, when the more precise 

modality becomes less reliable, its weighting in the combined estimate will decrease. Thus, 

if movements are made less reliable or uncertain, they should have less of an influence 

on time estimates from other modalities. Similarly, the cue combination framework for 

multisensory timing holds most strongly when the sensory modalities demarcating time 

intervals are filled rather than ‘empty’ [104]. This distinction may explain why movement 

effects are inconsistent or absent when the interval being timed is also empty [81]. By 

contrast, during an empty interval, the motor system is likely still active, and so one may 

predict that empty intervals should instead lead to stronger movement-related effects. The 

finding that this prediction does not hold has implications for the neural instantiation of cue 

combination effects for movement and time.
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Neural implementation

If Bayesian cue combination can explain movement-related effects on time, then how are 

these effects implemented in the brain? We outline two possibilities (Figure 4D, Key figure). 

First, as described above, motor structures predominate neural timing systems, and so 

one possibility is that movements lead to changes within these motor circuits themselves, 

most notably the SMA, possibly by sharpening duration or category-tuned neurons, which 

are driven by sensory and motor responses, or by altering the speed and variance of state-

space trajectories. This possibility, which we term Feedforward Enhancement, suggests 

that motor effects on time occur within motor regions themselves in an adjunctive manner 

[29]. Indeed, given that the motor system is active during timing, regardless of whether 

subjects are moving or not [11,105], timing computations may be intrinsically driven and 

shaped by motor activity. Previous work demonstrating timing responses in motor and 

premotor cortices has also suggested that the motor system may develop internal models 

of predictable events in time [106], for use in guiding future movements with increased 

temporal precision [87].

Additional evidence for Feedforward Enhancement comes from neural recordings in non-

human primates, demonstrating motor system trajectories of neural firing rates that are 

used to encode the duration of intervals [90,107]. These trajectories may be employed 

across a variety of timing tasks and domains [108,109]. Yet, given this involvement, why 

would concurrent movements enhance timed responses, rather than hinder them [110]? One 

possibility is that, when remaining immobile, subjects are faced with a variety of possible, 

competing movement trajectories, whereas during movement the brain can exploit corollary 

feedback from movements to dynamically update neural trajectories [111]. Movement 

preparation offers a similar reason for enhancement, as the specific movement to be made is 

being prepared over alternatives, which shifts motor cortex activity into a more active state 

[112]; recent work further suggests movement preparation shifts spontaneous M1 activity 

into an optimal subspace for engaging in the intended movement [111]. Further, recent 

modeling work using feedforward neural networks has demonstrated that reinforcement 

learning agents can learn to time intervals by self-generating idiosyncratic movement 

patterns that can be exploited as a temporal measurement [113].

Altogether, Feedforward Enhancement would predict that movement-related timing effects 

depend on motor cortex activity and, crucially, on corollary feedback from movements. One 

prediction from this hypothesis is that altering proprioceptive information about a subjects 

movements should alter or eliminate movement-related timing effects. For example, if a 

subject were moved automatically without any volition, then no movement-related effects 

should exist. Similarly, if a subject lost all access to feedback regarding movements, then 

movement-related effects should similarly be reduced. Previous work with deafferented 

patients has shown a disruption in motor timing abilities which is stabilized in presence of 

visual feedback [114,115]. Further, movement-related effects on time persist even when limb 

position is occluded [51,57].

However, while the presence of motor activity during non-motor timing is evident, this 

does not necessarily mean that motor-related effects on timing are occurring there. Indeed, 
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work with recurrent neural networks demonstrates that timed responses can be ‘learned’ by 

any neural region [116,117]. As such, motor activity during perceptual timing may be a 

byproduct of the way in which time intervals are learned [73], owing to the development 

of the motor system in primates as a critical node for acquiring cognitive skills [118]. 

Therefore, a second possibility is that motor activity provides recurrent influence back 

on the sensory regions themselves, thus leading to more precise, yet biased neural firing 

in sensory cortices. This possibility, termed Active Sensing [119], has more empirical 

support from other domains, where motor movements have been found to alter and enhance 

[120,121] responses in sensory regions (Figure 4D).

Under an Active Sensing framework, sensory responses will be altered by motor activity 

evoked by concurrent movements while estimating time, which will in turn further influence 

motor-related timing activity. This hypothesis more closely matches experimental data from 

other domains, in which movements lead to substantial changes in sensory activity [122] that 

can further enhance neural responses to sensory stimuli [123]. Further work in humans has 

demonstrated tight linkage between sensory detection and motor activity [124]. For example, 

walking in an open environment can enhance peripheral visual contrast sensitivity [125], and 

recent work has demonstrated that movement plans can be decoded from sensory regions 

associated with the consequence of those movements [126].

For movement-related effects on explicit timing, the Active Sensing hypothesis matches 

some experimental findings. For example, the Active Sensing hypothesis predicts that 

movement-related effects critically depend on activity within sensory cortices. This 

prediction explains why movement-related effects appear to be strongest for time intervals 

that are ‘filled’ rather than ‘empty’ [29]. Further, recent evidence demonstrating that 

motor regions rhythmically enhance sensory responses to perceived rhythms according 

to preferred frequency bands, additionally supports the Active Sensing hypothesis [67]. 

Yet, movement-related effects have also been observed for empty intervals, although less 

consistently across different modalities [56]. Additionally, interesting work has shown that 

the sensory consequences of planned movements elicit less sensory-evoked activity [127], 

which should therefore lead to shorter perceived durations [128], whereas the opposite 

is actually observed. These inconsistencies suggest that both Feedforward Enhancement 

and Active Sensing hypotheses need to be further examined to determine which can best 

instantiate cue combination and movement-related effects (see Outstanding questions).

Concluding remarks

In this review we have introduced a basic framework of how movement information can 

bias timing while improving its precision, from the overlap of neural systems to behavioral 

correlates. We note that this area of study is in its early stages: most movement-timing 

studies have examined effects of brief [53], discrete [30], or ballistic movements [80], and 

have tightly controlled motor variables of interest in laboratory settings. Naturally, these 

come with some limitations. The multi-effector and multisensory qualities of our everyday 

experiences call for more ecologically valid experimental paradigms. For example, future 

studies could focus on time perception outcomes for longer-scale continuous movements, 

movements with varying velocity profiles (e.g., biological vs. non-biological motion), 
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and movements with uncertainty or competition between possible action plans [129]. 

Additionally, it would be worthwhile to study how timing relates to whole-body movement 

parameters (e.g., locomotion/gait, rotation, and head movement) and multi-effector motor 

sequences. High-level movement characteristics like these have not yet been investigated in 

detail for timing, and with the emergence of sophisticated motion tracking and virtual reality 

environments, the feasibility of studies with greater ecological validity is increasing [130].

Key figure

Motor movements provide a privileged channel for duration information

Figure 4. 
(A) Enhancement and bias effects in time perception can be explained by a cue combination 

framework (Box 1), in which movement provides the greatest temporal fidelity. When 

subjects measure sensory time intervals (S), presented in different modalities (auditory, 

visual, or somatosensory), this information is transformed into a noisy estimate with 

variance σS that is transferred along sensory pathways to the SMA and accompanying motor 

circuitry. Concurrent movements, here of a robotic arm, confer a second duration estimate 

(M) that is perceived with greater reliability and lower variance σM. (B) Both estimates 

are combined via cue combination equations to form a sensorimotor estimate of duration 

(SM) that is both more precise, yet biased towards the movement duration estimate. (C) Cue 

combination framework for combining two signals from different modalities with different 

levels of precision (top: likelihood distributions for each modality and combination; bottom: 

psychometric curves for a standard time bisection task). Left panels display the case when 

both modalities have the same mean; right panels display the case with different means. 

(D) In a Feedforward Enhancement mode, movement directly influences time estimates 

occurring within the SMA and associated motor regions; Conversely, in an Active Sensing 
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mode, sensory responses are influenced via feedback from movement-related regions (green 

broken traces).
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Glossary

Accuracy
refers to the closeness of measurements to a particular value and can be seen as the 

correctness of measurements.

Chronostasis
a temporal illusion in which the perceived duration of an event or interval is dilated 

immediately following a saccade (i.e., quick eye movement). Has also been shown to occur 

with other types of actions (i.e., arm movements) and with various types of stimuli (i.e., 

visual, auditory).

Empty intervals
time intervals presented as the difference between two brief sensory events.

Explicit timing
tasks in which subjects are specifically told to measure or attend the passage of time.

Filled intervals
time intervals presented as continuous, sustained sensory events.

Intentional binding
a phenomenon in which stimuli that occur as a consequence of an action are perceived to 

occur earlier in time (closer to the action) than stimuli that do not occur as a consequence of 

an action; can be used as an implicit measure of a sense of agency.

Magnitude
size, extent, or intensity along a continuous scale; in this case referring to the size of 

something either in regards to space (length, distance), numerosity (number), or time 

(duration).

Motor timing
timing tasks in which a motor action determines the to-be-timed interval (temporal 

reproduction and synchronization-continuation task are both examples of this).

Perceptual timing
timing tasks in which no overtly timed motor action is required and subjects may passively 

view the stimulus and estimate its duration (bisection and discrimination are both examples 

of this).
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Post-action period
refers to when the to-be-timed interval occurs immediately after the execution of a manual 

movement.

Pre-action period
refers to when the to-be-timed interval occurs while a subject is preparing to make a manual 

movement.

Precision
refers to the closeness of measurements to each other and can be seen as the consistency of 

measurements.

Synchronization-continuation task
subjects are to tap along to a rhythmic beat (synchronization) and then continue tapping at 

the same rhythm after the beat stops (continuation).

Temporal bisection task
subjects are presented with time intervals which they must classify into ‘long’ and ‘short’ 

categories. This categorization can occur relative to previously trained anchor points, or to a 

running average of all presented intervals.

Temporal discrimination task
similar to temporal bisection tasks except subjects are presented with two (or more) intervals 

within a given trial and must compare their relative durations.

Time reproduction task
subjects are presented with a sample duration and are required to reproduce that duration. 

The manner in which this is done is dependent on the experimental context; in some cases it 

is pressing and holding a button for the length of the duration, pressing a button to terminate 

the length of the duration, or moving for the length of the duration.
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Highlights

Time perception and movement are linked through interactions with the environment.

Recent psychophysical studies have begun to demonstrate that movements, while 

previously construed as an endpoint for timing, informs and shapes the perception of 

time.

These studies demonstrate that movements can bias our perception of time, but also 

enhance it in some circumstances.

A Bayesian cue combination framework, in which movement provides its own timing 

signal can explain both bias and enhancement effects.

Cue combination effects can be mediated neurally either via feedforward or active 

sensing modes.
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Box 1.

Models of time perception

Numerous models have been developed over the past 50 years to describe and explain 

timing behavior. Of these, the most influential has been Scalar Expectancy Theory (SET), 

which proposes that timing results from a tripartite process in which an internal clock 

emits and accumulates pacemaker pulses, proceeding at a particular rate and variability, 

then compares the accumulated amount to a remembered criterion before making a 

ratio-based decision [131]. An alternative to this is the Behavioral and Learning Theory 

of Timing (BeT & LeT), which instead suggest that temporal accumulation emerges as 

a successive chaining of distinct behavioral ‘states’ with variable intervals between them 

[132,133]. More recent work conceives timing as a time-adaptive opponent drift-diffusion 

model (TopDDM) process, in which opponent populations of neurons generate a rate-

adaptable process that elapses with the perceived interval [134]. Alternatively, recurrent 

neural network (RNN) models suggest that activity develops across stereotyped state-

space trajectories, allowing for the measurement of distinct time intervals [108,109,135]. 

Across all of these models, bias and variability can be seen as arising from shifts 

in pacemaker rate or neural firing trajectories, as well as the variance/shape of those 

trajectories. For example, SET would posit a change in pacemaker rate/variance, whereas 

BeT/LeT might suggest changes in the number of states, or the variance of inter-state 

intervals. Similarly, TopDDM might suggest a shift in drift rate or its variance while 

timing, whereas RNN models would suggest changes in the speed or variance of the 

trajectory. Thus, a critical question for models of timing that posit a sensorimotor 

component, is if they can recapitulate movement-related changes in timing, both in 

conditions where movement is critical for the timed response (motor timing) or not 

critical (perceptual timing).
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Box 2.

Bayesian cue combination

Bayesian Cue combination is a proposed mechanism by which the brain can combine 

noisy sensory estimates from different modalities. It serves as an extension of Bayesian 

Decision Theory, in which noisy sensory estimates are perceived as draws from a 

likelihood function with a certain mean (μ) and variance (σ2) that are then combined with 

a prior distribution of previous estimates to form a posterior estimate of the stimulus. In 

the case where two sensory modalities are presented, the sensory estimates are combined 

optimally using Maximum Likelihood Estimation (MLE), in which the variance of the 

multisensory estimate distribution is the product of the unisensory variances divided by 

their sum (see Figure 4B in main text). Further, the mean of the multisensory estimate 

is determined by a weighted sum of the unisensory means, where the weights are 

crucially, and inversely, related to the unisensory variances. In this way, the multisensory 

estimate mean is always 1) closer to the unisensory estimate of whichever modality is 

more precise, and 2) itself more precise than either of the unisensory estimates alone. 

Applications of Bayesian Cue Combination have been used to explain how the brain 

combines estimates of visual and haptic stimuli [136], and auditory and visual stimuli 

[137]. For time perception, Bayesian Cue Combination has also, to varying degrees of 

success, described and predicted behavior in the timing of auditory and visual stimuli 

[104], and visual and tactile stimuli [138] in humans. Applications of Bayesian Cue 

Combination have also been used to explain temporal averaging in rats [139]. For 

movement-related effects, this framework can explain both precision and biasing effects 

(see Figure 4C in main text).
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Outstanding questions

If the spatial properties of movement cause temporal magnitudes to be biased, is it the 

size of the area in which the movements occur, the trajectory length of the movement, or 

both causing the bias?

How is the reliability (i.e., ‘noisiness’) of a motor signal evaluated during optimal 

integration? For example, are erroneous, premature, or discontinuous (e.g., intermittent 

starting and stopping) movements considered noisier? Do these parameters alter how 

movements impact time?

How do movements of different effectors (i.e., hand, finger, foot, head, full body) 

differentially influence the perception of time, and can these be studied together in 

ecological settings?

Do movement goals (or lack thereof) influence perceptual timing? That is, do movements 

have to be task-relevant to enhance timing? Will uncertainty of movements bias timing?

How does the volitional control of movement versus passive movement affect the 

perception of time?

Can the link between movement and timing be used in diagnosis and treatment 

of movement disorders and psychiatric conditions with parallel cognitive and motor 

symptoms (e.g., schizophrenia)?

How does short- and long-term motor training transfer to improved perceptual timing 

mechanisms? Do elite athletes and expert musicians improve in the same way?

Where are movement-related changes in timing occurring in the brain? Can these 

responses distinguish between feedforward and active sensing hypotheses?

How does stimulating different brain regions influence movement timing interactions.

What role do neural oscillations play in coordinating between motor and sensory regions 

during movement-related changes in time perception?
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Figure 1. The motor system is involved in time perception.
(A) Results from a recent meta-analysis of neuroimaging time perception studies (results 

adapted, with permission, from [5]) exhibiting greater activation likelihood in motor cortical 

regions (red highlights, from AAL atlas for SMA and precentral gyri) over nonmotor ones. 

Specifically, motor regions exhibit a higher mean proportion of significant voxels than 

non-motor regions, even when motor timing tasks are excluded (inset); additionally, mean 

activation likelihood estimation (ALE) values within motor regions are typically higher 

than those in non-motor regions (right side), again when excluding motor timing studies 

(inset). (B) The SMA exhibits tuning for duration and categorization. Left, high-resolution 

7T fMRI ‘chronotopy’ of SMA in a time discrimination task reveal rostrocaudal gradients 

of activation. Adapted, with permission, from [8]; right, single-unit recordings of SMA 

neurons in primates performing a time bisection task reveal tuning preferences for the 

bisection point of three different interval ranges. Adapted, with permission, from [15]. (C) 
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Movement-induced changes in time perception, while a subject engages in an action, are 

linked to increases in SMA activity. Adapted, with permission, from [29].
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Figure 2. Concurrent movements bias time perception.
(A) While categorizing auditory tone lengths, increasing the viscosity of a concurrently 

moved robotic arm leads to shorter perceived durations. (B) Similarly, reproduced time 

intervals experienced with greater viscosity are also shortened. (C) Holding a force gripper 

with increasing/decreasing force while judging tone sequences as accelerating/decelerating 

enhances the separation between perceptual judgments. (D) When judging time intervals 

while performing circular movements behind an occluder at different speeds, faster speeds 

lead to shortened perceived time intervals. (E) When performing a finger hyperextension at 

different speeds, longer movement lengths lead to longer perceived intervals. (F) Similarly, 

when tapping with the index finger, concurrently presented time intervals are lengthened at 

the halfway point between finger taps, but shortened at times closest to the preceding or 

upcoming finger tap. Data from (A,B): [51]; (C): [55]; (D): [47]; (E) [46]; and (F) [52], with 

permission.
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Figure 3. Concurrent movements enhance timing.
(A) When freely allowed to move a robotic arm while categorizing auditory time intervals, 

the perception of those intervals is more precise (lower coefficient of variation) than when 

the arm is held in place during listening. (B) When discriminating auditory intervals, 

perception is more precise when interval onset is initiated by the subject than when it is 

presented at a fixed onset. (C) When tapping along with an auditory beat (blue trace), 

subjects are more precise at detecting deviant tone intervals of different durations. (D) 

Action improvements in beat perception additionally show greater accuracy and reduced 

variability at a preferred tempo of 1.5Hz. (E) In rats, when trained to walk along a moving 

treadmill to a target at fixed time (7s), rats that develop a stereotyped movement pattern 

(gray traces) exhibit improved accuracy and greater precision of the entry time (ET). 

Asterisks refer to significant effects at P < 0.05, from the original sources. Data from (A): 

[57]; (B) [56] (C) [64]; (D) [67]; and (E) [59], with permission.
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