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Abstract

Wearable devices, such as smartwatches and activity trackers, are commonly used by patients 

in their everyday lives to manage their health and wellbeing. These devices collect and analyze 

long-term continuous data on measures of behavioral or physiologic function, which may provide 

clinicians with a more comprehensive view of a patients’ health compared to the traditional 

sporadic measures captured by office visits and hospitalizations. Wearable devices have a wide 

range of potential clinical applications ranging from arrhythmia screening of high-risk individuals 

to remote management of chronic conditions such as heart failure or peripheral artery disease. 

As the use of wearable devices continues to grow, we must adopt a multifaceted approach with 

collaboration amongst all key stakeholders to effectively and safely integrate these technologies 

into routine clinical practice. In this Review, we summarize the features of wearable devices and 

associated machine learning techniques. We describe key research studies that illustrate the role of 

wearable devices in the screening and management of cardiovascular conditions, and we identify 

directions for future research. Lastly, we highlight the challenges that are currently hindering the 

widespread use of wearable devices in cardiovascular medicine, and we provide short-term and 

long-term solutions to promote increased use of wearable devices in clinical care.

INTRODUCTION:

The evolution of digital health technologies has allowed individuals to assume an active role 

in the management of their cardiovascular health and facilitated increased patient-provider 

contact. Wearable devices are digital medicine tools that process data captured by mobile 

sensors to generate measures of behavioral and/or physiological function such as physical 

activity, heart rate, heart rhythm, and sleep 1. The wearable device market is now a multi-

billion dollar industry 2. A large population survey indicates that many individuals use 

a wearable device to promote healthy behaviors or to ‘manage a diagnosed condition’ 3. 
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While the clinical integration of wearable devices remains in the earliest stages, their use 

has the potential to broadly impact cardiovascular medicine through lifestyle modifications 

for primary prevention, arrhythmia screening of at-risk individuals, and remote management 

of patients with established heart failure (HF) or peripheral artery disease (PAD), among 

other chronic cardiovascular conditions. There are several factors limiting the clinical 

use of wearables including concerns about data privacy, device accuracy, regulatory and 

reimbursement policies, and lack of dedicated clinical staff to monitor, interpret, and 

respond to the vast amounts of data generated by devices. Our work aims to provide an 

overview of and expand upon the previously published reviews on wearable devices in 

cardiovascular medicine 3–7. In this Review, we describe the features of consumer-grade, 

medical-grade, and research grade devices, the analytical machine learning techniques that 

augment the clinical utility of wearable devices, the role of wearables in the diagnosis 

and management of common cardiac conditions, and the challenges that are limiting more 

widespread clinical adoption of wearables. Lastly, we propose a short-term and long-term 

roadmap to maximize the value of wearable devices in clinical care and management of 

cardiovascular disease.

FEATURES OF WEARABLE DEVICES:

Overview of Wearable Devices:

Wearable devices have several forms including: smartwatches, bands, patches, rings, medical 

ear buds, and clothing-embedded devices. They use motion and biometric sensors to capture 

several physiologic parameters including step count, activity intensity, heart rate, heart 

rhythm, blood pressure (BP), oxygen saturation (SpO2), sleep, maximum oxygen uptake 

(VO2 max), and temperature. As illustrated in Figure 1, wearable devices have many 

potential clinical applications to enhance the screening and management of cardiovascular 

conditions.

Wearables may be divided into consumer-grade, medical-grade, or research-grade devices. 

A consumer-grade wearable is available on the market, advertised toward the broader 

population, and intended to function for fitness, wellbeing, or entertainment purposes. A 

research-grade wearable may or may not be available on the market, is targeted for research 

scientists, and is intended to collect data for research purposes. A medical grade wearable 

is available on the market, but often only accessible with a prescription from a clinician, is 

advertised toward patients and clinicians, and intended for medical applications. Importantly, 

with our above definitions, the designation of a wearable may change depending on the 

context of use. This is particularly true for wearables with intended use for health-related 

measurements, where the line between consumer, medical, and research uses can become 

blurred. An example of this is the Fitbit smartwatch, which has been used frequently 

in clinical trials, medical, and consumer contexts, for each context falling under our 

designation of research-, medical-, and consumer-grade wearables, respectively. Another 

aspect of medical-grade devices is that they fall under FDA oversight. A single wearable 

may have multiple functions, some of which fall under regulatory oversight and others of 

which do not, making it difficult to classify the entire device into just one category (for 

example, irregular heart rhythm detection versus SpO2 measurement, which are regulated 
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differently but available together on multiple devices at the time of writing). Thus, as the 

field evolves, it may become appropriate to rethink the nomenclature to classify wearables.

Sensor Technology:

This section highlights the common sensing modalities utilized in wearable devices as well 

as some novel sensing modalities that have demonstrated potential in this space (Figure 1).

Accelerometry: Accelerometers are microelectromechanical system (MEMS) sensors that 

measure the acceleration of an object through capacitive, piezoresistive, and piezoelectric 

effects 8. Accelerometers are widely used in wearable devices to measure the volume and 

intensity of physical activity and energy expenditure 8. Accelerometers can be placed in 

various locations of the body (i.e. torso, arm, ankle, etc.), but most smartwatches and activity 

trackers use the wrist position due to user comfort.

Photoplethysmogram: The photoplethysmogram (PPG) signal is an optical 

measurement of the changes in blood volume in the microvascular tissue bed, which can be 

measured by shining a light on the skin and collecting the reflected or transmitted wave of 

the light with a photodetector 9. PPG is widely used in wearable devices to track heart rate, 

heart rhythm, and pulse oximetry 10. PPG may ultimately have other healthcare applications 

including monitoring blood pressure and vascular aging 11.

Electrocardiogram: The electrocardiogram (ECG) signal captures the propagation of 

electrical action potentials in the heart. The ECG measures the difference in electrical 

potential between various points on the body with skin-mounted electrodes and depicts 

the depolarization and repolarization of the heart 12. The ECG can be used to monitor 

heart rate, detect arrhythmias, and identify myocardial ischemia or infarction, among other 

applications. Wearable devices commonly use a patch for arrhythmia detection in the 

outpatient setting 13.

Seismocardiogram: The seismocardiogram (SCG) signal is the local vibration of the 

chest wall that occurs with every cardiac cycle including: movement of the heart, opening 

and closing of the heart valves, and movement of blood in the aorta. SCG can be recorded 

using an accelerometer or gyroscope placed on the mid-sternum 14. Multiple studies 

have demonstrated the potential for SCG to estimate cardiac time intervals14, changes 

in hemodynamics14, and characterize whether heart failure patients are compensated or 

decompensated15.

Ballistocardiogram: The ballistocardiogram (BCG) signal is a measurement of the recoil 

forces of the body in response to the cardiac ejection of blood into the vasculature. BCG 

is generally recorded in the longitudinal (head-to-foot) direction using a modified weighing 

scale, bed or table-based systems14. Researchers have demonstrated the potential for BCG to 

estimate heart rate14, and assess the clinical state of patients with HF 9.

Continuous Glucose Monitoring: Continuous glucose monitoring (CGM) is a method 

of measuring glucose levels in the body in real-time through a small sensor under the skin, 

typically on the abdomen or arm16. The sensor measures the glucose levels in interstitial 
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fluid, which is connected to a transmitter that sends the glucose readings to a monitoring 

device or mobile phone. Users can track their glucose over time and receive alerts when their 

glucose levels are too high or too low, which can help to prevent dangerous complications 

such as hypoglycemia or hyperglycemia.

Artificial Intelligence:

The enormous volume of information from wearable devices requires intelligent algorithms 

and computational power to generate meaningful information. Machine learning (ML) 

is a method of data analysis that automates analytical model building, which evolved 

to recognize patterns in data without explicitly programming for particular tasks. The 

advantages of ML are adaptability, scalability, automation, and the ability to handle 

multidimensional and multivariate data. ML can be divided into supervised, semi-

supervised, unsupervised, and reinforcement learning (Table 1). In supervised learning, the 

outcome variable is known and the algorithm attempts to learn the relationship between 

the outcome variable (i.e. atrial fibrillation) and the estimating variables (i.e. raw ECG data 

and summary ECG metrics) using parametric and non-parametric algorithms. Supervised 

learning can be further classified for the intended tasks: regression (where the target 

variable is continuous, i.e. heart rate), classification (where the target variable is discrete, 

i.e. arrhythmia existence or not; type of arrhythmia), and forecasting (predicting future 

outcomes based on the past and present data, i.e. prognosis in HF). Unsupervised learning 

is used to investigate groupings or patterns in the data where the label is not known, and 

semi-supervised learning is used when labels are known for only a portion of the data. 

Reinforcement learning algorithms focus on trial and error, where the model learns from 

past experiences and begins to adapt its approach in response to the situation to achieve 

the best possible result, which can be used for remote home monitoring and just-in-time 

adaptive interventions (JITAI).

Deep learning (DL) models, a branch of supervised ML, have become increasingly popular 

in recent years and have achieved excellent performance in many biomedical applications, 

particularly in detecting and predicting cardiovascular diseases such as arrhythmias, 

myocardial infarction (MI), HF, and coronary artery disease (CAD) 17. As opposed to 

more traditional ML models (i.e. random forest, support vector machine), DL models are 

more complex in nature. Although DL models have demonstrated superior performance 

in cardiovascular disease detection, these models cannot easily learn from small datasets. 

More importantly, they require intelligent design and often result in very opaque algorithms 

that are challenging to interpret and have a higher chance of overfitting. In addition, these 

algorithms learn and save millions of parameters, which requires extensive computational 

power to train the models. As such, DL models are difficult to deploy on wearable hardware, 

which are usually very limited in computation power and storage space.

Traditional ML and DL algorithms can reduce noise in the data, particularly wearable data 

(i.e. motion artifact, intra- and inter-subject variabilities), and extract relevant information 

from high-dimensional data. Representation learning is a method used in ML/DL to extract 

useful information from raw data18. The goal of representation learning is to find a compact 

and informative representation of the data, in a way that captures the most important 
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information and discards the noise or irrelevant information. This can be done by training 

a neural network to learn a set of features from the data, or by using unsupervised 

learning techniques such as clustering or dimensionality reduction. Once the data has been 

transformed into a more useful representation, it can be used for various tasks such as 

classification, regression, or generation. Representation learning is particularly useful when 

the data is high-dimensional, unstructured, or difficult to understand, as it can make it easier 

to extract insights or make predictions.

WEARABLES IN CLINICAL CARE

This is not designed as a systematic review. Instead, the aim of this section is to highlight 

the pivotal clinical trials or novel proof-of-concept studies on the use of wearable devices in 

the screening and management of cardiovascular conditions (Table 2). Primary literature was 

acquired by searching for articles with keywords such as wearables, smartwatch, mHealth, 

telemonitoring, etc. The referenced articles are not exhaustive, but were selected based on 

the level of evidence or number of citations with some additional studies included at the 

authors’ discretion to illustrate findings that may help inform future directions.

Physical Activity:

Physical inactivity increases the likelihood of premature mortality or morbidity from CAD, 

type 2 diabetes, and mental illness 19. For example, a prospective cohort study of 16,741 

older women demonstrated an inverse relationship between daily steps at enrollment, 

measured with an accelerometer for 7 consecutive days, and all-cause mortality as higher 

daily step totals were associated with lower mortality rates until the benefit plateaued around 

7,500 steps/day 20. A longitudinal cohort study leveraged the All of Us Research Program 

to demonstrate an association between activity levels and incident chronic diseases with 

commercial wearable devices that were linked to an individual’s electronic health record 

(EHR) 21. In a cohort of 6,042 participants with a total of 5.9 million person-days of 

monitoring, higher daily step counts were associated with a reduced risk of several chronic 

diseases including hypertension, diabetes, obesity, and sleep apnea. Given that many adults 

fail to reach suggested levels of physical activity, this is a relevant public health issue that 

warrants attention.

There are hundreds of RCTs testing the use of activity trackers in various populations. 

One umbrella review suggested that interventions that incorporate wearable devices increase 

physical activity (PA) by approximately 1,800 steps per day, walking by 40 minutes per day, 

and moderate-to-vigorous physical activity (MVPA) by 6 minutes per day 2. The umbrella 

review demonstrated an average weight loss of 1kg with wearable PA interventions. The 

impact on other clinical outcomes (i.e. blood pressure, lipid profile, and hemoglobin A1c) 

and quality of life (QOL) outcomes were modest and often statistically insignificant. 

However, changes in these clinical outcomes may be delayed relative to physical activity and 

may need longer follow-up to become apparent. The umbrella review was comprehensive 

and included a wide range of interventions. For example, one intervention aimed to improve 

PA in a worksite environment by automatically transmitting data from activity trackers to an 

internet-based program to provide employees with daily step goals through emails or text 
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messages, which had been adapted based on their activity levels 22. While this stand-alone 

intervention was completely automated, there were other studies with interventions that 

combined the wearable device with counseling sessions to create a multifaceted intervention. 

Brickwood et al. demonstrated that multifaceted interventions (i.e. wearable device and 

group or individual counseling) improved PA more effectively than interventions that only 

utilized wearable-devices 23. One systematic review and meta-analysis focused specifically 

on interventions with wearable PA devices in patients with cardiometabolic conditions 24. 

The review analyzed 38 RCTs with 4,203 total patients and found the interventions that 

combined wearable PA devices and regular follow-up sessions with healthcare providers 

(face to face or remotely) were associated with increased activity levels.

Behavioral change techniques (BCTs) such as personalized text messages, gamification, or 

just-in-time adaptive interventions (JITAIs), may enhance the impact of wearable devices on 

PA. The mActive study demonstrated that the combination of automated, personalized text 

messages with activity trackers increased PA levels in outpatient cardiology patients. The 

text messages were either positive reinforcement if the individual was likely to reach the 

daily step goal (10,000 steps) or booster messages to provide motivation when they were 

unlikely to reach the daily goal 25. A similar study design led to an increase of more than 

1,000 steps per day and improved quality of life in a population with pulmonary arterial 

hypertension 26. Gamification integrates elements such as points or achievements to promote 

competition and facilitate positive lifestyle modifications 27. For example, the BE FIT study 

of 200 adults comprising 94 families used a gamification intervention focused on behavioral 

economics principles to increase PA 27. Over the course of 12 weeks, the families were 

awarded 70 points at the start of each week. One family member was randomly selected 

each day as their team’s representative, and the family retained its points if that individual 

met their step goal on the previous day; otherwise, 10 points were deducted from the 

family’s total. This approach increased the average number of steps by approximately 1,700 

steps/day and a higher proportion of participants in the intervention arm achieved their 

daily step goals. Gamification interventions have successfully increased PA in a variety 

of populations including adults with uncontrolled diabetes 28, veterans with BMI ≥ 25 29, 

and families in the general population 27. However, reports on the sustainability of PA 

improvements following gamification interventions have been mixed. A systematic review 

on gamification interventions on PA demonstrated a very small to small effect on PA 

12-24 weeks after the intervention, and the long-term effect was weaker and decreased 

over time 30. The design of the gamification intervention seems to impact the sustainability 

of the results as one study in adults with obesity and type 2 DM demonstrated that a 

gamification with competition intervention sustained PA through 12 months more effectively 

compared to a gamification with support intervention in the same population 28. In contrast, 

a gamification intervention with social support and financial incentives in veterans with 

obesity demonstrated no sustainability over a 8 week period 29. Given the mixed results 

on sustainability, it emphasizes the importance of ongoing studies to identify the effective 

gamification elements for target populations. JITAIs are personalized interventions that 

integrate real-time information from wearable devices to deliver notifications at times that 

are most likely to impact behavior 31. For example, a JITAI promoting PA may be delivered 

when an individual is walking near a green space during leisure time as they are more 
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likely to integrate the behavioral change during this time 32. A systematic review of JITAIs 

demonstrated mixed results on PA and sedentary behavior; however, it is important to note 

that studies in this review were underpowered and only six studies were randomized 32. 

Effective JITAIs require the use of evidence-based BCTs and the delivery of notifications 

in a timely manner, but this may be lacking in some of the published studies. For example, 

the systematic review highlighted the lack of behavioral science evidence in the design of 

many JITAIs and identified one study where 43% of the intervention messages were not 

just-in-time 32 The mixed results likely arose due to the variations in the design and delivery 

of the JITAI in underpowered studies, which should be addressed as future studies aim to 

grow the supporting evidence base.

Some important populations have been underrepresented in device-based PA studies 

including individuals of lower socioeconomic status and patients with mental illness 2. 

Adults from lower socioeconomic status have more difficulty increasing their PA levels 

compared to the general population 33. This is a complex phenomenon with numerous 

contributing factors such as inadequate leisure time arising from increased occupational 

responsibilities or the inability to access a safe exercise environment 34. The ENGAGE 

study 33 demonstrated that a novel gamification intervention with a wearable activity tracker 

significantly increased PA in economically disadvantaged adults with an atherosclerotic 

cardiovascular disease (ASCVD) condition or 10-year ASCVD risk score ≥ 7.5% in 

Philadelphia, Pennsylvania by using self-chosen goals (rather than assigned) that were 

implemented immediately (rather than gradually over an 8-week period). For example, the 

individuals were either assigned a goal of 2,000 step increase from baseline or they were 

able to select a goal between 1,000 and 3,000 steps above baseline with the flexibility to 

change their self-selected goal at any time. Future studies are needed to further investigate 

physical activity in geographically and socioeconomically diverse populations.

Lastly, there is a need for device-based PA studies with longer follow-up to further 

characterize the impact of PA on clinical and psychosocial outcomes as the current 

studies may have inadequate follow-up to capture the physiologic benefits that emerge 

after consistent changes in activity. Additionally, the duration of the current studies may 

be too short to effectively build a new habit. While the necessary follow-up duration 

remains unclear based on the current body of evidence, this will be an important variable to 

investigate in order to guide the design of future studies.

Atrial Fibrillation:

Atrial fibrillation (AF) is associated with an increased risk of all-cause mortality and 

significant morbidity from stroke and heart failure 35. Modern wearables represent a 

practical and effective tool to screen for AF, with potential to reduce stroke and mortality 

rates if therapeutic anticoagulation is initiated in eligible individuals.

The development of an adhesive single-lead ECG chest patch, such as the Zio patch 

(iRhythm Technologies, San Francisco, California), improved the practicality of ambulatory 

cardiac monitoring as the patch was smaller and less burdensome than traditional Holter 

monitors 4. In a large cohort study of 26,751 patients who wore the Zio patch for clinical 

indications, there was incremental diagnostic yield for all arrhythmia types beyond the first 
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48 hours of monitoring 36. The mSToPS study found that AF screening in asymptomatic, 

high-risk patients with an ECG patch compared with non-monitored controls led to 

increased rates of new AF diagnosis and anticoagulation initiation, but they also had higher 

health care resource utilization (i.e. cardiology or primary care clinic visits) at 1 year 13. The 

mSToPS group subsequently published follow-up data, and the individuals who underwent 

AF screening had a lower rate of clinical events at 3 years compared to routine care. 

However, the impact of early AF diagnosis on these findings remains unclear due to the 

observational nature of the study 37. Two large studies investigated the ability of an irregular 

pulse notification from a PPG-enabled smartwatch or band to identify a new diagnosis of 

AF in a predominantly middle-aged population 38, 39. These studies demonstrated a low 

prevalence of HR irregularity and the diagnostic algorithms performed well with a positive 

predictive value of 0.84 – 0.92 for AF. Additionally, RCTs have demonstrated increased 

AF detection rates with continuous ambulatory ECG monitoring in specific high-risk patient 

populations (i.e. cryptogenic stroke or post-cardiac surgery). 40, 41

There are important limitations with the existing body of literature, some of which are 

being addressed by ongoing studies. For example, it remains unclear whether improved AF 

detection will reduce hard clinical outcomes with an acceptable safety profile. Future studies 

should also investigate whether wearable devices can be used to optimize an outpatient 

medication regimen in patients with an established diagnosis of AF, such as the up-titration 

of beta blockers or the addition of another anti-arrhythmic medication if the patient has 

insufficient rate control. Additionally, there are limited validation studies investigating the 

use of these devices in clinical practice. Current literature has raised concern about the 

accuracy of wearables for AF detection as some validation studies have found notably worse 

performance compared to industry reported data 42, 43. This highlights the need for rigorous, 

real-world validation studies in clinical settings.

Heart Failure:

Studies using wearable devices to improve HF management have reported mixed results. 

Several RCTs have assessed whether non-invasive telemonitoring interventions decrease HF 

readmissions or all-cause mortality. Many of these studies used multifaceted telemonitoring 

interventions with home ECG devices, BP monitors, and weight scales along with increased 

provider follow-up. The TEMA-HF 1 44 and TIM-HF 2 45 studies showed improved 

clinical outcomes while the TIM-HF 46 and BEAT-HF 47 studies did not improve all-cause 

mortality or readmission rates. It is difficult to evaluate the impact of wearable devices 

on clinical outcomes in these telemonitoring studies as the benefit may have been due to 

the extensive clinical follow-up rather than the use of wearable devices. The mixed results 

across studies likely stems from differences in the study population and significant variation 

in the telemonitoring interventions such as devices used, follow-up frequency, study team 

composition (i.e. general practioners, cardiologists, nurses), and intensity of intervention 

(i.e. patient-education, health coaching, urgency/frequency of medication adjustments). The 

impact of the study cohort is seen in the TIM-HF46 and TIM-HF 2 45 studies as similar 

physician-led telemonitoring programs only yielded clinical benefit when applied to the 

well-defined HF population of TIM-HF 2 (i.e. hospitalization in past year and no major 
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depression) compared to the broader TIM-HF study population (i.e. stable ambulatory HF 

patients).

Two studies investigated whether a ML algorithm that utilizes continuous data from 

wearable devices can predict HF decompensation. The MUSIC study 48 developed and 

validated a personalized algorithm to predict acute decompensation in 543 HF patients. The 

wearable chest patch continuously monitored heart rate, respiratory rate, activity, posture, 

and bioimpedance. The algorithm predicted HF decompensation with 63% sensitivity and 

92% specificity in the validation cohort. However, the results of this study were limited as 

42% of patients were excluded from statistical analyses, largely due to poor performance 

of the wearable device prototype. The LINK-HF study 49 is a multicenter, observational 

study of 100 patients who wore a chest patch that captured continuous ECG, accelerometry, 

impedance, and skin temperature. The ML algorithm used this data to predict impending 

HF hospitalization with 76 to 88% sensitivity and 85% specificity at a median time of 6.5 

days before the admission. Since the clinical alerts preceded the hospitalization by nearly 

one week, this may provide adequate time to make medication adjustments focused on 

preventing hospitalization.

Small studies with novel biomechanical sensors show promise in the management of HF 

patients. Remote dielectric sensing (ReDS) uses electromagnetic energy technology in a 

wearable vest to measure lung fluid volume for assessment of the patient’s volume status. 

Two studies suggest that ReDS-guided management, such as diuretic adjustment, may 

reduce HF readmission rates. 50, 51 In a prospective study of 50 patients hospitalized for 

acute decompensated HF, the use of daily ReDS measurements to optimize outpatient HF 

therapies during a 90 day follow-up period reduced HF readmission rates 50. A retrospective 

cohort study of 220 patients who were seen for a follow-up clinic visit shortly after HF 

hospitalization demonstrated that patients who received point-of-care ReDS testing during 

the clinic visit had a lower 30 day CV readmission rate compared to patients who did not 

receive a ReDS assessment 51. SCG measures the local vibration of the chest wall that 

occurs during the cardiac cycle. When SCG was measured in the setting of submaximal 

exercise with the six minute walk test, this technology was able to differentiate between 

decompensated and compensated HF patients 15.

Wearable devices are also used as a research tool in several HF trials to measure outcomes, 

such as physical activity or sleep, in response to a pharmacologic intervention. The 

NEAT-HFpEF study tested the hypothesis that extended-release isosorbide mononitrate 

would improve daily activity levels, as measured by accelerometers, in patients with 

heart failure with preserved ejection fraction (HFpEF)52. In this study, patients with 

HFpEF who received isosorbide mononitrate had decreased activity levels compared to 

placebo. The AWAKE-HF study used wrist actigraphy to investigate the impact of sacubitril/

valsartan on activity and sleep in patients with heart failure with reduced ejection fraction 

(HFrEF) 53, 54. They hypothesized that sacubitril/valsartan would improve PA levels 

and sleep compared to enalapril, but the study found no differences in either of these 

Actigraph-measured outcomes. Lastly, the HeartSleep Study used actigraph-measured sleep 

parameters, such as sleep efficiency and sleep duration, to demonstrate the sustained effects 
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of cognitive behavioral therapy in patients with chronic HF and insomnia compared to a 

self-management program 55.

In light of advancements in device technology and AI capabilities, future studies should 

employ wearable devices in large, RCTs to further clarify the clinical utility of wearable 

devices in remote HF management. There is a wide range of potential clinical applications 

that warrant future investigation including innovative applications of novel sensors and ML 

algorithms as well as the optimization of traditional HF therapies with existing consumer-

grade wearables. For example, studies could evaluate whether notifications from wearable 

devices can improve HF outcomes through increased adherence to standard medications 

such as diuretics and guideline-directed medical therapy. Additionally, the heart rate and 

blood pressure monitoring from wearable devices may provide clinicians with useful 

information to safely up-titrate guideline-directed medical therapy. Lastly, the existing body 

of evidence supports the ongoing use of wearable devices in research studies to assess PA 

and sleep outcomes, which are relevant measures in HF patients.

Cardiac Rehabilitation:

Cardiac rehabilitation (CR) incorporates patient education, lifestyle modification, and 

exercise training for secondary prevention of cardiovascular conditions 56. CR has been 

historically underutilized due to access and cost issues, so home-based CR programs were 

introduced to improve participation. The Telerehab II 57 study was a RCT that added an 18 

week PA telemonitoring intervention to conventional CR. The telemonitoring intervention 

utilized a triaxial accelerometer and weekly personalized automated feedback via email 

or text to encourage the patient to increase their step count by 10% each week. The 

intervention increased the patient’s physical fitness (peak VO2) and showed a trend toward 

fewer re-hospitalizations compared to the standard CR group. Several RCTs demonstrated 

that home-based CR and center-based CR similarly improved clinical outcomes 56. For 

example, a randomized controlled non-inferiority trial demonstrated that a telerehabilitation 

program that provided real-time, remote exercise monitoring with a chest-worn sensor 

and individualized coaching was similarly effective and reduced program delivery costs 

compared to center-based CR 58. The wearable device measured heart and respiratory 

rates, single lead ECG, and accelerometry during the exercise training sessions, which 

were transmitted to a CR specialist in real-time for review. Based on the wearable data, 

the CR specialist provided real-time individualized coaching, feedback, and support during 

the exercise sessions. The SmartCare-CAD study 59, 60 evaluated the efficacy of a novel 

cardiac telerehabilitation intervention that focused on preventing relapse into a sedentary 

lifestyle compared to center-based CR. The intervention included 6 supervised sessions, 

home based training with wearable devices, and weekly video meetings. The study used 

both a wrist-worn heart rate monitor and a hip-worn triaxial accelerometer, which was 

uploaded for review and feedback by an exercise specialist during weekly video meetings 

for 3 months. After 3 months, the weekly meetings stopped but patients continued to upload 

data from their wearable devices on a weekly basis to identify when relapses occurred. 

Relapses were defined as nonadherence (i.e. no data uploaded) or a 50% reduction in 

PA, and these prompted video consultations for additional coaching. The telerehabilitation 
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program similarly improved PA and quality of life (QOL) compared to center-based CR in 

this population of low-risk CAD patients.

Many of the existing studies used research-grade devices for PA monitoring, but recent 

studies have started to incorporate consumer-grade wearables. Nagatomi et al 61 randomized 

30 HF patients with physical frailty to a home-based CR program with exercise and 

nutrition coaching via a Fitbit device. The intervention improved 6 Minute Walk Distance 

(6MWD) and muscle strength compared to standard care without a CR component. The 

body of evidence for CR with wearable devices continues to grow and ongoing studies are 

investigating ways to maximize the durability of CR 31.

Peripheral Artery Disease:

The initial management for patients with symptomatic peripheral artery disease (PAD) 

is a supervised exercise program to improve functional capacity and QOL with 

guidelines supporting both center-based or home-based exercise programs (class IIa 

recommendation)62. Similar to CR, the center-based programs are underutilized due to 

access issues and the burden of traveling to the medical center on a regular basis, 

which highlights the importance of developing effective home-based programs. In a single-

center RCT, a home-based exercise program with a StepWatch3 activity monitor improved 

claudication measures to a similar degree as a standard supervised program 63. The patients 

quantified their home exercise sessions with the step activity monitor and the data was 

analyzed every two weeks by an exercise specialist in order to provide coaching and 

feedback during individualized meetings. The HONOR study 64 was the first RCT to 

investigate a home-based exercise program without any periodic medical center visits. 

Patients used a Fitbit Zip activity tracker to monitor their prescribed exercise regimen, and 

the data from the wearable device was available to the patient and their coach to facilitate 

discussions during their remote coaching sessions. The intervention did not improve 6MWD, 

which suggests there may be a clinical benefit from intermittent visits to the medical 

center when patients are enrolled in the home based programs. Notably, participants only 

adhered to 79% of the remote coaching sessions, which may have influenced the results 

as well. Recent studies have aimed to further refine the optimal design of home-based 

exercise programs. The LITE study 65 randomized 305 patients to a home-based exercise 

program with varying intensities: low-intensity (does not induce ischemic leg symptoms), 

high-intensity (induces ischemic leg symptoms), or non-exercise controls. Participants wore 

an accelerometer to capture exercise intensity, and were called weekly by a coach who 

used activity data to promote adherence. The low-intensity program was significantly less 

effective than the high-intensity program, and there were no appreciable differences between 

the low intensity and non-exercise control. As the evidence supporting home-based exercise 

programs continues to grow, future studies should aim to determine the most effective 

design and intensity for home-based exercise programs that are reproducible, sustainable, 

and generalizable to large patient populations.

Coronary Artery Disease / Myocardial Infarction:

The recovery period after an acute myocardial infarction (MI) is associated with an 

increased risk of complications such as arrhythmias or need for readmission. With the 
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exception of CR (described above), the existing literature on wearable devices in the 

post-MI recovery period is limited. Treskes et al 66 evaluated the efficacy and feasibility 

of smart technology to control home blood pressure in 200 patients after an acute type 

1 MI compared to usual care. The intervention utilized smartphone-compatible devices to 

measure daily single-lead ECGs, daily BP and weight, and continuous step measurements. 

Patients were contacted if their BP measurements exceeded pre-specified thresholds or if 

the ECG identified a new arrhythmia. The intervention also replaced some of the in-person 

follow-up visits with telemedicine visits. While this intervention was feasible and acceptable 

to patients, it did not improve blood pressure control. Large prospective clinical trials are 

currently lacking for all aspects of CAD management.

Diabetes:

Patients with type 1 diabetes or type 2 diabetes have an increased risk of cardiovascular 

conditions such as: CAD, stroke, PAD, and HF. Continuous glucose monitoring (CGM) 

devices have several benefits as they can provide the patients with safety alerts (i.e. 

hypoglycemia) and promote self-management of insulin dosing, while also providing 

clinicians with longitudinal data to optimize long-term glycemic control. Evidence supports 

the use of CGM for patients with type 1 or type 2 diabetes to improve glycemic control. 

For example, in a multicenter, RCT of 156 patients with type 1 diabetes on insulin 

infusions or multiple daily injections, the patients who intermittently scanned their CGM 

device (Freestyle Libre 2) with optional alarms for hyperglycemia or hypoglycemia had 

significantly lower hemoglobin A1c levels compared to the usual care group with traditional 

fingerstick testing 67. A multicenter RCT of 158 patients with type 2 diabetes on basal-bolus 

insulin regimens demonstrated that CGM (Dexcom G4 Platinum) reduced Hemoglobin 

A1c more effectively at 24 weeks compared to intermittent fingerstick readings 68. Similar 

results were seen in a cohort of 175 primary care patients with type 2 diabetes who were 

only managed with basal insulin, as the use of CGM (Dexcom G6) significantly reduced 

Hemoglobin A1c levels at 8 months compared to intermittent fingerstick testing69. In 

each study, there were no statistically significant differences in the total daily insulin dose 

between the CGM and the fingerstick control groups.

While the ability for CGM to improve glycemic control is now well-established, recent 

studies have started to investigate associations with clinical outcomes. CGM produces 

several measures of glycemic control, of which, time in range (TIR) likely represents a key 

metric in diabetes management. In a prospective cohort study of 6,225 patients with type 2 

diabetes 70, TIR was inversely associated with long-term risk of all-cause and CV mortality. 

TIR was assessed by CGM over a 72 hour period during a hospitalization and patients were 

subsequently followed for a median follow-up of 6.9 years. In a cross-sectional study of 510 

patients with diabetes and AF, patients underwent CGM for 72 hours after a hospitalization 

and there was an inverse relationship between TIR and stroke risk 71. Future studies are 

needed to further investigate CGM metrics, such as TIR, and hard clinical outcomes.
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CHALLENGES, OPPORTUNITIES, and FUTURE DIRECTIONS:

This section summarizes many of the challenges that are currently hindering the widespread 

use of wearable devices in clinical care (Table 3) and we identify some short-term and 

long-term solutions to transform the digital health landscape and improve cardiovascular 

care (Figure 2).

Avoiding Unintended Health Disparities:

The term digital divide describes the growing chasm between groups as a result of unequal 

access to digital technologies ranging from computers and the internet to smartphones 

and wearables. Groups who are most affected by the digital divide include people who 

are elderly, handicapped, of low socioeconomic status, and/or live in rural areas, with 

intersectionality often compounding the challenges. Apart from access, a lack of digital 

literacy can impede equitable implementation of digital technologies. Digital literacy 

describes an individual’s ability to use digital technology to access, understand, or 

communicate information through digital means. Given the rapidly changing technology 

landscape, including the continuous emergence of new types of devices, interfaces, and 

information, digital literacy remains a moving target.

Trends from the early stages of the COVID-19 pandemic highlighted significant inequities in 

access to telemedicine care. A cohort study of more than 148,000 patients in primary care 

and subspecialty clinics demonstrated that older age, Asian race, and non-English speaking 

were associated with fewer telemedicine visits completed, and older age, female sex, black 

race, Latinx ethnicity, and lower income were associated with less video use 72. Internet 

access is being increasingly recognized as a social determinant of health as this allows 

patients to participate in telemedicine visits, make appointments, and obtain test results 73.

Racial and ethnic minorities suffer from a higher prevalence of and mortality due to 

cardiometabolic conditions 74. These populations may stand to benefit from wearable device 

interventions to improve their cardiovascular health. However, there are several barriers 

that limit the efficacy of wearable devices in this population. There are currently a lack 

of non-English tools 3, limited culturally diverse mHealth interventions 74, and the social 

networks of these communities may not prioritize the adoption of wearable technology 

for health promotion75. Finally, the lower adoption of wearables in these groups may lead 

to their data being underrepresented in the large datasets used by ML models, which can 

further worsen disparities through data absenteeism 76.

Wearable devices offer several potential benefits to older adults, but they are not widely used 

by this population. In a survey of 1,481 older adults, aged 65 or above, only 17.5% of these 

individuals used a wearable device. Of the older adults who used a wearable device, the 

majority (80%) were agreeable to sharing the data with healthcare providers 77. Some of the 

barriers to older adults using wearable devices include: technology anxiety and resistance 

to change 78, visual, hearing, and motor impairments with increased age 77, and difficulty 

troubleshooting the device or user interface complexity 79. The current barriers illustrate 

that ease of use will be an important factor to increase the percentage of older adults who 

integrate wearable devices into their daily lives.
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The cost of wearable devices is quite variable depending on technological capabilities. 

Lower income may be an important driver of disproportionate use of wearable devices based 

on a survey of 4,272 adults in which wearable use was three times higher for individuals 

earning over $75,000 compared to individuals earning less than $30,000 5. Since adults with 

lower socioeconomic status experience greater difficulty increasing their PA compared to the 

general population 33, this warrants novel strategies to increase the accessibility of wearable 

devices in this population.

As we move to expand the clinical use of wearable devices, we must recognize the existing 

inequities, and work to design studies and clinical practices that achieve health equity rather 

than exacerbating current disparities. Efforts to address these disparities include improving 

broadband internet access, affordability of digital tools, language accessibility (i.e. through 

translations), and form factor accessibility (i.e. large text or voice-based agents for visual 

and hearing impairments, respectively). Recognizing internet access as a social determinant 

of health has been a critical first step 73, and efforts to advance broadband connectivity are 

already underway, for example through the Connect2HealthFCC Task Force (C2H Task 

Force). Another effort by the U.S. Department of Health & Human Services in 2022 

awarded over $55M to HRSA-funded health centers to enhance telehealth, digital patient 

tools, and health information technology to support underserved communities. Continued 

efforts to address the digital divide and digital literacy in the context of the evolving 

technology landscape will go a long way toward increasing the equitability of digital health.

Design of Future Clinical Studies:

While the initial studies highlight the exciting potential for wearable devices, the current 

body of evidence still has several limitations. The generalizability of many existing studies 

is limited as there are several populations that are underrepresented including economically 

disadvantaged individuals, older adults, non-English speaking, and patients with mental 

illnesses. The reproducibility of studies is limited by a large degree of heterogeneity in 

the study design, interventions, and wearable devices used, which partially arises from 

the everchanging technological advancements and the abundance of available wearable 

devices. Focus groups and pilot studies may be used to ensure that participant attitudes are 

incorporated into the study design to optimize adherence. Additionally, the future studies 

need to identify whether wearable devices and associated interventions lead to clinically 

meaningful results, which can be accomplished through long follow-up periods and hard 

clinical outcomes. Moving forward, we also need to evaluate the accuracy and validity of the 

wearable devices that are being used in these clinical studies through structured frameworks. 

Coravos et al. 80 proposed a robust framework for the assessment of the hardware and 

software components of wearable devices based on five key aspects: validation, security 

practices, data rights and governance, utility and usability, and economic feasibility. These 

evaluation frameworks will promote the use of safe and effective wearable devices in 

research studies and clinical practice, while identifying the devices that have suboptimal 

efficacy or the potential to cause harm. These frameworks may address some of the legal and 

ethical issues, such as privacy and data sharing policies and the lack of transparent wearable 

device algorithms, which must first be addressed before wearable devices can maximize 

their contributions to the Big Data movement designed to advance the field of cardiology. 
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81 Lastly, the FDA was able to provide the pharmaceutical industry with guidance and 

mandate large, long-term cardiovascular outcome trials (CVOTs) for the development of 

medications for certain conditions, such as type 2 diabetes 82, but this may prove more 

challenging for the wearables field since a consumer-grade wearable may not be under 

FDA oversight with the existing regulatory policies. While these limitations and challenges 

are not easily overcome, a close collaboration between clinicians, scientists, industry, and 

community members, especially from historically underrepresented populations, may allow 

for the design of large reproducible and generalizable trials needed to strengthen the existing 

data.

Integration of Wearables into EHR:

Wearable device integration with electronic health record (EHR) systems facilitates 

automatic transfer of real-time data on clinical measurements (i.e. heart rate or blood 

glucose) and behavior measures (i.e. physical activity or sleep) from a wearable device 

to an EHR system within the healthcare ecosystem. This integration of wearable data within 

the EHR is a promising approach to provide a more comprehensive view of patients’ health 

as the clinical measurements may predict or identify a new diagnosis or help guide the 

management of a chronic condition. Since patients can observe these clinical measurements 

in real-time, it also fosters shared decision making and improves patients’ engagement in 

their care. A recent study 21 leveraged the longitudinal Fitbit and EHR data from the All of 
Us Research Program to examine the association between daily steps and incident disease 

that can occur across the entire human phenome. This study illustrates the potential clinical 

value of linking wearables data to the EHR since it may provide valuable and actionable 

information to healthcare professionals and help advance personalized care.

However, the integration of wearables into EHR systems is currently in the infancy stage 

given technical and privacy barriers 83. Medical systems may not have sufficient technical 

infrastructure to support systems interoperability or to establish scalable workflows to 

protect patients’ confidentiality. Another important consideration for integrating wearables 

into the EHR is to ensure that the patients consent to sharing their data. This consent 

process should utilize clear documentation to avoid any misuse of a patient’s personal 

health information 84. Therefore, there is a need for additional policies to protect patient’s 

confidentiality and minimize the risk of information misuse by third parties. EHR systems 

must be able to manage the large amount of longitudinal data from wearable devices in 

order to utilize this information in a clinically meaningful manner. Clinicians will need 

to interpret the wearables data and tailor their recommendations to the individual patient, 

but it will be essential that EHR systems have the ability to identify the situations that 

warrant clinical intervention while minimizing false alarms to avoid an unintended increase 

in clinical workload. Lastly, there is a need for user-friendly interfaces to engage both the 

providers and the patients in the routine use of wearables in clinical practice.

The integration of wearable data into the EHR will be a challenging endeavor that requires 

strong interdisciplinary teams to identify and implement solutions into clinical practice. 

Some of the initial steps that clinics and hospitals may take to enhance the integration of 

wearables include the development of educational resources for patients and clinicians, the 
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identification of clinician champions, and to ensure that the clinical team has individuals 

capable of providing technological support 85. The educational resources and clinician 

champions should be transparent about the benefits and limitations of wearables data 

in the EHR, and recognize that the information will likely need to be adapted as the 

use of wearables evolves over time. Managing the extensive data from wearables is 

critical, and solutions can be generated around FAIR guiding principles – Findability, 

Accessibility, Interoperability, and Reusability 86. For instance, machine learning and AI 

algorithms 87 may serve as potential solutions to identify the meaningful and actionable 

parameters for clinical care. A scoping review by Dinh-Le et al.83 reported that nearly 

10 start-up companies are working with 16 health systems to develop workflows to 

meaningfully integrate wearables into EHR systems. To further illustrate the value of 

multidisciplinary collaboration, a consortium of more than 130 individuals from 60+ 

organizations (i.e. industry, academia, policymakers, clinicians, and patients) established 

the Integration of Continuous Glucose Monitoring Data into the Electronic Health Record 

(iCoDE) project 88. The 2022 iCoDE Report discusses numerous practical considerations 

(i.e. clinical workflows, team compositions, EHR data displays, etc), a template for a Project 

Implementation Guide, and a list of formal recommendations from the iCoDE steering 

committee. The iCoDE project aims to overcome many of the limitations hindering the 

integration of CGM data into the EHR, and this will likely serve as a useful framework for 

other wearable devices (i.e smartwatches) to build upon.

Clinical Workflow:

For wearable devices to reach its full potential, we need to expand the number of clinical 

staff who are trained and capable of managing the constant influx of data. This requires 

dedicated training on digital technology. In the short-term, the training may involve modules 

and seminars for all existing clinical staff followed by the creation of digital technology 

curriculum for nursing and medical schools to provide a sustainable, long-term approach. 

Additionally, it will be essential that we create strategies to allow these clinicians to 

easily identify actionable data while ignoring the “noise” that the abundant wearable 

data will inevitably generate. By developing a common clinical platform that synthesizes 

information from wearables, EHR, and AI algorithms, we may be able to establish 

prespecified thresholds that identifies the meaningful data that warrants clinical attention. 

This will certainly require close collaboration amongst clinicians, patients, and technology 

specialists, and these collaborative efforts may benefit from leveraging the expertise of 

existing companies that already provide implementation services and support for digital 

health technologies 3.

In response to the COVID-19 pandemic, the United States Food and Drug Administration 

(FDA) and Centers for Medicare and Medicaid Services (CMS) modified some requirements 

for remote physiologic monitoring (RPM) to increase access to care and provide greater 

reimbursement flexibility for clinicians 89, 90. RPM collects and analyzes physiologic 

data (i.e. heart rate, weight, pulse oximetry) from non-invasive medical devices, such 

as wearables, to guide the treatment of an acute or chronic condition. Currently, the 

reimbursement policies are more straightforward for certain aspects of RPM, such as vital 

signs, compared to variables such as PA 5. Current Procedural Terminology (CPT) codes 
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include: a one-time reimbursement for the initial set-up of a RPM device (CPT 99453), data 

collection and interpretation (CPT 99091), and development/implementation of a treatment 

plan through interactive communication with the patient based on remotely collected data 

from devices, such as wearables (CPT 99457 and 99458) 90. As we move beyond the current 

pandemic, we may consider expanded reimbursement policies to increase the clinical use 

of wearable devices if the growing body of scientific evidence proves to be beneficial and 

cost-effective for the management of chronic conditions. For example, we may reach the 

point where evidence supports a novel reimbursement strategy for a clinician who reviews 

wearable data, such as physical activity, and prescribes wearable-guided interventions. 5

Costs Associated with Clinical Use:

In order to support the integration of wearable devices into routine clinical care, we must 

demonstrate that this is a cost-effective approach for patients and payers. For example, 

screening efforts that use wearables to identify new diagnoses, such as atrial fibrillation, 

must ensure that the screening improves clinical outcomes without increasing costs or 

harms that may arise from false positives or confirmatory follow-up testing 91. Currently, 

the data on cost-effectiveness of wearable interventions is limited. One recent systematic 

review examined the impact of wearables on health care outcomes in patients with chronic 

diseases, but only a small number of these studies examined costs 92. A simulated model 

suggested that atrial fibrillation screening with wearable devices is cost-effective compared 

to no screening or traditional methods (i.e. pulse palpation and 12-lead ECG)91, and an 

economic evaluation of a cardiac telerehabilitation program suggested that it was likely to be 

cost-effective compared to traditional center-based CR60. As the existing body of evidence 

for wearables in cardiovascular medicine grows, it will be important for these studies to 

also publish cost-analyses. The cost-analyses should measure Quality Adjusted Life Years 

(QALYs) and incremental cost-effectiveness ratios (ICERs) as these variables will help 

guide future discussions about wearable technologies in clinical care.

Many of the key stakeholders have already demonstrated a commitment to promote 

a healthy lifestyle as health insurance companies offer incentive programs for healthy 

behaviors and employers provide workplace wellness programs. Wearable devices are 

frequently incorporated into these incentive or wellness programs. For example, Fitbit 
Health Solutions, has already established programs to work with employers, health plans, 

and health systems to encourage PA, sleep, nutrition, and stress management. Additionally, 

policymakers have demonstrated a willingness to modify reimbursement policies, such as 

RPM reimbursement during the COVID-19 pandemic, when needed to support new avenues 

of healthcare delivery. Similarly, Medicare and private health insurance plans now provide 

coverage for CGM devices for patients with type 1 and type 2 diabetes, so the payers 

may embrace a similar approach towards other wearable devices (i.e. smartwatches) if the 

growing body of evidence demonstrates long-term benefits. Lastly, all of these stakeholders 

will play a pivotal role in establishing the necessary infrastructure and payment models 

to overcome the initial startup costs associated with integrating new wearable devices into 

clinical care in order to achieve the potential long-term benefits and decreased healthcare 

costs that wearables may offer.
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Data Accuracy/Validity:

Accelerometry devices such Actigraph and ActivPal are being increasingly used in research 

to quantify clinical measurements such as activity, sedentary behavior, or sleep. In addition, 

these devices are also being used to assess the validity and reliability of consumer-grade 

wearables 93–95. However, as hardware, software, and algorithmic properties of wearables 

continue to evolve, the number of wearables available on the market will also continue 

to grow. In turn, there may be potential risks related to data accuracy and validation 
80, 96. Since consumer-grade wearables are not under FDA oversight, there is no regulatory 

agency surveying their accuracy. Additionally, algorithms used for wearables are often not 

open-sourced. Given the lack of transparency in the AI algorithms and concerns about 

inaccurate data from unregulated devices, key challenges remain for healthcare professionals 

to interpret findings, such alarms for atrial fibrillation, which hinders the widespread 

adoption of wearables in healthcare settings.

Data Security/Privacy:

AI algorithms rely heavily on personal data for their decision-making process, but the 

software and hardware used in these systems may have security vulnerabilities that could 

result in the theft of personal information. For that reason, significant effort is required to 

maintain the privacy and security of personal and identifiable data. We must also limit the 

number of individuals who have access to the raw identifiable data. Federated learning is a 

newer technique in AI that allows for a decentralized approach to training algorithms, thus 

addressing issues related to data safety and privacy 97. Unlike traditional methods, which 

involve centralizing data from multiple sources to train an algorithm, federated learning 

trains the algorithm locally on devices or servers, without sharing any data. Instead, only the 

model parameters are shared and optimized through iteration. This approach keeps data safe 

and private by not sharing it. Finally, data ownership is an ongoing issue, which may result 

in unauthorized sharing of user data without explicit and prior approval.

Artificial Intelligence/Machine Learning:

AI and ML technologies are faced with various challenges such as fairness and bias, 

transparency and accountability, and data drift. These can occur when data and algorithms 

reflect, reinforce, or perpetuate biases, or when the data used to train AI is incomplete 

or inherently biased, which can lead to further disparities and biases, particularly in 

underserved and underrepresented communities. Additionally, some models may be more 

accurate but opaque (i.e. complex non-linear models over simple linear models), making it 

difficult to understand how the algorithm reached its conclusions. This can be particularly 

problematic in healthcare, as it can affect a clinician’s medical decision-making and a 

patient’s treatment. Lastly, AI and ML algorithms often assume that data from the past will 

be representative of future data, which is not always the case in real-world settings, causing 

changes in the data to affect the model’s behavior and accuracy.

Although some ML, particularly DL, algorithms can outperform humans in certain tasks, 

such as detecting arrhythmias from ECG data 98 or diagnosing cardiovascular diseases from 

radiology images 99, AI technologies are more effective when used to augment rather than 

replace human capabilities. Additionally, AI can reduce human errors, enhance knowledge 
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capacity, and save time previously spent on repetitive tasks. However, it is important that 

we recognize both the exciting potential as well as the challenges and concerns of AI/ML 

as we apply these tools to healthcare 100. As technological advancements in wearable 

sensor hardware and AI algorithms accelerate personalized medicine, care should be taken 

to ensure that these advancements do not worsen health-related disparities or create new 

inequities in care or health-related outcomes. Future research in this field should address 

equity and fairness of the development and application of AI in cardiovascular medicine, as 

well as the interpretability and generalizability of AI models 101.

CONCLUSIONS:

Wearable devices have the potential to revolutionize the prevention, diagnosis, and 

management of cardiovascular conditions. While patients frequently use wearable devices in 

their everyday lives, there remain several challenges that prevent the widespread integration 

of wearable technologies in clinical practice. A collaborative, multidisciplinary approach 

with patients, clinicians, scientists, policymakers, and industry leaders will be needed to 

transform the digital health landscape and allow wearable devices to achieve their full 

clinical benefit.

DISCLOSURES:

Evan Brittain has an Investigator Initiated grant to study activity in pulmonary hypertension from United 
Therapeutics

ABBREVIATIONS AND ACRONYMS:

6MWD 6 Minute Walk Distance

ACS Acute Coronary Syndrome

AC Anticoagulation

AI Artificial Intelligence

ASCVD Atherosclerotic Cardiovascular Disease

AF Atrial Fibrillation

BCG Ballistocardiogram

BCT Behavioral Change Technique

BP Blood Pressure

BMI Body Mass Index

CR Cardiac Rehabilitation

CV Cardiovascular

CVD Cardiovascular Disease
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CVOT Cardiovascular Outcome Trials

CMS Centers for Medicare and Medicaid Services

CGM Continuous Glucose Monitoring

CAD Coronary Artery Disease

CPT Current Procedural Terminology

DL Deep Learning

DM Diabetes Mellitus

ECG Electrocardiogram

HER Electronic Health Record

FDA Food and Drug Administration

GPS Global Positioning System

HIPAA Health Insurance Portability and Accountability Act

HRSA Health Resources and Services Administration

HF Heart Failure

HFpEF Heart Failure with Preserved Ejection Fraction

HFrEF Heart Failure with Reduced Ejection Fraction

HR Heart Rate

ICER Incremental Cost Effectiveness Ratios

IEEE Institute of Electrical and Electronics Engineers

JITAI Just-in-time Adaptive Intervention

LV Left Ventricle

ML Machine Learning

VO2 max Maximum Oxygen Uptake

MA Meta Analysis

MVPA Moderate-to-Vigorous Physical Activity

MI Myocardial Infarction

SpO2 Oxygen Saturation

PAD Peripheral Artery Disease

PPG Photoplethysmogram
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PA Physical Activity

PPV Positive Predictive Value

QALY Quality Adjusted Life Years

QOL Quality of Life

RCT Randomized Controlled Trial

ReDS Remote Dielectric Sensing

RPM Remote Physiologic Monitoring

RR Respiratory Rate

SCG Seismocardiogram

SR Systematic Review

TIR Time in Range

TIA Transient Ischemic Attack

REFERENCES:

1. Goldsack JC, Coravos A, Bakker JP, Bent B, Dowling AV, Fitzer-Attas C, Godfrey A, Godino JG, 
Gujar N, Izmailova E, et al. Verification, analytical validation, and clinical validation (V3): the 
foundation of determining fit-for-purpose for Biometric Monitoring Technologies (BioMeTs). NPJ 
Digit Med. 2020;3:55. [PubMed: 32337371] 

2. Ferguson T, Olds T, Curtis R, Blake H, Crozier AJ, Dankiw K, Dumuid D, Kasai D, O’Connor 
E, Virgara R, et al. . Effectiveness of wearable activity trackers to increase physical activity and 
improve health: a systematic review of systematic reviews and meta-analyses. Lancet Digit Health. 
2022;4:e615–e626. [PubMed: 35868813] 

3. Leclercq C, Witt H, Hindricks G, Katra RP, Albert D, Belliger A, Cowie MR, Deneke T, Friedman 
P, Haschemi M, et al. Wearables, telemedicine, and artificial intelligence in arrhythmias and heart 
failure: Proceedings of the European Society of Cardiology: Cardiovascular Round Table. Europace. 
2022.

4. Sana F, Isselbacher EM, Singh JP, Heist EK, Pathik B and Armoundas AA. Wearable Devices for 
Ambulatory Cardiac Monitoring: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;75:1582–
1592. [PubMed: 32241375] 

5. Bayoumy K, Gaber M, Elshafeey A, Mhaimeed O, Dineen EH, Marvel FA, Martin SS, Muse ED, 
Turakhia MP, Tarakji KG, et al. Smart wearable devices in cardiovascular care: where we are and 
how to move forward. Nat Rev Cardiol. 2021;18:581–599. [PubMed: 33664502] 

6. Krittanawong C, Rogers AJ, Johnson KW, Wang Z, Turakhia MP, Halperin JL and Narayan 
SM. Integration of novel monitoring devices with machine learning technology for scalable 
cardiovascular management. Nat Rev Cardiol. 2021;18:75–91. [PubMed: 33037325] 

7. MacKinnon GE and Brittain EL. Mobile Health Technologies in Cardiopulmonary Disease. Chest. 
2020;157:654–664. [PubMed: 31678305] 

8. Yang CC and Hsu YL. A review of accelerometry-based wearable motion detectors for physical 
activity monitoring. Sensors (Basel). 2010;10:7772–88. [PubMed: 22163626] 

9. Aydemir VB, Nagesh S, Shandhi MMH, Fan J, Klein L, Etemadi M, Heller JA, Inan OT and Rehg 
JM. Classification of Decompensated Heart Failure From Clinical and Home Ballistocardiography. 
IEEE Trans Biomed Eng. 2020;67:1303–1313. [PubMed: 31425011] 

Hughes et al. Page 21

Circ Res. Author manuscript; available in PMC 2024 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



10. Castaneda D, Esparza A, Ghamari M, Soltanpur C and Nazeran H. A review on wearable 
photoplethysmography sensors and their potential future applications in health care. Int J Biosens 
Bioelectron. 2018;4:195–202. [PubMed: 30906922] 

11. Kyriacou PA and Allen J. Photoplethysmography: Technology, Signal Analysis and Applications: 
Academic Press; 2021.

12. Becker DE. Fundamentals of electrocardiography interpretation. Anesth Prog. 2006;53:53–63; quiz 
64. [PubMed: 16863387] 

13. Steinhubl SR, Waalen J, Edwards AM, Ariniello LM, Mehta RR, Ebner GS, Carter C, Baca-Motes 
K, Felicione E, Sarich T, et al. .Effect of a Home-Based Wearable Continuous ECG Monitoring 
Patch on Detection of Undiagnosed Atrial Fibrillation: The mSToPS Randomized Clinical Trial. 
Jama. 2018;320:146–155. [PubMed: 29998336] 

14. Inan OT, Migeotte PF, Park KS, Etemadi M, Tavakolian K, Casanella R, Zanetti J, Tank J, Funtova 
I, Prisk GK, et al. Ballistocardiography and seismocardiography: a review of recent advances. 
IEEE J Biomed Health Inform. 2015;19:1414–27. [PubMed: 25312966] 

15. Inan OT, Baran Pouyan M, Javaid AQ, Dowling S, Etemadi M, Dorier A, Heller JA, 
Bicen AO, Roy S, De Marco T, et al. . Novel Wearable Seismocardiography and Machine 
Learning Algorithms Can Assess Clinical Status of Heart Failure Patients. Circ Heart Fail. 
2018;11:e004313. [PubMed: 29330154] 

16. Danne T, Nimri R, Battelino T, Bergenstal RM, Close KL, DeVries JH, Garg S, Heinemann L, 
Hirsch I, Amiel SA, et al. International Consensus on Use of Continuous Glucose Monitoring. 
Diabetes Care. 2017;40:1631–1640. [PubMed: 29162583] 

17. Huang JD, Wang J, Ramsey E, Leavey G, Chico TJA and Condell J. Applying Artificial 
Intelligence to Wearable Sensor Data to Diagnose and Predict Cardiovascular Disease: A Review. 
Sensors (Basel). 2022;22.

18. Bengio Y, Courville A and Vincent P. Representation learning: a review and new perspectives. 
IEEE Trans Pattern Anal Mach Intell. 2013;35:1798–828. [PubMed: 23787338] 

19. Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN and Katzmarzyk PT. Effect of physical 
inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and 
life expectancy. Lancet. 2012;380:219–29. [PubMed: 22818936] 

20. Lee IM, Shiroma EJ, Kamada M, Bassett DR, Matthews CE and Buring JE. Association of 
Step Volume and Intensity With All-Cause Mortality in Older Women. JAMA Intern Med. 
2019;179:1105–1112. [PubMed: 31141585] 

21. Master H, Annis J, Huang S, Beckman JA, Ratsimbazafy F, Marginean K, Carroll R, Natarajan K, 
Harrell FE, Roden DM, et al. Association of step counts over time with the risk of chronic disease 
in the All of Us Research Program. Nat Med. 2022.

22. Poirier J, Bennett WL, Jerome GJ, Shah NG, Lazo M, Yeh HC, Clark JM and Cobb NK. 
Effectiveness of an Activity Tracker- and Internet-Based Adaptive Walking Program for Adults: A 
Randomized Controlled Trial. J Med Internet Res. 2016;18:e34. [PubMed: 26860434] 

23. Brickwood KJ, Watson G, O’Brien J and Williams AD. Consumer-Based Wearable Activity 
Trackers Increase Physical Activity Participation: Systematic Review and Meta-Analysis. JMIR 
Mhealth Uhealth. 2019;7:e11819. [PubMed: 30977740] 

24. Hodkinson A, Kontopantelis E, Adeniji C, van Marwijk H, McMillian B, Bower P and Panagioti 
M. Interventions Using Wearable Physical Activity Trackers Among Adults With Cardiometabolic 
Conditions: A Systematic Review and Meta-analysis. JAMA Netw Open. 2021;4:e2116382. 
[PubMed: 34283229] 

25. Martin SS, Feldman DI, Blumenthal RS, Jones SR, Post WS, McKibben RA, Michos ED, 
Ndumele CE, Ratchford EV, Coresh J, et al. mActive: A Randomized Clinical Trial of an 
Automated mHealth Intervention for Physical Activity Promotion. J Am Heart Assoc. 2015;4.

26. Hemnes AR, Silverman-Lloyd LG, Huang S, MacKinnon G, Annis J, Whitmore CS, Mallugari R, 
Oggs RN, Hekmat R, Shan R, et al. A Mobile Health Intervention to Increase Physical Activity in 
Pulmonary Arterial Hypertension. Chest. 2021;160:1042–1052. [PubMed: 33878341] 

27. Patel MS, Benjamin EJ, Volpp KG, Fox CS, Small DS, Massaro JM, Lee JJ, Hilbert V, Valentino 
M, Taylor DH, et al. Effect of a Game-Based Intervention Designed to Enhance Social Incentives 

Hughes et al. Page 22

Circ Res. Author manuscript; available in PMC 2024 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to Increase Physical Activity Among Families: The BE FIT Randomized Clinical Trial. JAMA 
Intern Med. 2017;177:1586–1593. [PubMed: 28973115] 

28. Patel MS, Small DS, Harrison JD, Hilbert V, Fortunato MP, Oon AL, Rareshide CAL and 
Volpp KG. Effect of Behaviorally Designed Gamification With Social Incentives on Lifestyle 
Modification Among Adults With Uncontrolled Diabetes: A Randomized Clinical Trial. JAMA 
Netw Open. 2021;4:e2110255. [PubMed: 34028550] 

29. Agarwal AK, Waddell KJ, Small DS, Evans C, Harrington TO, Djaraher R, Oon AL and Patel 
MS. Effect of Gamification With and Without Financial Incentives to Increase Physical Activity 
Among Veterans Classified as Having Obesity or Overweight: A Randomized Clinical Trial. 
JAMA Netw Open. 2021;4:e2116256. [PubMed: 34241628] 

30. Mazeas A, Duclos M, Pereira B and Chalabaev A. Evaluating the Effectiveness of Gamification on 
Physical Activity: Systematic Review and Meta-analysis of Randomized Controlled Trials. J Med 
Internet Res. 2022;24:e26779. [PubMed: 34982715] 

31. Jeganathan VS, Golbus JR, Gupta K, Luff E, Dempsey W, Boyden T, Rubenfire M, Mukherjee 
B, Klasnja P, Kheterpal S, et al. Virtual AppLication-supported Environment To INcrease 
Exercise (VALENTINE) during cardiac rehabilitation study: Rationale and design. Am Heart J. 
2022;248:53–62. [PubMed: 35235834] 

32. Hardeman W, Houghton J, Lane K, Jones A and Naughton F. A systematic review of just-in-
time adaptive interventions (JITAIs) to promote physical activity. Int J Behav Nutr Phys Act. 
2019;16:31. [PubMed: 30943983] 

33. Patel MS, Bachireddy C, Small DS, Harrison JD, Harrington TO, Oon AL, Rareshide CAL, 
Snider CK and Volpp KG. Effect of Goal-Setting Approaches Within a Gamification Intervention 
to Increase Physical Activity Among Economically Disadvantaged Adults at Elevated Risk for 
Major Adverse Cardiovascular Events: The ENGAGE Randomized Clinical Trial. JAMA Cardiol. 
2021;6:1387–1396. [PubMed: 34468691] 

34. Schultz WM, Kelli HM, Lisko JC, Varghese T, Shen J, Sandesara P, Quyyumi AA, Taylor HA, 
Gulati M, Harold JG, et al. Socioeconomic Status and Cardiovascular Outcomes: Challenges and 
Interventions. Circulation. 2018;137:2166–2178. [PubMed: 29760227] 

35. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, Castella M, Diener HC, 
Heidbuchel H, Hendriks J, et al. 2016 ESC Guidelines for the management of atrial fibrillation 
developed in collaboration with EACTS. Europace. 2016;18:1609–1678. [PubMed: 27567465] 

36. Turakhia MP, Hoang DD, Zimetbaum P, Miller JD, Froelicher VF, Kumar UN, Xu X, Yang F 
and Heidenreich PA. Diagnostic utility of a novel leadless arrhythmia monitoring device. Am J 
Cardiol. 2013;112:520–4. [PubMed: 23672988] 

37. Steinhubl SR, Waalen J, Sanyal A, Edwards AM, Ariniello LM, Ebner GS, Baca-Motes K, 
Zambon RA, Sarich T and Topol EJ. Three year clinical outcomes in a nationwide, observational, 
siteless clinical trial of atrial fibrillation screening-mHealth Screening to Prevent Strokes 
(mSToPS). PLoS One. 2021;16:e0258276. [PubMed: 34610049] 

38. Perez MV, Mahaffey KW, Hedlin H, Rumsfeld JS, Garcia A, Ferris T, Balasubramanian V, Russo 
AM, Rajmane A, Cheung L, et al. Large-Scale Assessment of a Smartwatch to Identify Atrial 
Fibrillation. N Engl J Med. 2019;381:1909–1917. [PubMed: 31722151] 

39. Guo Y, Wang H, Zhang H, Liu T, Liang Z, Xia Y, Yan L, Xing Y, Shi H, Li S, et al. 
Mobile Photoplethysmographic Technology to Detect Atrial Fibrillation. J Am Coll Cardiol. 
2019;74:2365–2375. [PubMed: 31487545] 

40. Kaura A, Sztriha L, Chan FK, Aeron-Thomas J, Gall N, Piechowski-Jozwiak B and Teo JT. Early 
prolonged ambulatory cardiac monitoring in stroke (EPACS): an open-label randomised controlled 
trial. Eur J Med Res. 2019;24:25. [PubMed: 31349792] 

41. Ha ACT, Verma S, Mazer CD, Quan A, Yanagawa B, Latter DA, Yau TM, Jacques F, Brown 
CD, Singal RK, et al. Effect of Continuous Electrocardiogram Monitoring on Detection of 
Undiagnosed Atrial Fibrillation After Hospitalization for Cardiac Surgery: A Randomized Clinical 
Trial. JAMA Netw Open. 2021;4:e2121867. [PubMed: 34448866] 

42. Seshadri DR, Bittel B, Browsky D, Houghtaling P, Drummond CK, Desai MY and Gillinov AM. 
Accuracy of Apple Watch for Detection of Atrial Fibrillation. Circulation. 2020;141:702–703. 
[PubMed: 32091929] 

Hughes et al. Page 23

Circ Res. Author manuscript; available in PMC 2024 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



43. Ford C, Xie CX, Low A, Rajakariar K, Koshy AN, Sajeev JK, Roberts L, Pathik B and Teh AW. 
Comparison of 2 Smart Watch Algorithms for Detection of Atrial Fibrillation and the Benefit 
of Clinician Interpretation: SMART WARS Study. JACC Clin Electrophysiol. 2022;8:782–791. 
[PubMed: 35738855] 

44. Dendale P, De Keulenaer G, Troisfontaines P, Weytjens C, Mullens W, Elegeert I, Ector B, 
Houbrechts M, Willekens K and Hansen D. Effect of a telemonitoring-facilitated collaboration 
between general practitioner and heart failure clinic on mortality and rehospitalization rates in 
severe heart failure: the TEMA-HF 1 (TElemonitoring in the MAnagement of Heart Failure) study. 
Eur J Heart Fail. 2012;14:333–40. [PubMed: 22045925] 

45. Koehler F, Koehler K, Deckwart O, Prescher S, Wegscheider K, Kirwan BA, Winkler S, Vettorazzi 
E, Bruch L, Oeff M, et al. Efficacy of telemedical interventional management in patients 
with heart failure (TIM-HF2): a randomised, controlled, parallel-group, unmasked trial. Lancet. 
2018;392:1047–1057. [PubMed: 30153985] 

46. Koehler F, Winkler S, Schieber M, Sechtem U, Stangl K, Böhm M, Boll H, Baumann G, Honold 
M, Koehler K, et al. Impact of remote telemedical management on mortality and hospitalizations 
in ambulatory patients with chronic heart failure: the telemedical interventional monitoring in 
heart failure study. Circulation. 2011;123:1873–80. [PubMed: 21444883] 

47. Ong MK, Romano PS, Edgington S, Aronow HU, Auerbach AD, Black JT, De Marco T, Escarce 
JJ, Evangelista LS, Hanna B, et al. Effectiveness of Remote Patient Monitoring After Discharge 
of Hospitalized Patients With Heart Failure: The Better Effectiveness After Transition -- Heart 
Failure (BEAT-HF) Randomized Clinical Trial. JAMA Intern Med. 2016;176:310–8. [PubMed: 
26857383] 

48. Anand IS, Tang WH, Greenberg BH, Chakravarthy N, Libbus I and Katra RP. Design and 
performance of a multisensor heart failure monitoring algorithm: results from the multisensor 
monitoring in congestive heart failure (MUSIC) study. J Card Fail. 2012;18:289–95. [PubMed: 
22464769] 

49. Stehlik J, Schmalfuss C, Bozkurt B, Nativi-Nicolau J, Wohlfahrt P, Wegerich S, Rose K, Ray R, 
Schofield R, Deswal A, et al. Continuous Wearable Monitoring Analytics Predict Heart Failure 
Hospitalization: The LINK-HF Multicenter Study. Circ Heart Fail. 2020;13:e006513. [PubMed: 
32093506] 

50. Amir O, Ben-Gal T, Weinstein JM, Schliamser J, Burkhoff D, Abbo A and Abraham WT. 
Evaluation of remote dielectric sensing (ReDS) technology-guided therapy for decreasing heart 
failure re-hospitalizations. Int J Cardiol. 2017;240:279–284. [PubMed: 28341372] 

51. Lala A, Barghash MH, Giustino G, Alvarez-Garcia J, Konje S, Parikh A, Ullman J, Keith B, 
Donehey J, Mitter SS, et al. Early use of remote dielectric sensing after hospitalization to reduce 
heart failure readmissions. ESC Heart Fail. 2021;8:1047–1054. [PubMed: 33336881] 

52. Redfield MM, Anstrom KJ, Levine JA, Koepp GA, Borlaug BA, Chen HH, LeWinter MM, Joseph 
SM, Shah SJ, Semigran MJ, et al. Isosorbide Mononitrate in Heart Failure with Preserved Ejection 
Fraction. N Engl J Med. 2015;373:2314–24. [PubMed: 26549714] 

53. Khandwalla RM, Grant D, Birkeland K, Heywood JT, Fombu E, Owens RL and Steinhubl SR. 
The AWAKE-HF Study: Sacubitril/Valsartan Impact on Daily Physical Activity and Sleep in Heart 
Failure. Am J Cardiovasc Drugs. 2021;21:241–254. [PubMed: 32978755] 

54. Owens RL, Birkeland K, Heywood JT, Steinhubl SR, Dorn J, Grant D, Fombu E and Khandwalla 
R. Sleep Outcomes From AWAKE-HF: A Randomized Clinical Trial of Sacubitril/Valsartan 
vs Enalapril in Patients With Heart Failure and Reduced Ejection Fraction. J Card Fail. 
2021;27:1466–1471. [PubMed: 34428592] 

55. Redeker NS, Yaggi HK, Jacoby D, Hollenbeak CS, Breazeale S, Conley S, Hwang Y, Iennaco 
J, Linsky S, Nwanaji-Enwerem U, et al. Cognitive behavioral therapy for insomnia has sustained 
effects on insomnia, fatigue, and function among people with chronic heart failure and insomnia: 
the HeartSleep Study. Sleep. 2022;45.

56. Thomas RJ, Beatty AL, Beckie TM, Brewer LC, Brown TM, Forman DE, Franklin BA, Keteyian 
SJ, Kitzman DW, Regensteiner JG, et al. Home-Based Cardiac Rehabilitation: A Scientific 
Statement From the American Association of Cardiovascular and Pulmonary Rehabilitation, 
the American Heart Association, and the American College of Cardiology. J Am Coll Cardiol. 
2019;74:133–153. [PubMed: 31097258] 

Hughes et al. Page 24

Circ Res. Author manuscript; available in PMC 2024 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



57. Frederix I, Van Driessche N, Hansen D, Berger J, Bonne K, Alders T and Dendale P. Increasing 
the medium-term clinical benefits of hospital-based cardiac rehabilitation by physical activity 
telemonitoring in coronary artery disease patients. Eur J Prev Cardiol. 2015;22:150–8. [PubMed: 
24249840] 

58. Maddison R, Rawstorn JC, Stewart RAH, Benatar J, Whittaker R, Rolleston A, Jiang Y, Gao L, 
Moodie M, Warren I, et al. Effects and costs of real-time cardiac telerehabilitation: randomised 
controlled non-inferiority trial. Heart. 2019;105:122–129. [PubMed: 30150328] 

59. Brouwers RWM, Kraal JJ, Regis M, Spee RF and Kemps HMC. Effectiveness of Cardiac 
Telerehabilitation With Relapse Prevention: SmartCare-CAD Randomized Controlled Trial. J Am 
Coll Cardiol. 2021;77:2754–2756. [PubMed: 34045031] 

60. Brouwers RWM, van der Poort EKJ, Kemps HMC, van den Akker-van Marle ME and Kraal 
JJ. Cost-effectiveness of Cardiac Telerehabilitation With Relapse Prevention for the Treatment of 
Patients With Coronary Artery Disease in the Netherlands. JAMA Netw Open. 2021;4:e2136652. 
[PubMed: 34854907] 

61. Nagatomi Y, Ide T, Higuchi T, Nezu T, Fujino T, Tohyama T, Nagata T, Higo T, Hashimoto T, 
Matsushima S, et al. Home-based cardiac rehabilitation using information and communication 
technology for heart failure patients with frailty. ESC Heart Fail. 2022;9:2407–2418. [PubMed: 
35534907] 

62. Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA, Drachman DE, Fleisher 
LA, Fowkes FG, Hamburg NM, Kinlay S, et al. 2016 AHA/ACC Guideline on the Management 
of Patients With Lower Extremity Peripheral Artery Disease: Executive Summary: A Report of 
the American College of Cardiology/American Heart Association Task Force on Clinical Practice 
Guidelines. Circulation. 2017;135:e686–e725. [PubMed: 27840332] 

63. Gardner AW, Parker DE, Montgomery PS, Scott KJ and Blevins SM. Efficacy of quantified home-
based exercise and supervised exercise in patients with intermittent claudication: a randomized 
controlled trial. Circulation. 2011;123:491–8. [PubMed: 21262997] 

64. McDermott MM, Spring B, Berger JS, Treat-Jacobson D, Conte MS, Creager MA, Criqui MH, 
Ferrucci L, Gornik HL, Guralnik JM, et al. Effect of a Home-Based Exercise Intervention 
of Wearable Technology and Telephone Coaching on Walking Performance in Peripheral 
Artery Disease: The HONOR Randomized Clinical Trial. Jama. 2018;319:1665–1676. [PubMed: 
29710165] 

65. McDermott MM, Spring B, Tian L, Treat-Jacobson D, Ferrucci L, Lloyd-Jones D, Zhao L, 
Polonsky T, Kibbe MR, Bazzano L, et al. Effect of Low-Intensity vs High-Intensity Home-Based 
Walking Exercise on Walk Distance in Patients With Peripheral Artery Disease: The LITE 
Randomized Clinical Trial. Jama. 2021;325:1266–1276. [PubMed: 33821898] 

66. Treskes RW, van Winden LAM, van Keulen N, van der Velde ET, Beeres S, Atsma DE and 
Schalij MJ. Effect of Smartphone-Enabled Health Monitoring Devices vs Regular Follow-up on 
Blood Pressure Control Among Patients After Myocardial Infarction: A Randomized Clinical 
Trial. JAMA Netw Open. 2020;3:e202165. [PubMed: 32297946] 

67. Leelarathna L, Evans ML, Neupane S, Rayman G, Lumley S, Cranston I, Narendran P, Barnard-
Kelly K, Sutton CJ, Elliott RA, et al. Intermittently Scanned Continuous Glucose Monitoring for 
Type 1 Diabetes. N Engl J Med. 2022;387:1477–1487. [PubMed: 36198143] 

68. Beck RW, Riddlesworth TD, Ruedy K, Ahmann A, Haller S, Kruger D, McGill JB, Polonsky W, 
Price D, Aronoff S, et al. Continuous Glucose Monitoring Versus Usual Care in Patients With Type 
2 Diabetes Receiving Multiple Daily Insulin Injections: A Randomized Trial. Ann Intern Med. 
2017;167:365–374. [PubMed: 28828487] 

69. Martens T, Beck RW, Bailey R, Ruedy KJ, Calhoun P, Peters AL, Pop-Busui R, Philis-Tsimikas 
A, Bao S, Umpierrez G, et al. Effect of Continuous Glucose Monitoring on Glycemic Control in 
Patients With Type 2 Diabetes Treated With Basal Insulin: A Randomized Clinical Trial. Jama. 
2021;325:2262–2272. [PubMed: 34077499] 

70. Lu J, Wang C, Shen Y, Chen L, Zhang L, Cai J, Lu W, Zhu W, Hu G, Xia T, et al. . Time in 
Range in Relation to All-Cause and Cardiovascular Mortality in Patients With Type 2 Diabetes: A 
Prospective Cohort Study. Diabetes Care. 2021;44:549–555. [PubMed: 33097560] 

Hughes et al. Page 25

Circ Res. Author manuscript; available in PMC 2024 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



71. Guo J, Wang J, Zhao Z and Yu L. Association between glycemic control assessed by continuous 
glucose monitoring and stroke in patients with atrial fibrillation and diabetes mellitus. Ann Palliat 
Med. 2021;10:9157–9164. [PubMed: 34488401] 

72. Eberly LA, Kallan MJ, Julien HM, Haynes N, Khatana SAM, Nathan AS, Snider C, Chokshi NP, 
Eneanya ND, Takvorian SU, et al. Patient Characteristics Associated With Telemedicine Access 
for Primary and Specialty Ambulatory Care During the COVID-19 Pandemic. JAMA Netw Open. 
2020;3:e2031640. [PubMed: 33372974] 

73. Rubin R Internet Access as a Social Determinant of Health. Jama. 2021;326:298.

74. Brewer LC, Fortuna KL, Jones C, Walker R, Hayes SN, Patten CA and Cooper LA. Back to the 
Future: Achieving Health Equity Through Health Informatics and Digital Health. JMIR Mhealth 
Uhealth. 2020;8:e14512. [PubMed: 31934874] 

75. Lee EW, McCloud RF and Viswanath K. Designing Effective eHealth Interventions for 
Underserved Groups: Five Lessons From a Decade of eHealth Intervention Design and 
Deployment. J Med Internet Res. 2022;24:e25419. [PubMed: 34994700] 

76. Lee EWJ and Viswanath K. Big Data in Context: Addressing the Twin Perils of Data 
Absenteeism and Chauvinism in the Context of Health Disparities Research. J Med Internet Res. 
2020;22:e16377. [PubMed: 31909724] 

77. Chandrasekaran R, Katthula V and Moustakas E. Too old for technology? Use of wearable 
healthcare devices by older adults and their willingness to share health data with providers. Health 
Informatics J. 2021;27:14604582211058073. [PubMed: 34802315] 

78. Hoque R and Sorwar G. Understanding factors influencing the adoption of mHealth by the elderly: 
An extension of the UTAUT model. Int J Med Inform. 2017;101:75–84. [PubMed: 28347450] 

79. Abouzahra M and Ghasemaghaei M. The antecedents and results of seniors’ use of activity 
tracking wearable devices. Health Policy and Technology. 2020;9:213–217.

80. Coravos A, Doerr M, Goldsack J, Manta C, Shervey M, Woods B and Wood WA. Modernizing and 
designing evaluation frameworks for connected sensor technologies in medicine. NPJ Digit Med. 
2020;3:37. [PubMed: 32195372] 

81. Dai H, Younis A, Kong JD, Puce L, Jabbour G, Yuan H and Bragazzi NL. Big Data in Cardiology: 
State-of-Art and Future Prospects. Front Cardiovasc Med. 2022;9:844296. [PubMed: 35433868] 

82. Cefalu WT, Kaul S, Gerstein HC, Holman RR, Zinman B, Skyler JS, Green JB, Buse JB, Inzucchi 
SE, Leiter LA, et al. Cardiovascular Outcomes Trials in Type 2 Diabetes: Where Do We Go From 
Here? Reflections From a Diabetes Care Editors’ Expert Forum. Diabetes Care. 2018;41:14–31. 
[PubMed: 29263194] 

83. Dinh-Le C, Chuang R, Chokshi S and Mann D. Wearable Health Technology and Electronic 
Health Record Integration: Scoping Review and Future Directions. JMIR Mhealth Uhealth. 
2019;7:e12861. [PubMed: 31512582] 

84. Banerjee S, Hemphill T and Longstreet P. Wearable devices and healthcare: Data sharing and 
privacy. The Information Society. 2018;34:49–57.

85. Smuck M, Odonkor CA, Wilt JK, Schmidt N and Swiernik MA. The emerging clinical role 
of wearables: factors for successful implementation in healthcare. NPJ Digit Med. 2021;4:45. 
[PubMed: 33692479] 

86. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, 
Boiten JW, da Silva Santos LB, Bourne PE, et al. The FAIR Guiding Principles for scientific data 
management and stewardship. Sci Data. 2016;3:160018. [PubMed: 26978244] 

87. Baig MM, GholamHosseini H, Moqeem AA, Mirza F and Lindén M. A Systematic Review 
of Wearable Patient Monitoring Systems - Current Challenges and Opportunities for Clinical 
Adoption. J Med Syst. 2017;41:115. [PubMed: 28631139] 

88. Espinoza J, Klonoff D, Vidmar A, Tut M, Corathers S, Seigel R, Yeung A, Xu N, Shah P, Babaei 
M, et al. 2022 iCoDE Report: CGM-EHR Integration Standards and Recommendations. Diabetes 
Technology Society. . 2022.

89. Dey P, Jarrin R, Mori M, Geirsson A and Krumholz HM. Leveraging Remote Physiologic 
Monitoring in the COVID-19 Pandemic to Improve Care After Cardiovascular Hospitalizations. 
Circ Cardiovasc Qual Outcomes. 2021;14:e007618. [PubMed: 33820445] 

Hughes et al. Page 26

Circ Res. Author manuscript; available in PMC 2024 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



90. Lee GS K AAMC Regulatory Resource: 2021 Medicare Coverage of Remote Physiologic 
Monitoring (RPM). 2021.

91. Chen W, Khurshid S, Singer DE, Atlas SJ, Ashburner JM, Ellinor PT, McManus DD, Lubitz SA 
and Chhatwal J. Cost-effectiveness of Screening for Atrial Fibrillation Using Wearable Devices. 
JAMA Health Forum. 2022;3:e222419. [PubMed: 36003419] 

92. Mattison G, Canfell O, Forrester D, Dobbins C, Smith D, Töyräs J and Sullivan C. The Influence 
of Wearables on Health Care Outcomes in Chronic Disease: Systematic Review. J Med Internet 
Res. 2022;24:e36690. [PubMed: 35776492] 

93. Feehan LM, Geldman J, Sayre EC, Park C, Ezzat AM, Yoo JY, Hamilton CB and Li LC. Accuracy 
of Fitbit Devices: Systematic Review and Narrative Syntheses of Quantitative Data. JMIR Mhealth 
Uhealth. 2018;6:e10527. [PubMed: 30093371] 

94. Brooke SM, An HS, Kang SK, Noble JM, Berg KE and Lee JM. Concurrent Validity of Wearable 
Activity Trackers Under Free-Living Conditions. J Strength Cond Res. 2017;31:1097–1106. 
[PubMed: 27465631] 

95. Tedesco S, Sica M, Ancillao A, Timmons S, Barton J and O’Flynn B. Validity Evaluation of the 
Fitbit Charge2 and the Garmin vivosmart HR+ in Free-Living Environments in an Older Adult 
Cohort. JMIR Mhealth Uhealth. 2019;7:e13084. [PubMed: 31219048] 

96. Herkert C, Kraal JJ, van Loon EMA, van Hooff M and Kemps HMC. Usefulness of Modern 
Activity Trackers for Monitoring Exercise Behavior in Chronic Cardiac Patients: Validation Study. 
JMIR Mhealth Uhealth. 2019;7:e15045. [PubMed: 31855191] 

97. Li T, Sahu AK, Talwalkar A and Smith V. Federated learning: Challenges, methods, and future 
directions. IEEE Signal Processing Magazine. 2020;37:50–60.

98. Trayanova NA, Popescu DM and Shade JK. Machine Learning in Arrhythmia and 
Electrophysiology. Circ Res. 2021;128:544–566. [PubMed: 33600229] 

99. Litjens G, Ciompi F, Wolterink JM, de Vos BD, Leiner T, Teuwen J and Išgum I. State-of-the-
Art Deep Learning in Cardiovascular Image Analysis. JACC Cardiovasc Imaging. 2019;12:1549–
1565. [PubMed: 31395244] 

100. Gerke S, Minssen T and Cohen G. Ethical and legal challenges of artificial intelligence-driven 
healthcare Artificial intelligence in healthcare: Elsevier; 2020: 295–336.

101. Amann J, Blasimme A, Vayena E, Frey D and Madai VI. Explainability for artificial intelligence 
in healthcare: a multidisciplinary perspective. BMC Med Inform Decis Mak. 2020;20:310. 
[PubMed: 33256715] 

102. Shandhi MMH, Hersek S, Fan J, Sander E, De Marco T, Heller JA, Etemadi M, Klein L 
and Inan OT. Wearable Patch-Based Estimation of Oxygen Uptake and Assessment of Clinical 
Status during Cardiopulmonary Exercise Testing in Patients With Heart Failure. J Card Fail. 
2020;26:948–958. [PubMed: 32473379] 

103. Dunn J, Kidzinski L, Runge R, Witt D, Hicks JL, Schüssler-Fiorenza Rose SM, Li X, Bahmani A, 
Delp SL, Hastie T, et al. Wearable sensors enable personalized predictions of clinical laboratory 
measurements. Nat Med. 2021;27:1105–1112. [PubMed: 34031607] 

104. Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, Turakhia MP and Ng AY. 
Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using 
a deep neural network. Nat Med. 2019;25:65–69. [PubMed: 30617320] 

105. Attia ZI, Kapa S, Lopez-Jimenez F, McKie PM, Ladewig DJ, Satam G, Pellikka PA, Enriquez-
Sarano M, Noseworthy PA, Munger TM, et al. Screening for cardiac contractile dysfunction 
using an artificial intelligence-enabled electrocardiogram. Nat Med. 2019;25:70–74. [PubMed: 
30617318] 

106. Krittanawong C, Virk HUH, Bangalore S, Wang Z, Johnson KW, Pinotti R, Zhang H, Kaplin 
S, Narasimhan B, Kitai T,et al. Machine learning prediction in cardiovascular diseases: a meta-
analysis. Sci Rep. 2020;10:16057. [PubMed: 32994452] 

107. Ballinger B, Hsieh J, Singh A, Sohoni N, Wang J, Tison GH, Marcus GM, Sanchez JM, 
Maguire C and Olgin JE. DeepHeart: semi-supervised sequence learning for cardiovascular risk 
prediction. Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

108. Shandhi MMH, Fan J, Heller JA, Etemadi M, Klein L and Inan OT. Estimation of Changes 
in Intracardiac Hemodynamics Using Wearable Seismocardiography and Machine Learning in 

Hughes et al. Page 27

Circ Res. Author manuscript; available in PMC 2024 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Patients With Heart Failure: A Feasibility Study. IEEE Trans Biomed Eng. 2022;69:2443–2455. 
[PubMed: 35100106] 

109. Shandhi MMH, Semiz B, Hersek S, Goller N, Ayazi F and Inan OT. Performance Analysis 
of Gyroscope and Accelerometer Sensors for Seismocardiography-Based Wearable Pre-Ejection 
Period Estimation. IEEE J Biomed Health Inform. 2019;23:2365–2374. [PubMed: 30703050] 

110. Zheng H, Ryzhov IO, Xie W and Zhong J. Personalized Multimorbidity Management for Patients 
with Type 2 Diabetes Using Reinforcement Learning of Electronic Health Records. Drugs. 
2021;81:471–482. [PubMed: 33570745] 

111. Halcox JPJ, Wareham K, Cardew A, Gilmore M, Barry JP, Phillips C and Gravenor MB. 
Assessment of Remote Heart Rhythm Sampling Using the AliveCor Heart Monitor to Screen 
for Atrial Fibrillation: The REHEARSE-AF Study. Circulation. 2017;136:1784–1794. [PubMed: 
28851729] 

112. Gladstone DJ, Wachter R, Schmalstieg-Bahr K, Quinn FR, Hummers E, Ivers N, Marsden 
T, Thornton A, Djuric A, Suerbaum J, et al. Screening for Atrial Fibrillation in the Older 
Population: A Randomized Clinical Trial. JAMA Cardiol. 2021;6:558–567. [PubMed: 33625468] 

113. McDermott MM, Liu K, Guralnik JM, Criqui MH, Spring B, Tian L, Domanchuk K, Ferrucci 
L, Lloyd-Jones D, Kibbe M,et al. Home-based walking exercise intervention in peripheral artery 
disease: a randomized clinical trial. Jama. 2013;310:57–65. [PubMed: 23821089] 

Hughes et al. Page 28

Circ Res. Author manuscript; available in PMC 2024 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: Overview of Wearable Devices.
A) Common sensor modalities utilized by wearable devices to generate physiologic 

measurements. B) Key physiologic measures, sensors, and potential clinical applications in 

cardiovascular medicine. Abbreviations: ballistocardiogram (BCG), cardiovascular disease 

(CVD), electrocardiogram (ECG), Global Positioning System (GPS), heart failure (HF), 

myocardial infarction (MI), peripheral artery disease (PAD), photoplethysmography (PPG), 

seismocardiogram (SCG).
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* Continuous glucose monitoring (CGM) devices use biochemical sensors to measure 

glucose levels and have important clinical applications for type 1 and type 2 diabetes. 

However, they are difficult to integrate into consumer-grade wearables and are usually a 

stand-alone device.
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Figure 2: Short and Long-Term Roadmap to Increase the Use of Wearable Devices in Clinical 
Care.
Abbreviations: acute coronary syndrome (ACS), artificial intelligence (AI), cardiovascular 

(CV), coronary artery disease (CAD), electronic health record (EHR), Health Insurance 

Portability and Accountability Act (HIPAA), Institute of Electrical and Electronics 

Engineers (IEEE), machine learning (ML), randomized controlled trial (RCT)
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Table 1:

Common Machine Learning Algorithms and Potential Clinical Applications in Cardiovascular Medicine.

Type Tasks Algorithms Clinical Utility Potential Clinical Applications

Supervised 
Learning

Regression • Linear Regression
• Polynomial Regression
• Support Vector Regression
• Decision Tree Regression
• Random Forest Regression
• Lasso Regression
• Ridge Regression
• Boosting Algorithms

Estimating a numeric 
and continuous clinical 
outcome

• Estimating cardiorespiratory 
fitness (VO2) 102

• Predicting measurements such 
as resting heart rate, skin 
temperature, fasting plasma 
glucose, Hemoglobin A1C. 103

Classification • Support Vector Machine
• Logistic Regression
• Random Forest
• Boosting Algorithms (i.e. Gradient 
Boosting Machine, AdaBoost)
• Deep Learning models (i.e. Deep 
Neural Network, Convolutional 
Neural Network)

Estimating a discrete/
binary clinical outcome

• Arrhythmia detection 104

• Assessment of LV function 105

• Compensated vs decompensated 
HF 9, 15, 102

Forecasting • Prophet
• Recurrent Neural Network 
(i.e. Long-Short-Term Memory 
Network)

Outcome prediction • Prediction of CAD, HF, stroke, 
and arrhythmias 106

Semi-Supervised 
Learning

Classification 
where labels are 
only available 
for a portion of 
the data.

• Generative Adversarial Network
• Long-Short-Term Memory 
Network

Training on a small pool 
of data, which is labeled 
for use on a larger pool 
of data to label/cluster 
the unlabeled data.

• CVD risk prediction from 
wearable data combined with 
EHR data 107

Unsupervised 
Learning

Clustering • K-means Clustering
• Spectral Clustering
• Hierarchical Clustering
• Gaussian Mixture Model

Identifies groups/
clusters in the data. 
It can be used as a 
preprocessing step for 
supervised learning.

• Outlier removal from wearable 
data108

Dimension 
Reduction

• Principal Component Analysis
• Isomap Embedding
• Spectral Embedding
• Locally Linear Embedding
• T-Distributed Stochastic Neighbor 
Embedding
• Multidimensional Scaling

Visualizing multimodal 
wearable features in a 
low dimensional space

Visualizing wearable data against 
outcome variable such as SCG 
and BCG trends with changes 
in cardiac contractility due to 
exercise. 109

Reinforcement 
Learning

Automate 
decision-making

• Deep Q Networks Personalized 
Interventions

Remote monitoring and 
personalized management of 
comorbidities (i.e. type 
2 diabetes), which may 
include just-in-time adaptive 
interventions 110.

Abbreviations: ballistocardiography (BCG), coronary artery disease (CAD), cardiovascular disease (CVD), electronic health record (EHR), heart 
failure (HF), left ventricle (LV), myocardial infarction (MI), seismocardiography (SCG).
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Table 2:

Selected Clinical Studies of Cardiovascular Management with Wearable Devices

Study (year) Study Design (n) Wearable Device Measurement Major Findings

Physical Activity

Lee et al. 2019 20 Prospective cohort 
study (n = 16,741)

Actigraph GT3X+ 
Accelerometer 
(Actigraph Corp)

Daily step counts 
and step intensity

- As daily steps increased, the mortality rates 
decreased until it plateaued around 7,500 
steps/day in a large cohort of older women.

Brickwood et al. 
2019 23

SR/MA of RCTs 
(n = 3,646)

Variety of wearable 
activity trackers

Daily step counts 
and step intensity

- Multifaceted interventions were more 
effective compared to interventions that relied 
solely on the wearable device.

Hodkinson et al. 
202124

SR/MA of RCTs 
(n = 4,203)

Variety of wearable 
activity trackers

Daily step counts 
and step intensity

- Interventions that combine activity 
trackers and consultations with health care 
professionals can significantly improve the 
PA level in patients with cardiometabolic 
conditions.

ENGAGE study 
2021 33

RCT (n = 500) Fitbit Alta or Fitbit 
Inspire (Fitbit Inc)

Daily step counts 
and step intensity

- There was a greater increase in PA when 
individuals selected their goals (rather than 
assigned) with immediate implementation in 
economically disadvantaged adults.

Ferguson et al. 
2022 2

Umbrella review 
(n = 163,992)

Variety of wearable 
activity trackers

Daily step counts 
and step intensity

- Wearables increase activity by an average of 
1800 steps/ day, 6 min of MVPA, and promote 
1kg of weight loss with sustainable effects for 
at least 6 months.

Atrial Fibrillation

REHEARSE-AF 
Study 2017 111

RCT (n=1,001) AliveCor Kardia 
device

Single-lead iECG - Twice-weekly iECG screening led to nearly 
fourfold increase in new AF diagnosis in 
patients ≥ 65 y.o

mSToPS study 
2018 13

RCT and 
observational 
cohort study 
(n=2,659)

Zio Patch (iRhythm 
Technologies)

Single-lead ECG - Monitored individuals had higher rates of AF 
diagnosis, AC use, and healthcare utilization.

Apple Heart Study. 
2019. 38

Prospective, 
multicenter, study.
(n=419,297)

Apple Watch (Apple 
Inc)

PPG - Irregular pulse notifications occurred in 
0.52% of the population cohort, and the 
PPV of the notification was 0.84 for atrial 
fibrillation detection.

Huawei Heart 
Study 201939

Prospective cohort 
study (n=187,912)

Honor Band 4, 
Huawei Watch 
GT, Honor Watch 
(Huawei Tech.)

PPG - PPG identified “suspected AF” in 0.2% of 
the cohort, and the PPV of the notification was 
91.6%.

EPACS Study. 
2019. 40

RCT (n=116) Zio Patch (iRhythm 
Technologies)

Single-lead ECG - Continuous ECG monitoring after an index 
stroke/TIA resulted in significantly higher AF 
detection and AC use compared to Holter 
monitor.

SEARCH-AF 
Study. 2021 41

RCT (n= 336) SEEQ (Medtronic) or 
CardioSTAT (Icentia) 
chest patch

Single-lead ECG - Continuous ECG monitoring increased the 
rate of AF detection by 17.9% within 30 days 
of hospital discharge after cardiac surgery.

SCREEN-AF Study 
2021 112

RCT (n = 856) Zio Patch (iRhythm 
Technologies) and 
Watch BP-HomeA 
Monitor (Microlife)

Single-lead ECG 
and
Oscillometric 
Screening

- Continuous ECG monitoring increased AF 
detection 10-fold and led to AC initiation 
in 75% of patients ≥ 75 y.o. BP monitor 
screening was inferior compared to continuous 
ECG.

Heart Failure

TIM-HF 2011. 46 RCT (n=710) Unspecified ECG and 
BP monitor

3-lead ECG and BP - Telemonitoring with physician interventions 
did not reduce all-cause mortality compared to 
usual care in ambulatory patients with stable 
HFrEF.
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Study (year) Study Design (n) Wearable Device Measurement Major Findings

BEAT-HF study 
2016 47

RCT (n=1,437) Unspecified BP + HR 
monitor

Unspecified - Telemonitoring with health coaching did not 
reduce readmission or mortality rates after a 
HF hospitalization.

TIM-HF 2 Study 
2018 45

RCT (n= 1,571) PhysioMem PM 1000 
(GETEMED) and UA 
767 PBT BP Device 
(A & D company)

3-lead ECG and BP - Telemonitoring reduced number of days lost 
to CV admissions and all-cause mortality in 
patients with HFrEF, no depression, and recent 
HF admission (subgroup of TIM-HF study).

LINK-HF study 
2020 49

Prospective 
multicenter study 
(n=100)

Multisensor wearable 
chest patch (Vital 
Connect)

PA, ECG, 
skin impedance, 
temperature

- ML algorithms detected rehospitalization 
with 76-88% sensitivity and 85% specificity, 
similar to the accuracy of implanted devices.
- Alerts preceded the readmission by 6.5 days.

Cardiac Rehabilitation

Telerehab II study 
2015. 57

RCT (n=80) Yorbody Triaxial 
Accelerometer 
(Yorbody)

Daily step counts 
and activity intensity

- The telemonitoring program combined with 
conventional CR increased the peak VO2 more 
effectively than the control at 18 weeks in 
patients with CAD.

Maddison et al. 
2019 58

Non-inferiority 
RCT (n=162)

BioHarness 3 (Zephyr 
Technology)

HR, RR, single lead 
ECG, and PA

- Remotely monitored exercise-based cardiac 
telerehabilitation was similarly effective 
and had reduced program delivery costs 
compared to traditional center-based cardiac 
rehabilitation.

SmartCare-CAD 
study 2021 59, 60

RCT (n=300) Mio Alpha HR 
monitor (Physical 
Enterprises, Inc) and 
Actigraph wGT3x-BT 
triaxial accelerometer 
(Actigraph Corp)

Physical Activity 
Intensity and HR

- Cardiac telerehabilitation with on-demand 
coaching was similarly effective to center-
based CR for improvement in PA and QOL.
- The intervention was likely to be cost-
effective.

Nagatomi et al. 
2022 61

RCT (n = 30) Fitbit Inspire (Fitbit 
Inc.)

Daily steps - The home based CR program was a safe and 
effective approach that improved 6MWD and 
muscle strength in HF patients with frailty.

Peripheral Artery Disease

Gardner et al. 2011 
63

RCT. (n = 119) StepWatch 3 Activity 
Monitor (Cyma Inc).

Daily step counts 
and activity intensity

- The home-based exercise program had high 
adherence and similarly improved claudication 
measures compared to a standard supervised 
program.

GOALS study 2013 
113

RCT (n = 194) Caltrac Vertical 
Accelerometer 
(Muscle Dynamics 
Fitness Network)

Activity units - The home based exercise program with 
a cognitive behavioral intervention improved 
objective and subjective measures of PA.

HONOR study 
2018 64

RCT (n = 200) Fitbit Zip (Fitbit Inc) Daily step counts - The home-based exercise program without 
onsite visits did not improve 6MWD 
compared to usual care.

LITE study 2021. 65 RCT (n=305) Unspecified 
Accelerometer

Activity units - Low-intensity home-based exercise was 
significantly less effective than the high-
intensity group for improving 6MWD.

Diabetes:

Beck et al. 2017 68 RCT (n = 158) Dexcom G4 Platinum Glucose levels and 
amount of time in 
range

- In patients with type 2 DM on basal-
bolus insulin, CGM significantly reduced 
hemoglobin A1c at 24 weeks compared to 
usual care with an adjusted difference in mean 
change of −0.3%.
- There was high satisfaction and adherence to 
CGM use.

MOBILE study 
2021 69

RCT (n = 175) Dexcom G6 Glucose levels and 
amount of time in 
range

- In primary care patients with type 2 DM 
on basal insulin only, the CGM group had 
significantly improved hemoglobin A1c at 8 
months (adjusted difference −0.4%) compared 
to fingerstick testing.
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Study (year) Study Design (n) Wearable Device Measurement Major Findings

FLASH-UK study 
202267

RCT (n = 156) Freestyle Libre 2 Glucose levels and 
amount of time in 
range

- In patients with type 1 DM, intermittently 
scanned CGM with optional alerts improved 
hemoglobin A1c by 0.5% compared to 
fingerstick testing.
- The CGM group had more time in range and 
lower burden of hypoglycemia.

Abbreviations: anticoagulation (AC), atrial fibrillation (AF), blood pressure (BP), cardiovascular (CV), cardiac rehabilitation (CR), continuous 
glucose monitoring (CGM), coronary artery disease (CAD), diabetes mellitus (DM), electrocardiogram (ECG), ejection fraction (EF), heart failure 
(HF), heart rate (HR), heart failure with preserved ejection fraction (HFpEF), heart failure with reduced ejection fraction (HFrEF), machine 
learning (ML), meta-analysis (MA), moderate to vigorous physical activity (MVPA) myocardial infarction (MI), peripheral artery disease (PAD), 
photoplethysmography (PPG), physical activity (PA), positive predictive value (PPV), quality of life (QOL), randomized controlled trial (RCT), 
respiratory rate (RR), systematic review (SR), transient ischemic attack (TIA), 6 minute walk distance (6MWD).
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Table 3:

Advantages and challenges associated with wearable devices in cardiovascular medicine: patient and 

healthcare provider perspectives

Advantages Challenges

Patient 
Perspectives

• Active role in monitoring and managing 
chronic conditions
• Promotion of healthy lifestyle choices
• Telemonitoring may reduce the number of 
office visits, travel, and time commitment
• Increased screening and earlier detection of 
disease
• Sense of ‘safety’ from continuous 
monitoring

• Difficulty navigating the wearable device technology; exacerbated by 
cognitive, visual, or hearing impairments
• Poor understanding of the device’s clinical role and inability to 
contextualize clinical significance of measurements
• Cost of device/software
• Inconsistent internet access
• Concern for data security
• Social isolation by decreasing in-person visits
• Lack of culturally diverse interventions 74

• Lack of non-English resources

Healthcare 
Provider 
Perspectives

• Improved screening and management of 
cardiac conditions
• Earlier detection of clinical decompensation 
that may be amenable to intervention to 
prevent hospitalization
• Objective assessment of patient adherence to 
exercise or medication regimen
• Additional data for telemedicine visits

• Insufficient clinical infrastructure and staff to handle wearables data
• Wearable use may be patient-initiated, though providers are asked to 
interpret findings and provide guidance
• Integration of wearables data into electronic health record
• Lack of standardized reimbursement policies
• Need for large randomized controlled trials to build supporting 
evidence to define meaningful use criteria and clinical guidelines
• Constantly changing technology and poorly defined regulatory 
oversight
• Concerns about device accuracy and validity
• Data privacy and medicolegal concerns.
• Concerns about potentially creating a new health disparity
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