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It is crucial to develop spatiotemporal analysis tools to mitigate risks during a pandemic. Many
dashboards encountered in the literature do not consider how the geolocation characteristics and
travel patterns may influence the spread of the virus. This work brings an interactive tool that is
capable of crossing information about mobility patterns, geolocation characteristics and epidemiologic
variables. To do so, our system uses a mobility network, generated through anonymized mobile location

Keywords: data, which enables the division of a region into representative clusters. The clusters’ aggregated
Mobility patterns socioeconomic, and epidemiologic indicators can be analyzed through multiple coordinated views.
COVID-19 The proposal is to enable users to understand how different locations commute citizens, monitor
SARS-CoV-2

risk over time, and understand what locations need more assistance, considering different layers of
visualization, such as clusters and individual locations. The main novelty is the interactive way to
construct the mobility network that defines the social distancing level and the way that risks are
managed, since many different geolocation characteristics can be considered and visualized, such
as socioeconomic indicators of a location, the economic importance of a set of locations, and the
connection of important neighborhoods of a city with other cities. The proposed tool was built and
verified by experts assembled to give scientific recommendations to the city administration of Recife,
the capital city of Pernambuco. Our analysis shows how a policymaker could use the tool to evaluate
different isolation scenarios considering the trade-off between economic activity and contamination
risk, where the practical insights can also be used to tighten and relax mitigation measures in other
phases of a pandemic.

Network model
Visualization
Decision support

© 2023 Elsevier B.V. All rights reserved.

1. Introduction Of course, the uncertainty behind the parameters used in such
models should be observed.

The detection of a new coronavirus in 2019, called COVID-19, When dealing with any mathematical model, the results should

forced governments to develop strategies to control the spread,
such as the creation of social isolation rules, cancellation of
flights, border control, and large-scale testing [1-3]. The high
spread rate of COVID-19 has prompted governments to seek
innovative approaches to fight the outbreak, considering compu-
tational epidemiology and big data.

Several articles have studied the dynamics of the disease
through mathematical and simulation modeling [4-9], including
estimations over the evolution of the curve of infected peo-
ple, have been used for some governments in public reports.
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be interpreted and validated as a mathematical model, which is a
simplified representation of reality. Nevertheless, it is important
to have models and results on hand to support decisions, and
this can also be supported integrated with iconic models to
enable structuring decision problems to create decision oppor-
tunities [10]. Furthermore, social infrastructure, cultural aspects,
and individual behavior are key elements that may influence the
dynamics of disease spread.

To better understand what has worked well and what has not
in managing the response and recovering in the pandemic, the
OECD elaborated a document on the lessons learned from govern-
ments evaluations of COVID-19 responses. They considered eval-
uations of policies according to phases of the risk management
cycle: pandemic preparedness, crisis management, and response
and recovery. [11].
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Most of the evaluations on response and recovery of 93% of
the sample of countries have focused on four main types of
policy or measure: economic and financial support, social policies,
health policies, and lockdown and restriction measures. Lessons
learned about lockdown and restriction measures conclude that
they came at a high cost for society, but it is suggested that
more efforts should be made to evaluate the costs and benefits
associated with these measures, especially lockdowns, which are
not always coherent or well implemented [11].

Decisions and studies regarding the recovery of economic
activities have been conducted, which requires that decisions for
public policies consider the reality of the threat of future waves
of COVID-19 spreading or a future pandemic with an analytical
perspective, including data-driven approaches [12,13].

We propose an approach to help policymakers in developing
more strategic ways to perform lockdowns and restriction mea-
sures, such that the cost imposed to the society is minimized.
Thus, instead of performing the same lockdown and restriction
measures for all the locations in a given geographical region,
policymakers could establish different actions to different clusters
of locations. Each cluster is defined by locations more probable
to suffer from isolation, because they are strongly connected due
to frequent travels relative to family, work, and expenditure of
services and goods.

In this paper, our goal was to design a visualization tool that
integrates the risk-based approach in [13] with an interactive
identification, exploration, and simulated restriction of mobil-
ity patterns by crossing information on socioeconomic, and epi-
demiologic variables, to develop isolation strategies for different
clusters of locations.

To do this, we first considered anonymized mobile phone loca-
tion data, provided by In Loco company [14], to obtain risk-based
networks that explore the behavior of citizens in a particular
location. The data is represented by origin-destination matrices,
where an arc between an origin and a destination exists if and
only if a certain volume of people, in terms of the percentage
of the population of the origin, is commuted. Thus, if a certain
mobility threshold is achieved, the connection between pairs of
locations exists.

By exploring different values of this threshold, experts can in-
vestigate the trade-off between the level of isolation imposed and
the macro-regions size that should be kept isolated. The limits of
the clusters are represented geographically as isolation barriers.
These isolation barriers support policymakers in differentiating
strongly connected sets of locations. Each isolated region receives
resources depending on the magnitude of its contamination risks.

Also, these isolation barriers are used to, for example, monitor
the situation of the pandemic and identify the impact of the
pandemic on different economic arrangements. Depending on the
situation of the pandemic and the region under study, policy-
makers may impose sanitary barriers, travel restrictions, costs
or other restriction measures to reduce the number of people
traveling between locations that belong to different clusters.

The system uses multiple coordinated views [15] so that pol-
icymakers can understand the characteristics of these regions
concerning indicators related to the population’s socioeconomic
aspects, the risk of infection, mobility patterns, and economic
arrangements.

The case study included in this paper was made for the state
of Pernambuco (PE), in Brazil. PE is one of the country’s most
popular states and has been primarily affected by the ongoing
pandemic. The socioeconomic diversity found among the cities
of Pernambuco also brings an essential demand for the present
work, which can be replicated in other countries.

To summarize, the contributions of this work are:
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e The proposed approach is able to cross mobility informa-
tion with epidemiologic data and characteristics about the
studied locations.

e The tool can be used in the first phase of a pandemic, to
verify the impact of lockdowns on risk metrics, and in the
subsequent phases to understand how the tightening and
relaxing restriction measures can impact a neighborhood or
municipality according to their characteristics.

e Case studies were performed to demonstrate the impor-
tance of the tool in monitoring risk metrics, evolution of
the risk metrics, investigation of the impact in important
economic arrangements, identify neighborhoods that most
commute citizens from different cities, and how to priori-
tize mitigation actions in neighborhoods according to their
socioeconomic variables.

e The visual decision support tool could provide policymak-
ers with relevant information, helping them to better un-
derstand the pandemic situation, to learn how to parti-
tion the studied region using mobility data, and to support
decision-making.

e This exploratory tool enables insights to enhance compart-
ment epidemic models by including socioeconomic variables
whose effects may be visually observed.

e It is possible to adapt and use the proposed visual analytics
tool for any region given the availability of mobility, so-
cioeconomic, and epidemiologic data. The source code can
be accessed in https://github.com/nivan/covidClusters. The
README file contains explanations on how to adapt the
tool for the user’s region. To interact with the tool, go to
https://nivan.github.io/covidClusters/bairrosRecife/ and http
s:/[nivan.github.io/covidClusters/municipiosPE/.

The rest of the paper is organized as follows. Section 2 present
related visual analytics studies for mobility data and networks in
urban systems, in epidemic analysis and in the context of COVID-
19 pandemic. Section 3 presents materials and methods used in
this work. In Section 4, we detail the proposed visual analytics
tool. The experimented use cases and validation with domain
experts are presented in Section 5. An overall discussion about the
findings concerning the proposed tool is presented in Section 6.
Finally, Section 7 concludes the paper and presents perspectives
for future work.

2. Related work

Our work comprises two fields of research. The first is related
to visual analytics tools based on networks and mobility data,
and the second is visual analytics tools for epidemic analysis and
COVID-19.

2.1. Visual analytics based on mobility data and networks for urban
dynamics

Analysis of massive data produced by different technologi-
cal sources, such as mobility data, can be performed through
visual analysis tools. This approach has been adopted by some
researchers to transform data into robust information for the
final user [16,17]. Visual analytics tools may incorporate mobility
patterns to achieve a better analysis of urban dynamics.

These visual analytics tools can extend the comprehension
about different aspects of mobility [18], by providing visual in-
sights to support decisions relative to urban systems, such as pub-
lic transportation [19-21], traffic analysis [22], tax evasion [23]
and smart cities applications [17,24]. The study of mobility data
brings challenges due to complex spatiotemporal patterns, which
can be analyzed by the visual tools that present adequate mobility
representations [25].
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Network science has been used in different contexts where
visual analytics tools are applied. Networks are widely applied to
provide insights in the context of social networks [26-28]. Real-
world situations can be represented more precisely by weighted
directed networks, which contain more information about the
relationship between pairs of nodes [29]. Thus, it enables us to
characterize terrestrial transportation route networks [30], model
and visualize scientific datasets [31], and to analyze patient flow
in hospitals [32].

Urban mobility data can be combined with networks to study
the relationship among neighborhoods. This analysis can include
the detection of communities, which are common mobility pat-
terns in an urban environment. Krueger et al. [33] proposed a
visual interactive tool to provide insights for urban planning re-
search, using mobility graphs and unsupervised learning to detect
mobility patterns and behavior anomalies.

An interactive visual analytics tool was developed in [34] to
enable the detection and changes in spatial-temporal patterns,
and also provide clutter reduction when comparing flows of
people in certain moments, by combining spatial aggregation
of flows and temporal clustering. Wang et al. [35] used geo-
textual data, which embodies geographical and human activity
information, to generate sequential latent graphs and applied the
Louvain algorithm for community detection method to identify
and analyze different types of region transformations.

The works found in the literature use automated clustering
approaches to detect and analyze mobility patterns. Also, these
works did not consider interactive approaches to simulate mo-
bility restriction, which makes it impossible to study the impact
of relaxation or tightening of social distancing. In this work, an
interactive clustering approach is used in a visual analytics tool to
obtain constrained and relaxed mobility patterns using networks
generated through anonymized mobile phone data.

2.2. Visual analytics for epidemic analysis and the COVID-19 out-
break

Data visualization encompasses essential tools to aid policy-
makers during an epidemic, offering statistical analysis, surveil-
lance, and indicator monitoring. The tools are developed such that
human cognitive effort is reduced and the capacity to analyze big
datasets is augmented. Unified global visualization technologies
can provide insights to support decisions to manage an epidemic,
and consequently minimize its propagation [36,37].

The devastating power of COVID-19 became more evident
as the pandemic advanced [38]. Therefore, several governments
and institutions have used visualizations in their reports on the
COVID-19 spread, including economic and labor factors [39-41].
Many challenges for deploying solutions for COVID-19 manage-
ment and control arose, such as the development of problem-
oriented big data acquisition systems and inference of population
behavior [42].

Open information about the geographical distribution of COVID-
19 is important to support scientific analysis and to provide a
better understanding of the spread of COVID-19 [43]. A good
example is a dashboard provided by John Hopkins University [44],
which includes heat maps concerning the active number of cases,
cumulative cases, hospitalizations, and incidence rates. The World
Health Organization [45] also provides an interesting dashboard
that includes specific visualizations regarding statistics and re-
gion comparisons.

Furthermore, articles exploring data visualization have been
published. Dey et al. [39] present an exploratory data analysis of
the pandemic with visualizations of the spreading of COVID-19 in
China. Gao et al. [40] propose the use of cartograms to visualize
the expansion and spread of COVID-19. Barone et al. [46] created
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a surveillance dashboard for COVID-19 containing graphs, figures,
and criticality tables with data collected from the European Cen-
tre For Disease Prevention and Control. Zhang et al. [47] used
a spread index and an extinction index to investigate when the
pandemic grows and declines, and also used bubble charts and
animations to visualize how the pandemic is changing over time.

Khan et al. [48] designed an ontology-based infrastructure
that captures relationships between data streams, visualization
functions, and web pages to allow the rapid deployment of web-
based interactive dashboards across multiple data streams, in a
context with limited resources and low programming expertise.
Ipenza et al. [49] developed a public visual analytics tool, named
QDSSUS, to interactively explore millions of Brazilian healthcare
records through interactive queries. The authors discovered how
patterns evolved over one year of COVID-19 in different regions
of Brazil, such as the relationship between patient age groups and
their corresponding dominant symptoms.

A survey on the use of visual analytics for public health was
presented by Preim and Lawonn [50], which included research
about computational epidemiology. The survey mentions that
visualizations containing spatiotemporal data are often used to
describe the disease’s behavior. This is because epidemic spread
simulation based on the analysis of connections between differ-
ent locations or individuals over time can output more realistic
results in what-if scenario analysis.

A view of epidemic modeling through networks is given by [51].
The use of social network analysis and visualization [51,52] is
very important as an epidemic spread often depends on mobility
patterns among locations in the studied region. Tao et al. [53]
present a visual analytics framework, called HoNVis, which can
be used to explore epidemic outbreak scenarios through domestic
and international travels, identifying airports of interest and
tracing the propagation of an epidemic.

Luo [54] proposed a visual analytics tool to evaluate the effect
of control measures using face-to-face interaction patterns of a
primary school. Geo-social mixing patterns are explored from
human interaction network data, which enables the identifica-
tion of critical individuals, locations, and clusters of locations.
Then, a control measure can be designed, considering the interac-
tion patterns, and evaluated through a compartment model that
simulates the propagation of an epidemic.

Dynamic Network Visualization (DyNetVis) [55-57] was pro-
posed to be an open-source visual analytics tool for dynamic
network exploratory visualization. DyNetVis also implements dy-
namic processes, including epidemic compartment models. It is
possible to analyze and explore the infection path of simulated
epidemics with different parameters, visualizing the transmission
tree and different groups of individuals (i.e. susceptible, infected,
and recovered).

Some scientific visualization tools that adopted network
analysis were proposed in the COVID-19 context, Abel and Gietel-
Basten [58] proposed a tool to analyze the global economy in-
terconnectedness, and thus investigate the economic and social
impact of COVID-19, based on a chord diagram.

Saraswathi et al. [59] used software tools, Cytoscape and
Gephi, to create social network visualizations and explore com-
mon transmission patterns. The visualization approach enabled
the identification of evolving hotspots, such as those associ-
ated with international travel and principal cities. Also and key
actors were identified in the transmission, by considering age-
sex attributes in the nodes of the transmission network. The
exploratory analysis occurred during different phases of the lock-
down in India.

Luo et al. [60] used a visualization approach to construct
disease transmission network graphs for the COVID-19 epidemic,
according to relationships among cases. The proposed visualiza-
tion tool for transmission networks can identify the transmission
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source and contacts, assess the current situation of transmission
and prevention, and provide an adequate response to control the
propagation of COVID-19.

It is possible to see that past studies for COVID-19 dashboards
considered exploratory analysis and surveillance of epidemiologic
variables and automated development generation of visualization
components. Also, works that proposed graph-based visualization
tools for epidemics and COVID-19 were mainly focused on ex-
ploratory analysis of the transmission network, the visualization
of simulation output from compartment models, and analysis of
economic impact based on the degree of connection between
different locations.

To the best of our knowledge, this is the first tool that uses
mobility patterns, generated from millions of anonymized mobile
phones, to manage the prioritization of risk mitigation actions to
a set of locations. The insights provided to mitigate risk across a
set of locations is obtained by crossing mobility, socioeconomic
and epidemiologic data. Thus, it is possible to interactively define
the restriction or relaxation of common mobility patterns, defined
by clusters, given the values of risk contamination and impact on
socioeconomic variables, observe the impact of the pandemic in
economic arrangements associated with the clusters, and monitor
the clusters’ (and its components) contamination risk over time.

3. Materials and methods

The authors of this study were part of a larger institutional
project of the Recife’s City Administration, whose goal was to
provide data-driven scientific recommendations to the adminis-
tration on how to fight the pandemic and also plan the recovery
process.

Works that propose novel visual analytics tools commonly
invite domain experts’ to validate the proposed tool and also use
this feedback to develop increments in future work [49,61,62]. In
order to guide the formulation of use cases in the experiments, it
is important to define system requirements and analytical tasks.
The proposed tool and its supported analysis were developed fol-
lowing an adaptive and evolutionary approach [63] with feedback
from experts with an interdisciplinary background.

The group of domain experts included (2) Epidemiologists, (2)
Economists, (1) Architect and (3) Engineers. All of the broad ex-
perience in their areas (all of them PhD. and/or Masters degrees)
and participated in regular meetings to provide quick responses
to the administration’s needs. Thus, it was possible to validate the
tool and obtain important feedback about its usefulness.

As a result of this effort, it was identified the need to study
strategies for setting isolation barriers and try to minimize the
impact of these barriers on the population and local economy. In
a closer collaboration with the three Engineers in our team (co-
authors of this paper), we came up with the methodology of the
analysis illustrated in Fig. 1 and described in the following.

Phase 1 represents the data collection process. The data used
in this paper include socioeconomic indicators and COVID-19
statistics regarding cities and neighborhoods made available by
Recife City Hall and the Secretary for Planning and Management
of Pernambuco (SEPLAG) from the Pernambuco State Govern-
ment.

Also, mobility data collected from mobile devices were sup-
plied by In Loco, a company that works with location analytics.
Mobility data concerns anonymized location data from millions
of devices that were transiting in Pernambuco in the first half of
2020.

Phase 2 points out the need for database cleaning, process-
ing and integration. There are three main databases to be pro-
cessed: boundaries, mobility, and socioeconomic. The boundaries
database contains the polygons that are used as basic types of the
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Phase 1:Data Collection

Anm}m!f’;?a Location COVID-19 Statistics }—{ Socio-economic Data

Flow aggregation

Flow Analysis

Phase 2: Data Curation

Phase 3: Network Analysis

Experts Knowledge

Threshold Definition

Complete Origin-Destiny
Matrix

Constrained Networks

Phase 4: Clustering Analysis Force of Infection

+  Cluster Risk Exposure
Clustmzlq— ¢ CityRiskExposure
¢ Neighborhood Risk

Exposure

Threshold Control
Activation of Clustering
Analysis

COVID-19 Dashboard

Fig. 1. Methodology used in the data analysis process used in this work. This
process is divided into five phases, initializing with data collection and as a
result, we get the dashboard.

leaflet.js map. The integration of these three databases is guided
by the locations’ names. The mobility data is constituted by the
aggregation of daily origin—destination matrices. More details on
data collection and data curation are given in Section 3.1.

Phase 3 concerns the flow analysis and the construction of a
constrained graph. First, it is possible to perform different analy-
ses on flow data, such as to study mobility behavior over time in
each location. Secondly, the mobility data is transformed into a
single representative origin—destination matrix (see Section 3.1).
Then, thresholds defined by using experts’ knowledge generate
filtered graphs in a continuous refinement process, as illustrated
by the dashed arrow. This definition concerns the division of
macro-regions or clusters to be managed.

Managing many clusters may reduce interpretability due to
high granularity. A small number of clusters will not divide the
region to optimize resource allocation in planning mobility re-
strictions or economic recovery. Thus, the policymaker can define
which is the adequate number of regions to be managed accord-
ing to its preferences and its understanding of how connections
in each cluster reflect the reality of the state or city under study.
More details on Phase 3 is given in 3.2.

In Phase 4, risk metrics were defined to prioritize actions
for two types of clusters: healthy and infected. Healthy clusters
need to be ranked according to their risk of getting infected.
Thus, risk exposure metrics were defined to model this risk.
Infected clusters can be ranked according to their infection risk
or infection rate. Thus, we adopted a risk metric to model the
infection risk in this type of cluster. More details on Phase 4 is
given in 3.2.

Finally, in Phase 5, a COVID-19 dashboard is constructed to
visualize the analysis defined in the other phases. It was imple-
mented using javascript, with the Leaflet.js and Turf,js libraries
for the geographical visualizations and D3.js for data-driven mul-
tiple coordinated views. We discuss the requirements for this
dashboard in Section 3.3.

3.1. Data used in the experiments

The mobility data was provided by the In Loco company,
which collects anonymized location data from about 60 million
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Fig. 2. Clusters of neighborhoods in the city of Recife corresponding to different values of the mobility threshold, I. The colors on the vertices of the networks
correspond to the different clusters. Purple nodes represent singleton clusters. It can be observed that as the mobility threshold grows, the connectedness among

vertices decreases forming “isolated islands” or clusters.

devices around the world, from which about 2.2 million devices’
data has been collected in Pernambuco, which is considered an
entirely reasonable number in light of the entire population of
Pernambuco, found about 8.8 million in the last census in 2010
and recently estimated in 9.5 million.

From the provided Origin-Destination (OD) Matrices that es-
timate the flow amongst the cities of Pernambuco, Metropolitan
Region of Recife, and Recife’s neighborhoods from 2020-05-06
to 2020-05-26. The entries of the OD Matrix represent outflows
from each city i to a city j. Thus it was calculated the percentage
of people that remained in the city i and the percentage that left
the city i to each of the other N — 1 cities at each date of the
considered period. Given an OD matrix A, if a; = 0.2, then a 20%
flow was estimated of population moving from city i to city j.

In this study, we considered the worst-case scenarios of the
COVID-19 spread by estimating the worst-case mobility matrix
for the studied period. Thus, given that a matrix A’ is the OD
matrix for period t, the non-normalized representative matrix of
the worst-case mobility for a period t = 1,2, ..., T scenario is
given by Wif ;= mtax(A,{j), where T is the final day available in

the dataset. The worst-case mobility matrix is given by W;; =

Wy S, W

Furtﬂermore data concerning the COVID-19 spread in Per-
nambuco was collected from the Brazilian Ministry of Heathy
reports [64], and the SEPLAG of Pernambuco [65]. Also, the so-
cioeconomic variables of the cities were collected from IBGE [66].
A summary of the spatial variables for Recife neighborhoods and
the group from which they belong is presented in Table 1

3.2, Networks and clustering analysis

This section presents the necessary concepts from network
analysis used to obtain the results in this paper. Also, we provided
some sources that can be used by the interested reader to explore
more measures and definitions concerning the topics presented.

Let D = (V,A), be a directed graph, or digraph, where V
represents a set of vertices and A (disjoint from V) consists of
a set of directed arcs together with an incidence function ¢p that
associates each arc of D with an ordered pair of vertices [67].

In our analysis, we use directed graphs to represent mobility
patterns where each node, v;, represents a geographical location
(e.g., a district, a city, etc.) and each arc, (i,j), represents ag-
gregated movement of one or more people from location v; to
location v;.

Furthermore, for each arc a = (i, j), we define the weight of an
arc, w(i, j), as the proportion of the population of each location
i that travels region j. When considering the mobile location
data, we collected the origin—destination matrix for each day
from January to the date after social distance policies. Thus, we
considered two possibilities for building the network scenarios:

Table 1
Socioeconomic and epidemiologic variables that were collected and
calculated for Recife neighborhoods.

Name group

Socioeconomic
Socioeconomic
Socioeconomic

Probability of survival 60 years
Per capita income

Percentage of employed in the
agricultural sector

Percentage of employed in the
commerce sector

Percentage of employed in the
construction sector

Percentage of employed in the
extractive sector

Percentage of employed in the
service sector

Percentage of employed in the
industrial sector

Percentage of employed in the
transformation ind. sector
Percentage of vulnerable households
dependent on elderly

Population in vulnerable households
dependent on elderly

Percentage of population in
bedrooms with 2 or more people
HDI (Human Development Index)
HDI education

HDI longevity

HDI income

Active cases

Active cases per capita

Force of infection per capita

Risk exposure per capita

Socioeconomic
Socioeconomic
Socioeconomic
Socioeconomic
Socioeconomic
Socioeconomic
Socioeconomic
Socioeconomic
Socioeconomic
Socioeconomic
Socioeconomic
Socioeconomic
Socioeconomic
Epidemiologic

Epidemiologic

Epidemiologic
Epidemiologic

(i) the maximum flow observed before social distance policies and
(ii) the maximum flow after social distance policies.

The maximum value was used to ensure a conservative risk
approach, although other values such as the average could be
used. These weights shall be considered according to the current
social distance state. Then, the digraph, together with its arcs’
weights, is called a weighted directed graph (D, w).

Our analysis is based on a threshold, I, used to filter the arcs in
a weighted directed graph to build derived undirected graphs as
described in the following. An arc between two vertices v;, v; € V
exists (i.e., passes the filter) if and only if, w;j > [ or w;; > L.

In other words, this threshold represents the fractional vol-
ume of people, which implies a well-established communication
amongst different locations, therefore indicating that there is a
proportion of w;; > I of people that travel from city i to j.

Fig. 2 presents the directed graphs obtained by choosing three
different threshold values in a graph representing the mobility in
the city of Recife, where the arc weights were obtained from the
anonymized mobile phone location data described in Section 3.1.
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The algorithm to generate clusters with a threshold value [ is
shown in Algorithm 1.

Algorithm 1 Pseudocode of the clustering method

Input: W, Nodes, |
Output: Partition U

1: Edges < {(i, j))IWy > I, Vi, j € Nodes}
2: g < initGraph()

3: g.vertices <— Nodes

4: g.edges < Edges

5: notCovered < [Nodes]

6: U<« 1]

7: while length(notCovered) > 0 do

8: v < notCovered[0]

9: clusterExists < False

10: s <]

11: for u = 1: length(U) do

12: if |g.neighbors(v) N U[u]| > O then
13: clusterExists < True

14: S.push(u)

15: end if

16: end for

17: if clusterExists then

18: S.reverse()

19: C«{}
20: for z = 1: length(S) do
21: C <« CUUIS[z]]
22: U.pop(S[z])
23: end for
24: U.push({C U g.neighbors(v) U {v}})
25: else
26: U.push({g.neighbors(v) U {v}})
27: end if

28: notCovered.pop(0)
29: end while

The inputs are an origin-destination matrix W, a set of Nodes,
and the mobility threshold I The first step is to create a graph
filtered by the mobility threshold I, as shown in lines 1-4. In line 5
we create a list of nodes to be covered by at least one cluster. The
partition is initialized in line 6. The loop from lines 7-29 evaluates
the cluster from which a node v and its neighbors belong.

In line 8 a node that was not evaluated is selected. In lines 9-
16 we evaluate if the neighbors of v belong to at least one existing
cluster. If it is true that the neighbors of v belong to at least one
existing cluster, we identify the indexes of the clusters with a list
S. Lines 17-24 merge the clusters that contains some neighbors
of v. Note that the list S, which stores the index of the clusters
to be merged, is reversed in line 18 to guarantee that the highest
indexes from the list U will be removed first.

The clusters saved in S are merged into a new cluster C and
are also deleted from U in Lines 18-22. In line 24, a v and its
neighbors will be added to the merged cluster C to constitute a
new cluster in U. As can be seen in Lines 25-27, if the neighbors
of v do not belong to any cluster, a new cluster is created in U,
containing v and its neighbors. In line 28, v is deleted from the
set of nodes that are being evaluated. It can be observed that the
sensitivity of the clustering method depends on the filtered graph,
which depends only on the mobility threshold I

We can see that the connection between pairs of locations in
the considered region is sensitive to the threshold I. As the thresh-
old is reduced, fewer locations will be connected, and clusters will
begin to appear. These clusters are unconnected graphs, and each
cluster is associated with a set of cities that commute at least a
proportion I of people between them.
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Common approaches that automatically cluster graphs mainly
optimize a quality function, such as modularity [28,29,68]. This
was not adequate for our context, since it is interesting for the
policymaker to understand how isolating and relaxing isolation
measures may affect the community and the contamination risk
within a community.

The proposed clustering approach is the most adequate for
our study since the only criteria needed to define connections
between locations is the proportion of people commuting from
one location to another, respecting the most probable connec-
tions, when [ is increased or decreased, according to real mobility
data. It is possible to obtain the most probable mobility patterns
of a certain region and the impact of constraining and relaxing
mobility in the risk metrics through this interactive clustering
approach.

The adopted clustering approach represents mobility patterns
that are more probable to occur according to the value of I. These
mobility patterns are well-established connections between lo-
cations associated with frequent travels relative to family, work,
and expenditure of services and goods.

Although singletons will exist as a result of the clustering,
they will not contain representative mobility patterns relative to
the region under study, since it is possible to define I to cover
a significant part of the population of the region (state or city)
under study. Thus, one can consider generating a set of clusters
that cover at least 90% of the population of the region under
study.

Different mobility patterns imply different cluster configu-
rations which will impact the contact between people. Thus,
contamination risk metrics will be affected depending on the
clusters’ configuration. The division of the region into clusters
is important to allocate resources according to the risk of each
cluster.

Therefore, this threshold implies a risk exposure considering
the connectedness among cities. It is possible to see that this
clustering approach makes it possible to configure clusters such
that they represent real mobility patterns between locations in
a region and to constrain or relax these connections to reduce
contamination risk.

To make the importance of this approach clear, we can com-
pare it with other common clustering methods. Clustering meth-
ods such as K-means generate a partition from a set of training
examples evaluated in a set of observable features. The clustering
method presented in Algorithm 1 generates a partition from a
graph. It tries to agglomerate locations in different groups that
share a well-established connection according to L

K-means will cluster training examples according to their sim-
ilarity in a feature set. Thus, if anonymized data from cell phones
are not available, K-means can be used to generate clusters of
locations when it is possible to collect other datasets and extract
features that can be processed with this clustering method. Of
course, K-means will not provide the same level of interactiveness
as our approach, since the user is requested to choose the number
of clusters, which will be automatically obtained through the
considered feature set and the quality function.

We can now define risk measures for each cluster that will
summarize the infection’s possible spread based on the current
state of the pandemic and the mobility data. These measures can
help policymakers to identify and prioritize those regions that are
critical. There are two types of regions to be prioritized: infected
and healthy. First, we will present metrics that support plans for
economic recovery. We defined the Risk Exposure Measure of a
region, Ry by the following equation:

n
RUJZZwi;‘ X pj (1)
i=1
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where p; is the likelihood of one individual from v; having the in-
fection. This equation quantifies the risk of infection in a healthy
region. In other words, it represents the risk of a healthy region
becoming an infected region. In Eq. (1), it was considered that the
contamination within a region and its people moving to distinct
regions are independent events.

The Cluster Risk Exposure Measure, RC,?' is given by:

Ro =) Ry (2)

<0
v;iECy

A conservative approach has been assumed for both risk ex-
posure metrics R,; and Reo, thus including the redundant inter-
section of events, i.e., being contaminated by more than one city
simultaneously. These risk metrics support the prioritization of
regions where progressive economic recovery is possible. Thus,
one may prioritize locations or clusters with small risk exposure
to develop economic recovery plans.

The final risk measure is calculated for singletons or clusters
that are infectious (contain at least one active case). This metric
is important to rank clusters according to their infection rate.
If a cluster’s infection rate is high, more efforts are required to
mitigate the risk of contamination by defining mobility restric-
tions. The name of the measure is the Force of Infection (FOI),
and it represents the rate at which a single individual contracts a
disease [69]. FOI is defined according to Eq. (3).

Y

N1
G

hr =B (3)

where Ckl is an infected location, ij is the number of infected
individuals from a city v; € Ckl and qu is the population size
K

of C,}. B = cxt, where t is the transmission probability and c
models the contact rate. Similarly, a more conservative analysis
was considered and, therefore, the transmission probability was
settled to 100%.

The proxy adopted to represent the contact rate was the mean
strength of the cluster [70]. We can see that the risk is reduced
when the contact rate is reduced, where this reduction is directly
associated with mobility restriction measures, considering the
limits of isolation barriers.

The proposed approach enables a way to protect and isolate
uncontaminated areas for reducing local economic losses since it
allows policymakers to choose which weak mobility links shall be
interrupted with risk-informed decision support. Using a simple
approach for clustering the neighborhoods brings the advantage
of easy understanding and usability by policymakers and epi-
demiologists. This feature is also an advantage for enhancing
communication with society to better support isolation plans.

3.3. System requirements and analytical tasks

In our discussions with the domain experts in our team, we
were able to identify four main requirements for the visualization
tool developed:

R1 — Visualization of multiple data sources: The analysis of iso-
lation barriers requires the investigation of multiple data sources:
mobility networks, COVID-19, and socioeconomic indicators. One
particularly important aspect of the analysis is how these sources
interact to define the properties of the clusters (defined in Sec-
tion 3.2).

R2 — Consider multiple scenarios: Mobility restriction policies,
associated with the defined isolation barriers have big conse-
quences on the daily activities of the society. For this reason, it is
essential to consider the multiple levels of restriction. It will also
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enable decision-makers to adapt this policy for different locations
and also to different moments of the pandemic development.

R3 — Simplicity: Designing policies for such an urgent pan-
demic situation requires the consideration and discussion with
many stakeholders with a wide variety of backgrounds (outside
the technical team). Thus, the visualizations designed should be
simple and easy to discuss with all the people involved in the
decision-making process.

R4 — Easy to share: To quickly promote discussion of policies
associated with isolation barriers, it is important that the tool can
be easily shared with the stakeholders and the city administra-
tion. Given that this is a general theme in the current pandemic
situation, this also promotes a more extensive and quicker idea
propagation and possible replication in other locations.

4. System design

We now discuss our tool’s final design and how it satisfies
the requirements presented in Section 3.3. The overall strategy
concerning the visualizations used in the entire tool’s design was
to provide widely used and straightforward visual summaries
(R3). The main interface, shown in Fig. 3, is comprised of four
components (R1) described in the following:

The Controls widget (Fig. 3(a)) enables the user to control
the parameters of the analysis. The mobility threshold (Limiar de
mobilidade) slider sets the value of the threshold used to filter
out arcs in the graph and thus to control the cluster generation
following the definitions of Section 3.2 (R2). The other controls
allow the users to show/hide different graphical layers presented
on the map and to configure which data variable is presented in
the visualization.

The set of checkboxes allows the user to show/hide the dif-
ferent layers on the map. The “Color by” (Colorir por) dropdown
enables the selection of one of the socioeconomic and pandemic
indicators (e.g., active cases, the population in vulnerable condi-
tions, etc.) that are visualized as a choropleth map in the map
widget (R1).

The Map widget (Fig. 3(b)) presents the geographical context
of the analysis. The different layers on the map present the
regions being considered (and how they cluster together) and
the mobility network built using the mobility threshold. More
specifically, the socioeconomic and pandemic data corresponding
to the geographical regions being studied (e.g., neighborhoods,
cities, etc.) are shown as choropleth maps (e.g., Figs. 5 and 9).

Also, as shown in Figs. 3(b) and 4, the colors of the regions
can also be used to represent the clusters of regions (regions
with the same color belong to the same cluster). In this mode,
singleton clusters are represented in purple color. This allows us
to represent isolated regions.

We also use the convex hull of the set of vertices to represent
the clusters. These polygons are colored either red or blue if they
are infected (have active COVID-19 cases in at least one of its
member regions) or not-infected (no active cases in the cluster),
respectively. This alternative representation of the clusters allows
us to overlay the cluster representation with other data layers.

The mobility network is presented as a node-link diagram,
where nodes are placed at the center of the corresponding re-
gions. Nodes are colored according to the cluster they belong to,
similarly to the regions described above (see also Fig. 2).

By clicking on the elements of one of the layers, the system
presents a tool-tip with detailed information such as population,
active cases, etc. (as shown in Fig. 3(b)). All the layers on the map
can be set to be shown or hidden using the checkboxes in the
controls widget.

The Bar chart widget (Fig. 3(c)) and Scatterplot widget
(Fig. 3(d)) provide quantitative information on the administrative
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Fig. 3. Graphical interface of our tool showing the exploration of neighborhoods in the city of Recife. The Controls widget (a) is used to configure the visualization
and to set the mobility threshold. The Map widget (b) shows the geographical context of the different layers of data. Finally, the Bar chart widget (c) and the
Scatterplot widget (d) show quantitative information about the regions and clusters, respectively.
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Fig. 4. The evolution of the clusters’ pandemic state over time, where the clusters were generated with a mobility threshold of I = 0.025. The color of the polygons
corresponds to the clusters’ classification. The overlaid polygons show the ‘infected’ (red) and the 'not infected’ (blue) clusters. Notice that some clusters had state

transitions between infected and not infected.

regions and clusters, respectively. Notice that the dots on the
scatterplot are colored with the color of the corresponding clus-
ter. Similar to the controls widget, the dropdown menus control
the indicators shown in the corresponding plots.

All the graphical components described in our system are
linked, i.e., selecting an element in one of them highlights the
corresponding element in the other widgets. For example, when
the user clicks on one of the polygons representing region bound-
aries on the map, the dot corresponding to the cluster containing
this region is highlighted. On the other hand, clicking a dot on
the scatterplot caused the tool-tip corresponding to the selected
cluster to open on the map widget.

The tool includes data from Pernambuco’s municipalities and
Recife’s neighborhood. Recife is the city of Pernambuco with
the largest population of the state (1.6 million) and the most
significant demographic density (7,039.64 inhabit /km?). Most of
the state’s public and private health infrastructure is located

in the Recife area. Therefore, it shall be difficult to control the
epidemic once infected persons from other Pernambuco cities
shall be medical treatment in Recife.

In light of these local features, the system considers Recife and
its neighborhoods in detail and a general view of the entire state
as presented with its components presented in Fig. 3.

Implementation. Our tool is implemented as a web-based
dashboard (R4). It was implemented using the Leaflet.js and
Turfjs libraries for the geographical visualizations and D3.js for
the other components.

5. Use cases and results

This section presents the results on the usefulness and features
of the proposed system. To this end, we use data from different
sources (described in Section 3.1). We highlight that the use
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Fig. 5. (a) Local productive arrangements colored in the map of the state of Pernambuco. Notice that there are islands of production (non-green regions). (b) The
clusters of cities generated from a mobility threshold equal to | = 0.025. We can evaluate the pandemic situation in the context of local productive arrangements
on 2020-05-26 observing the clusters that surround them. As can be seen, some of the local productive regions could have been isolated by imposing the isolation

barriers through travel restrictions or other mobility restriction measures.

cases described were carried out by three domain experts (co-
authors of the paper). The tool and its use cases were presented to
policymakers and other domain experts of Project D.A.D.O, which
validated the tool and supplied important feedback.

5.1. Pernambuco networks: State scale

After setting up the desired threshold using the mobility
threshold slider, the user can monitor the clusters’ states (infected
or not infected) over time. Fig. 4 illustrates how clusters gener-
ated for [ = 0.025 behaved in the period from 2020-05-12 until
2020-05-26 and included cities from other states bordering with
Pernambuco that have relevant people flow.

We highlighted some clusters on the first day of analysis,
manually associating a letter for each of them. Cluster A did
not become infected during the considered period. Therefore,
the policymaker may judge if this cluster is a candidate for
a specific isolation barrier policy associated with an economic
recovery plan or how to relax the isolation policy after observing
a tolerance time.

On the other hand, the states of the clusters B, C, D, and
E changed in the considered period. Cluster C became infected
while Cluster B became not infected on 2020-05-14. Cluster D
became not infected on 2020-05-22. Cluster E became infected
on 2020-05-14 and then became not infected on 2020-05-22. It
is important to highlight that during this period since the tool
presented in this paper was not available, no condition-based
policy was planned for these clusters of cities, so we expect
that this proposed graphic tool may be useful for preserving the
population of areas that are not infected.

Another analysis involving the selected cluster set is to inves-
tigate the situation of some local productive arrangements (LPAs),
which constitute the state’s strategic economic regions. These
types of economic clusters are supported by government pro-
grams that promote regional development by stimulating the en-
terprises’ technological development, competitiveness, and sus-
tainability. The analysis is shown in Fig. 5.

Areas in green are not contained in any cluster. Purple areas
represent dairy’s LPA, pale orange areas represent plaster’s LPA,
yellow areas represent clothing production’s LPA, and blue areas
represent viticulture’s LPA. On 2020-05-26, pale’s LPA was the
only one not infected. This shows that the majority of the con-
sidered strategic economic regions are infected, and policymakers
should give special attention and develop a plan of action and
monitoring for these areas.

5.2. Recife metropolitan area
An analysis including only the Recife metropolitan area gives

more details about this region. In this scenario, instead of con-
sidering Recife as a single vertex, each of its neighborhoods was

Fig. 6. Cities most related to Recife’s neighborhood with [ = 0.05. This analysis
provides information on which cities are more probable to share infected people
with Recife.

considered in the graph as a vertex to reveal these neighborhoods’
relations with the cities of the Recife metropolitan area. Fig. 6
presents the clusters constructed with a threshold of | = 0.05,
including singletons.

A more detailed analysis of Recife’s neighborhoods is included
in Section 5.3. Nevertheless, having a view of the relations be-
tween the neighborhoods and cities within the region is interest-
ing. Since the flow of people in the metropolitan area is intense
during working hours, it is essential to understand the networks
before relaxing social distancing and working policies related
to the pandemic. As shown in Fig. 6, Recife’s neighborhoods
are within clusters that contain cities such as Olinda, Paulista,
Jaboatdo dos Guararapes, and Itapissuma.

5.3. Neighborhoods of Recife

This section presents the analysis that considers only the
neighborhoods of Recife. Fig. 7 presents the clusters construction
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Fig. 7. Clusters (top) and associated scatter plots for two particular dates (bottom). The scatterplots show the relationship of the Force of Infection and Active Cases
Per Capita for clusters generated from different mobility thresholds. We can see how this relationship changes over time by comparing the scatterplot in different
periods. The values used to generate the three plots were, from the left to the right, I = 0.01, I = 0.05 and | = 0.1, respectively.
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Fig. 8. Bar charts showing the active cases and active cases per capita bar plots in the neighborhoods of Recife corresponding to two dates: 2020/05/06 (top) and
2020/05/22 (bottom). This widget ranks individual locations according to the chosen indicator.

considering three different thresholds. The lowest threshold (I =
0.01 on the left) results in the identification of a single cluster,
considering all Recife’s neighborhoods. Increasing the threshold
(I 0.05 on the center and [ 0.1 on the right), more
clusters are identified, this being interesting for policymakers
when deciding over social isolation policies.

Of course, if the threshold is large enough, only singletons will
be shown. The dispersion plots in Fig. 7 show the relationship
between the Force of Infection of the clusters and their active
cases per capita at two dates, considering the same thresholds
of | =0.01,1=0.05,and [ = 0.1.

In Fig. 8, bar plots illustrate the most infected Recife’s neigh-
borhoods in terms of the total number of cases and the number
of cases per capita. While Boa Viagem has a higher number of
cases on both dates, other neighborhoods (Paissandu and Cidade
Universitaria) have a higher number of cases per capita. Several
hospitals and clinics of Recife are located in Paissandu, which
can indicate that this neighborhood receives people from other
locations that represent potential contamination cases.

Cidade Universitaria is a neighborhood that is mostly centered
on activities related to Universidade Federal de Pernambuco,
which has a large Clinic Hospital that serves for teaching and
provides general public health services. Although the university
has stopped its teaching activities since March 15, 2020, and
deployed the home office for all non-essential activities, it was
not expected that this neighborhood would have such a high
incidence of cases.

It is possible that this could be revealing a similar pattern
that was found by [71] around two Wuhan hospitals related to a
high concentration of SARS-CoV-2 RNA in aerosols, although the
infectivity of the aerosolized virus still requires further studies.

Thus, while further studies are not carried out, authorities
should reinforce rigorous sanitation procedures and protection
for the surrounding population of these areas, which could in-
clude extra care for the elderly that lives in such a neighborhood.

10

Further analysis with the clusters generated with [ = 0.05 and
socioeconomic variables can be performed to highlight specific
aspects that might be important considering individual behavior
or risk factors that may influence public policy success or suggest
additional preventive actions.

There are several socioeconomic composite indexes [72-74]
that may reveal specific conditions of the population. Thus, be-
sides considering HDI, other aspects that can provide insights for
policymakers have been included due to its correlation with faster
spread of disease, severe symptoms of SARS-CoV-2 and lethality.

Fig. 9 shows clusters and colored regions for different socioe-
conomic indicators and variables related to SARS-CoV-2. The five
visualizations enable the investigation of different characteristics
that may drive specific public policies for a cluster or even part
of a cluster.

Evaluating the clusters and neighborhoods according to HD], it
is possible to verify in Fig. 9(a) that there is one specific cluster,
Cy, which shows the highest social differences located in the
north area of Recife. This reflects the mobility pattern of this low-
income population who work, in general, to provide services for
this wealthy area of the city.

As shown in Figs. 9(a) and 9(b), longevity is related with
quality of life conditions. However, the elderly population can be
an important aspect when analyzing FOI to minimize fatalities.
Similarly, the number of persons per bedroom can bring insights
and be an important aspect of policymakers. As shown in Fig. 9(c),
there are specific neighborhoods associated with low HDI where
several persons live in the same habitation, and therefore more
than two persons share the same bedroom.

This is an important piece of information for policymakers
as it can be impossible for such people to keep social distanc-
ing or even isolate the family member who develops COVID-19
symptoms. This means that if one family member is infected, all
persons living in this house might be infected at the same time,
increasing the disease contagion rate.
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(e)

Fig. 9. Clusters with mobility threshold equal to I = 0.05 and regions colored by socioeconomic indicators and epidemiologic variables: (a) HDI (Human Development
Index) - socioeconomic, (b) proportion of elderly people — socioeconomic, (c) percentage of houses with two or more people per room — socioeconomic, (d) number
active COVID-19 cases — epidemiologic, and (e) number of active COVID-19 cases per capita — epidemiologic.

Concerning the infection-related variables, the absolute num-
ber of active cases can hide the severity of epidemic spread over
neighborhoods with a lower population, as shown in Figs. 9(d)
and 9(e). For instance, although the neighborhood of Boa Viagem
has the highest number of active cases in Fig. 9(d), it is one of
the less critical neighborhoods according to Fig. 9(e) because this
neighborhood has about 120 thousand inhabitants.

Fig. 10 presents three scatter plots concerning FOI against
socioeconomic indicators. From Fig. 10(a), we can see that until
the date of this analysis, the majority of neighborhoods that
contain the above-average value of the indicator “more than two
persons per bedroom” are concentrated in lower FOI values. This
reveals that there should be preventive or educational actions
to keep these values under control. Otherwise, there will be fast
growth in infected cases that originated in these areas.

Paissandu is a neighborhood with one of the highest FOI and
a percentage of the population with more than two persons
per bedroom. Therefore public services should plan on how to
support this population by aiding social distancing and isolation
of infected persons since the virus can infect more people per
domicile.

In Fig. 10(b), it can be observed that most of the neighbor-
hoods with a low-educated population still have a low FOIL. There-
fore behavioral aspects should be reinforced to avoid epidemic
spread amongst this population. The Toté neighborhood has the
highest FOI amongst these neighborhoods with a low-educated
population.

Fig. 10(c) shows that neighborhoods with a higher elderly pop-
ulation and higher FOI, such as Derby, are in dangerous situations.
Similarly, public services can seek to offer specialized support for
these neighborhoods to reduce the number of fatalities.

5.4. Expert feedback

We presented the developed system and case studies above
to our project team, agents from the city administration, and
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researchers working on similar initiatives in other states of Brazil.
All of them gave positive feedback concerning the usefulness
and easiness of usage of the tool. In general, they were partic-
ularly pleased with the functionality of testing multiple isolation
scenarios interactively by changing the mobility threshold.

Important feedback was about using socioeconomic variables
such as the service level of water supply per neighborhood,
homes with more than two persons per bedroom, HDI, and ed-
ucation. Depending on how these factors are associated with
a neighborhood and the epidemic advance, there are possible
actions to be deployed in terms of enhancing water supply and
educational campaigns to stress the population about hygiene
and protective measures. Furthermore, the ability to inspect dif-
ferent urban data sources in the context of the pandemic spread
data was also appreciated.

Finally, the domain experts made many suggestions for ex-
tensions to the tool. For example, they wanted to see different
spatial data aggregation levels to investigate in more depth the
isolation strategy that could be used. While meeting with experts
from the city administration’s mobility intelligence department,
we had access to the mobility survey carried out by experts of the
Secretariat for Urban Planning.

They were very interested in this tool and posed that it could
be interesting to integrate our tool with their mobility survey
dataset to perform a similar analysis. This survey was performed
in 2018 with a sample of two hundred thousand questionnaires
that include the modes of transportation used (bus, bike, private
cars, etc.).

Thus, one direction for future work is to include this piece of
information for statistical Bayesian models to enhance new case
estimates according to different scenarios. Another constructive
feedback was related to the integration of this tool with the
mobility survey to optimize the schedule of opening hours in
different economic activities, which shall be a new project to be
developed after the COVID-19 outbreak.
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(a) FOI vs percentage of the
population with more than two
persons per bedroom.

(b) FOI vs Education HDI.

(c) FOI vs elderly population.

Fig. 10. Comparison between FOI and some socioeconomic indicators using the scatter plot widget.

Finally, one important concern raised by the experts is that the
sub-notification of COVID-19 cases could very much influence the
results due to low testing rates in the region. While this is out of
the scope of our tool, we acknowledge that this is an important
issue, and strategies to compensate for this problem could be
used. We intend to investigate this in the future.

6. Discussions

As in all affected countries, policymakers face complex tasks
and decisions due to the spread of the coronavirus. Society needs
resilience and fast responses not only during this pandemic but
others that may appear in the future. We believe that the pro-
posed graphical tool can support the policymakers’ decisions to
monitor and mitigate the effects of COVID-19 in the studied state
and municipality.

One can understand how mobility restriction can mitigate or
aggravate the spread of the virus. The generated clusters provide
meaningful relationships among each location. Also, one can try
to investigate how the socioeconomic characteristics of a spe-
cific singleton/cluster can influence the impacts of the epidemic.
Decision-makers may include and remove indicators to increase
the output quality of the analysis.

The active case analysis can be performed with period varia-
tion, thus opening opportunities for infectious individuals’ time
series analysis in some locations or groups of locations and con-
sistency checking of new risk measures.

We decided to use scatter plots to provide visual identification
of the pandemic situation for different types of neighborhoods
characteristics. The objective was not to obtain correlations or a
multivariate regression model but to orient decisions based on
daily photography of epidemic conditions of each neighborhood
type (with less per capita income, with less education, and oth-
ers). The barplot panel was adopted to provide location ranking
and intensities associated with chosen variables available in the
dropdown.

With the obtained results, the developed visual analytics sys-
tem is capable of providing the necessary information to support
disease monitoring and progressive economic recovery in the
studied state and city and also in other regions. The benefits of the
proposed visual analytics approach are many. It provides a better
way to allocate resources by dividing the state while observing
important socioeconomic indicators in each division. Thus, the
user can easily compare groups of locations, and investigate these
locations individually if necessary.

This tool is very flexible concerning the addition of new vari-
ables in the analysis. Thus, other indicators or data about the
hospital’s capacity in each location can be easily integrated.

Also, in visual analytics for epidemics, it may be necessary to
compare the evolution of the infection risk of each location over
time. This analysis involves the visualization of multiple over-
lapping time series, which is associated with clutter problems
[75,76].
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The tool developed in this work does not require the use of
time series data to evaluate how the risk of the pandemic evolves
locally over time. It is possible to compare the most affected
regions by monitoring the clusters’ evolution over time.

The drawbacks of this paper are associated with assumptions
about mobility and epidemiologic data. We considered that the
population used the same mode of transport. But, there are many
different modes of transport, such as bus, car, motorcycle, bicycle,
and on foot.

If mobility data on different modes of transport is available,
one can make the risk model more precise by considering that
the contact rate is distinct in each mode of transport. Also, sub-
notifications of the active cases due to low testing rates in the
region may affect the value of the risk metrics and cluster classi-
fication.

Some assumptions on the contact rate and infection rate were
made to simplify the risk model, which was sufficient to analyze
the current state of the pandemic and to monitor this state over
time. But, if the user wants to predict future scenarios with
complex simulations in the generated clusters, it is necessary to
estimate more precise parameters for the risk model, using, for
instance, bayesian inference.

Since the tool developed in this work was integrated with the
risk-based approach from [13], we compare the contributions of
each work. Table 2 compares the work developed in [13] and the
current work concerning the data used in the analysis, regions,
expert interaction, software developed, and analysis performed.

The work developed in [13] studied how the lockdown would
impact the mobility of the population and how to divide the state
for a better allocation of resources. A clustering approach was
developed to divide Pernambuco, where the partition was defined
as the maximum number of clusters that cover a representative
part of the population of Pernambuco (more than 90%).

The experiments evaluated the sensibility of the cluster ap-
proach when considering and not considering lockdown mea-
sures. Also, it was possible to rank the clusters to evaluate which
were the most severe in the state and which were able to plan
a safe economic recovery. These analyses were static (performed
on a unique day).

In this work, a visual analytics tool was developed to sup-
port isolation and economic recovery policies. Experts responsi-
ble for defining scientific recommendations for Recife’s city hall
contributed, interactively, to the development of the tool. The
tool enabled the interactive parameterization of the clustering
method from [13] and monitored the clusters’ risk over time.

This visual analytics tool could be used to cross information on
mobility, epidemiologic and socioeconomic data, which enabled
the analysis of clusters’ risk over time, evaluate socioeconomic
impacts due to the virus propagation in the studied period, the
impact of the pandemic in productive arrangements, and individ-
ual analysis of cluster components. Some of these analyses were
dynamic (performed over multiple days).

Silva et al. [13] presented initial modeling aspects in the
beginning of lockdown process, considering only the State level
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Comparison between the contributions of [13] and this study.

Study Data Region Interaction Software  Analysis performed
with experts
[13] Epidemiologic, Pernambuco No No Static
Mobility Risk analysis,
Lockdown effect
This study  Epidemiologic, Pernambuco, Yes Yes Dynamic
Mobility, Recife Risk analysis,

Socioeconomic

Socioeconomic impact,
Impact on

productive arrangements,
Impact on cluster
constituents

to provide intelligence for policymakers in a higher level. Firstly,
some information could not be easily used to make decisions in
other locations since the analyses were performed for a specific
region. The proposed tool’s shared repository contains instruc-
tions on how to adapt it to other locations. It can also be extended
to incorporate any epidemiologic variable and other indicators for
the region under study.

Secondly, the main objective of [13] was to evaluate the lock-
down effect on the risk of contamination, which was more ad-
equate for the first wave of the pandemic. The tool proposed in
this work can be used in any phase of the pandemic, since one can
evaluate the impact of mobility in the contamination risk and on
different aspects of the region, such as socioeconomic variables
and economic arrangements. This enables the policymakers to
incorporate more information on the decision making process for
the tightening or relaxation of isolation measures over time.

Thirdly, a visualization approach can be helpful in understand-
ing the mobility dynamics and characteristics of a city with more
precision. For instance, it was possible to analyze which neighbor-
hoods of Recife, the capital of the estate of Pernambuco, received
the most citizens from other cities of Pernambuco. This enabled
the development of risk mitigation actions in neighborhoods of
Recife that are more likely to commute people from other cities.

Also, the proposed tool enables the visualization of charac-
teristics of neighborhoods within a city, which facilitates the
visualization of the income among regions, or the work sectors
of its residents, to develop strategies to prioritize resources for
reducing the damage of the pandemic in specific neighborhoods
according to their socioeconomic characteristics.

Finally, since the proposed tool contains visual and interac-
tive elements, it enabled the policymakers to define mobility
thresholds by visualizing the whole geographical configuration
and to better understand the problem considering the gener-
ated partitions and the characteristics of each location inside a
partition.

The visualization of the evolution of the pandemic situation
over time, interactiveness, and the possibility to cross multi-
ple sources of information were not available in the past ap-
proach [13]. Thus, the proposed tool makes it possible for poli-
cymakers to understand the purpose of the clustering approach,
learn new information about the current pandemic situation,
and make better decisions considering the characteristics of each
location.

The main challenge of a real-time application for this tool is
to guarantee the quality of data associated with mobility and epi-
demiologic variables to maintain or even increment the precision
of the estimated risk metrics. It is necessary to gather mobility
data on a daily basis to update the worst-case mobility OD ma-
trix, and thus consider precise connections between the studied
locations. Since some of these locations did not have mobility
data monitored, such work can be challenging. Therefore, this
work considered the dataset available but considered the most
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conservative approach by taking the maximum observed mobility
in the risk model.

Also, it is necessary to maintain an updated database of epi-
demiologic variables, monitoring the status of the contaminated
citizens over time, to provide an accurate number of active cases
over time. During the first weeks of contagion, the daily updated
database had several inconsistencies, therefore requiring to be
cleaned and verified on a daily basis. Thus, by handling these
datasets properly it is possible to update the risk metrics correctly
and make the correct decisions.

7. Conclusions

In this work, a dashboard that supports the definition of re-
striction policies, based on isolated macro-regions, was proposed.
The developed tool can cross information about socioeconomic
indicators, mobility, and epidemic variables through multiple co-
ordinated views. Considering the amount of data available, this
data-driven approach enabled an analytical process to support
experts responsible to provide scientific recommendations for
health officials from Recife’s city hall in Brazil.

The tool was integrated with the risk-based approach of [13],
where the user controls a threshold parameter that defines mo-
bility restrictions. The mobility restrictions divide the location
into representative clusters based on anonymized mobility data.
The multiple coordinated views support the user in exploring the
generated clusters’ information. Each cluster contains informa-
tion about the epidemic variables’ state and their socioeconomic
aggregated information. These features support the user in man-
aging the risk of the pandemic by comparing which cluster is
more healthy or riskier.

Plans for progressive economic recovery can be traced for
more healthy clusters and risk mitigation plans can be traced for
more infected clusters. Other features include the possibility to
monitor the cluster state over time and the analysis of a cluster’s
constituents, including individual risk and socioeconomic indica-
tors, which are summarized in dispersion and bar plots. Thus, the
tool can generate, compare and monitor clusters, and explore the
constituents of a cluster, based on mobility, socioeconomic, and
epidemiologic variables.

The proposed dashboard was applied to Recife, one of the
most affected cities in Brazil, and its state Pernambuco. It was
possible to visualize the construction of clusters amongst cities
and districts, which can be used to prioritize mitigation strategies
and monitor the risk based on different regions.

It was possible to understand how Recife is affected by nearby
cities. Furthermore, findings over the most affected districts of
Recife were discussed. An ex-post analysis using the scatter plot
could provide visual clues, considering the cumulative epidemic
variables, to provide insights about how socioeconomic factors
influenced the outbreak in the clusters’ constituents.

Future work includes the development of other analytical
components to support policymakers, which may be included as
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new features of this decision support tool, or developed in a new
specific decision support system. Some examples of new features
could be the inclusion of more socioeconomic and epidemiologic
variables, or other features associated with a given municipality
or neighborhood.

New decision support systems that use our approach for mo-
bility data could offer time series visualization widgets to com-
pare risk measures (risk of infection and exposure risk) over time
for different locations, by embedding techniques such as the one
developed in [75].

An important increment is to consider experts’ perceived
risk [50,77,78] to estimate an automated risk model to compare
the locations under study. Thus, a decision-maker could classify
some locations, given information about the cluster they belong
and risk measures, and a learning algorithm would periodically
estimate, for each location, risk perception for different levels of
contamination, exposure, and other indicators. Thus, the learn-
ing algorithm would support policymakers’ decisions concerning
resource allocation for each location according to its estimated
risk.

The insights obtained with this visualization tool enable new
research opportunities with analytics, such as data mining, ma-
chine learning, multicriteria decision analysis, and multiobjective
optimization for risk mitigation and economic recovery. Those
methods can use the information generated by our clustering ap-
proach and generate better models for epidemic propagation sim-
ulation and prescriptive risk management, to be used in what-if
scenario analysis. Thus, it is possible to consider the impact of
mobility dynamics and characteristics of a given region in the
model.
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