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Abstract

Traumatic brain injury (TBI) outcomes vary greatly among individuals, but most of the variation remains unexplained. Using a Drosophila 
melanogaster TBI model and 178 genetically diverse lines from the Drosophila Genetic Reference Panel (DGRP), we investigated the role 
that genetic variation plays in determining TBI outcomes. Following injury at 20–27 days old, DGRP lines varied considerably in mortality 
within 24 h (“early mortality”). Additionally, the disparity in early mortality resulting from injury at 20–27 vs 0–7 days old differed among 
DGRP lines. These data support a polygenic basis for differences in TBI outcomes, where some gene variants elicit their effects by acting 
on aging-related processes. Our genome-wide association study of DGRP lines identified associations between single nucleotide poly-
morphisms in Lissencephaly-1 (Lis-1) and Patronin and early mortality following injury at 20–27 days old. Lis-1 regulates dynein, a micro-
tubule motor required for retrograde transport of many cargoes, and Patronin protects microtubule minus ends against 
depolymerization. While Patronin mutants did not affect early mortality, Lis-1 compound heterozygotes (Lis-1x/Lis-1y) had increased early 
mortality following injury at 20–27 or 0–7 days old compared with Lis-1 heterozygotes (Lis-1x/+), and flies that survived 24 h after injury 
had increased neurodegeneration but an unaltered lifespan, indicating that Lis-1 affects TBI outcomes independently of effects on 
aging. These data suggest that Lis-1 activity is required in the brain to ameliorate TBI outcomes through effects on axonal transport, 
microtubule stability, and other microtubule proteins, such as tau, implicated in chronic traumatic encephalopathy, a TBI-associated neu-
rodegenerative disease in humans.
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Introduction
Traumatic brain injury (TBI) is a complex disorder affecting mil-

lions of people each year (Johnson and Griswold 2017; Dewan 

et al. 2018). Physical, behavioral, cognitive, and emotional conse-

quences of TBI stem from primary mechanical injuries to the 

brain as well as subsequent molecular and cellular cascades 

that lead to secondary injuries to the brain and other organs 

over time (Thapa et al. 2021). Both primary and secondary injuries 

vary considerably among individuals, making TBI outcomes diffi-

cult to predict and treat (Wagner 2014; Pavlovic et al. 2019; Cortes 

and Pera 2021). Despite decades of research, no treatments have 

been developed that improve neurological outcomes of TBI 

(Chakraborty et al. 2016; Hawryluk and Bullock 2016).
Genetic variation among individuals is likely a main cause of 

heterogeneity in TBI outcomes as single nucleotide polymorph-

isms (SNPs) in numerous genes, including apolipoprotein E4 
(apoE4), neurotransmitter-related genes, cytokine genes, brain- 

derived neurotrophic factor, and mitochondrial genes are associated 

with differential TBI outcomes (Cortes and Pera 2021; Gomez et al. 

2021; Zeiler et al. 2021). Furthermore, studies in rodent TBI models 

show that identical primary injuries in different genetic 

backgrounds produce different outcomes (Fox et al. 1999; Tan 
et al. 2009; Reid et al. 2010; Al Nimer et al. 2013). However, broad 
validation of candidate modifier genes is yet to be realized.

Age at the time of primary injury also contributes to heterogen-
eity in TBI outcomes. The risk of mortality shortly after TBI in-
creases with age at the time of primary injury (Hukkelhoven 
et al. 2003; Dhandapani et al. 2012; Skaansar et al. 2020), as does 
the risk of dementia (Gardner et al. 2014; Johnson and Stewart 
2015). In addition, changes in gene expression following TBI are 
age-dependent in humans (Cho et al. 2016) and mice (Hazy et al. 
2019). Furthermore, TBI may itself accelerate the aging process 
(Smith et al. 2013). For example, TBI increases the rate of brain at-
rophy that normally occurs during aging (Cole et al. 2015). 
Acceleration of aging processes by TBI may explain the increased 
susceptibility of TBI patients to dementia and other 
age-associated pathologies.

TBI shares pathological features such as intracellular aggre-
gates of tau protein in the brain with Alzheimer’s disease. The 
microtubule-associated protein tau is abundant in axons where 
it promotes microtubule self-assembly and protects microtubules 
against depolymerization (Alonso et al. 2018; Barbier et al. 2019). 
In Alzheimer’s disease, tau is abnormally hyperphosphorylated, 
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leading to its self-aggregation into neurofibrillary tangles in neu-
rons and glia (Naseri et al. 2019). Chronic traumatic encephalop-
athy (CTE), a neurogenerative disease associated with repetitive 
mild TBI, is characterized by four stages of accumulation of hyper-
phosphorylated tau, ranging from discrete foci at the depths of sulci 
in the cerebral cortex (Stage I) to widespread foci in most regions of 
the cerebral cortex and the medial temporal lobe (Stage IV) (McKee 
et al. 2015; McKee 2020). Tau hyperphosphorylation inhibits axonal 
transport of cargo, such as vesicles and organelles along microtu-
bules to and from synapses (Alonso et al. 2018; Barbier et al. 2019). 
Axonal transport is also disrupted by breaks in microtubules caused 
by brain deformation and axonal stretching. A common feature of 
TBI is diffuse axonal injury, which is characterized by periodic swel-
lings along axons that, in an in vitro cortical neuron stretching mod-
el, result from breaks in microtubules (Tang-Schomer et al. 2010; 
Smith et al. 2013). In this model, depolymerization of microtubules 
at break points interrupts axonal transport and causes neurode-
generation, which is reduced by the microtubule-stabilizing drug 
taxol (Tang-Schomer et al. 2010; Johnson et al. 2013). Paclitaxel, 
another microtubule-stabilizing drug, improves motor function 
and reduces lesion size and cognitive impairment in a mouse TBI 
model (Cross et al. 2015, 2019). These findings indicate that the 
transport of cargo along microtubules and microtubule stability 
influences the consequences of TBI.

We developed a Drosophila melanogaster TBI model to investigate 
the role of genetic variation in determining individual differences 
in TBI outcomes. The fly TBI model uses a spring-based high- 
impact trauma (HIT) device to inflict closed-head injuries rapidly 
and reproducibly in adult flies (Katzenberger et al. 2013; 
Katzenberger et al. 2015b). TBI in flies, as in humans, causes neu-
ropathologies, including prolonged neuroinflammation mediated 
by nuclear factor-kappa B (NF-κB) transcription factors (Simon 
et al. 2017; Swanson et al. 2020; Buhlman et al. 2021). 
Heterozygosity for a null mutation of Relish, one of three NF-κB 
genes in Drosophila, reduces the risk of mortality within 24 h of 
the primary injury (“early mortality”) (Swanson et al. 2020). 
Additionally, our genome-wide association study (GWAS) of 
inbred, fully sequenced lines from the Drosophila Genetic 
Reference Panel (DGRP) revealed that early mortality following in-
jury of 0–7 day old flies is associated with SNPs in genes involved in 
tissue barrier function and glucose homeostasis (Mackay et al. 
2012; Katzenberger et al. 2015a). Other studies showed that diet 
and age alter early mortality through genetically separable me-
chanisms (Katzenberger et al. 2016; Blommer et al. 2021). Thus, 
the HIT device model and other fly TBI models make it possible 
to perform unbiased screens for DNA polymorphisms that affect 
the risk of TBI outcomes (Katzenberger et al. 2013; Barekat et al. 
2016; Sun and Chen 2017; Putnam et al. 2019; Sanuki et al. 2019; 
Saikumar et al. 2020; Behnke et al. 2021; Crocker et al. 2021; van 
Alphen et al. 2022).

With the goal of understanding how genetic variation and age 
modify TBI outcomes, we repeated our prior GWAS of DGRP lines 
with flies injured at 20–27 days old, instead of 0–7 days old. SNPs 
that were significantly associated with early mortality following 
TBI mapped to Patronin, whose encoded protein stabilizes the 
minus ends of non-mitotic microtubules (Goodwin and Vale 
2010; Akhmanova and Steinmetz 2019), and Lissencephaly-1 
(Lis-1), which encodes a regulator of the microtubule motor dy-
nein (Olenick and Holzbaur 2019; Markus et al. 2020). Patronin mu-
tations did not affect early mortality, but Lis-1 mutations 
enhanced early mortality and neurodegeneration, indicating 
that in addition to tau, at least one other microtubule-associated 
protein influences the nature and severity of TBI outcomes.

Materials and methods
Fly lines and culturing
Flies were maintained in humidified incubators at 25°C on 
cornmeal-molasses-yeast food, as described by Katzenberger 
et al. (2015a) and Blommer et al. (2021). DGRP, Lis-1, nudE, 
Patronin, tubulin-Gal4, and UAS-Lis-1 fly lines were obtained from 
the Bloomington Drosophila Stock Center (Supplementary 
Table 2). Lis-1E415 and UAS-GFP-Patronin flies were provided by 
Dirk Beuchle (Institut für Zellbiologie, Bern, Switzerland) and 
Carole Seum (University of Geneva, Geneva, Switzerland), re-
spectively. w1118 flies were obtained from Gerald Rubin’s lab 
(University of California-Berkeley) in 1996 and maintained in the 
Wassarman.

TBI and the MI24

Flies were injured using a HIT device as described by Katzenberger 
et al. (2013; Katzenberger et al. 2015b). In brief, vials containing 60 
flies (approximately 30 males and 30 females) at 20–27 or 0–7 days 
old were injured by 4 strikes at 5 min intervals with the spring de-
flected to 90°. Injured flies were transferred to vials containing 
cornmeal-molasses-yeast food and cultured at 25°C. The 
Mortality Index at 24 h (MI24) was calculated by subtracting the 
percent of uninjured flies that died from the percent of injured 
flies that died during the 24 h following TBI. A minimum of six 
biological replicates were analyzed for each condition, except 
for, in Fig. 1, where three biological replicates were analyzed.

GWAS
The MI24 of 178 DGRP lines was determined using 60 mixed-sex 
flies injured at 20–27 or 0–7 days old (Katzenberger et al. 2015a). 
Three replicates were performed sequentially, with each replicate 
consisting of testing all 178 lines. Average MI24 values for the three 
replicates were used to identify SNPs associated with the MI24 

using the DGRP Freeze 1 web tools (Mackay et al. 2012; Huang 
et al. 2014).

qRT-PCR
Quantitative real-time reverse transcription PCR (qRT-PCR) was 
performed on total RNA extracted from male flies, either 20 whole 
flies or 60 fly heads. RNA was isolated using the RNeasy Plus Mini 
Kit (Qiagen) and QIAshredder (Qiagen). cDNA was generated using 
1 μg of RNA in a 20 μl reverse transcription (RT) reaction using the 
iScript cDNA Synthesis Kit (Bio-Rad). Each 25 μl qPCR sample con-
tained 0.5 μl cDNA, 12.5 μl iQ SYBP Green Supermix (Bio-Rad), and 
250 nM primers. Reactions were carried out using an iCycler 
Thermal cycler (Bio-Rad). PCR cycling conditions were 95°C for 
3 min, followed by cycles of 95°C for 30 s, 61°C for 30 s, and 72°C 
for 30 s. Melt curves were used to evaluate the homogeneity of 
reaction products. PCR primer sequences are provided in 
Supplementary Table 3. The delta-delta Ct method was used to 
determine the relative fold difference in gene expression (Livak 
and Schmittgen 2001).

Western blot
Western blot analyses were performed as described in Loewen 
and Ganetzky (2018) with the following modifications. Ten heads 
from male flies were homogenized in 100 μl of 2X Laemmli 
Sample Buffer (Bio-Rad), containing 5% 2-mercaptoethanol. 
Samples were boiled for 5 min and centrifuged at 13,200 rpm for 
1 min. A sample supernatant of 15 μl was electrophoresed in a 
Bolt 4–12% Bis-Tris Plus Gel (Invitrogen) and transferred to an 
iBlot 2 PVDF membrane (Invitrogen). Membranes were blocked 
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with 1X Blocking Buffer (Odyssey Blocking Buffer, Li-Cor) for 1 h. 
Blots were probed with both a rabbit anti-Lis-1 antibody 
(ab82607, Abcam) and a rabbit anti-Patronin antibody (provided 
by Carole Seum, University of Geneva) (Derivery et al. 2015). 
Primary antibodies were used at a 1:1,000 dilution in a 1:1 
Blocking Buffer:1X PBST (phosphate-buffered saline (PBS) with 
2% Tween 20) solution overnight at 4°C. Blots were washed four 
times for 10 min in 1X PBST. Blots were probed with a secondary 
antibody, IRDye 800 donkey anti-rabbit (Li-Cor), at a 1:10,000 dilu-
tion in Blocking Buffer plus 0.1% SDS for 2 h at room temperature. 
Blots were washed four times 10 min in 1X PBST and one time in 
1X PBS. Blots were imaged on an Li-Cor Odyssey Imaging 

System, and the intensity of bands was quantified using Image 
Studio Lite, version 5.2.5. Blots were stripped using NewBlot 
PVDF Stripping Buffer (Li-Cor) and re-probed using mouse 
anti-α-tubulin 12G10 antibody (Developmental Studies 
Hybridoma Bank) at a 1:2,000 dilution and a secondary antibody, 
IRDye 800 donkey anti-mouse (Li-Cor), at a 1:10,000 dilution, and 
re-imaged and quantified.

Lifespan
The lifespan of adult mixed-sex flies that survived 24 h following 
TBI was determined using at least 100 flies per genotype (i.e. 5 vials 
with 20 flies each) (Table 2). The number of surviving flies was 

Fig. 1. Genotype affects the MI24 of flies injured at 20–27 days old and the difference in MI24 between flies injured at 20–27 vs 0–7 days old. a) Mean and 
standard error of the mean (SEM) of the MI24 for 178 DGRP lines injured using the standard TBI protocol at 20–27 days old (n = 3). Supplementary Table 1
lists MI24 values for each DGRP line. b) Mean and SEM of the MI24 for 178 DGRP lines injured at 0–7 days old (n = 3). Supplementary Table 1 and 
Katzenberger et al. (2015a) list MI24 values for each DGRP line. c) The difference in MI24 values between flies injured at 20–27 and 0–7 days old. DGRP lines 
are ordered the same as in panels A and B.
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counted each weekday until all flies had died. Flies were trans-
ferred to new vials approximately every 3 days. Flies were consid-
ered dead if they did not show obvious locomotor activity. 
Statistical analysis of survival by the Kaplan–Meier Fisher’s exact 
test was performed using OASIS 2 (Online Application for Survival 
Analysis 2).

Histology and neuropathology
Heads of female flies two weeks after injury at 0–7 days old were 
hand dissected using a scalpel and incubated in ethanol:chloro-
form:acetic acid (6:3:1) at room temperature overnight. Heads 
were then incubated in 70% ethanol, processed into paraffin, sec-
tioned at 5 μm, and stained with hematoxylin (Harris modified 
with acetic acid; Fisher) and eosin (Eosin Y powder; 
Polysciences), as described by Kretzchmar et al. (1997). Single sec-
tions at the same depth were imaged using a Zeiss Axiovert 200 M 
inverted microscope and scored for the number of >5 μm holes. 
Six brains were examined for each genotype.

Statistical analyses
Statistical analyses were performed using GraphPad Prism 8, ex-
cept for lifespan analysis (Fig. 6 and Supplementary Fig 6), which 
was performed using OASIS 2 (Online Application for Survival 
Analysis 2).

Results
Genotype affects the risk of early mortality 
following injury at 20–27 days old
To investigate the influence of genotype on early mortality follow-
ing TBI in older flies, we determined the MI24 of DGRP lines injured 
at 20–27 day old, which is about half of the average lifespan of 
DGRP lines raised at 25°C (Huang et al. 2020). The MI24—a measure 
of early mortality due to injury—is the percent mortality of in-
jured flies minus the percent mortality of uninjured flies at 24 h 
following TBI. Figure 1a and Supplementary Table 1 show MI24 va-
lues for 178 DGRP lines injured using the standard TBI protocol, 
four strikes from the HIT device with 5 min between strikes. 
Every line was independently tested three times with 60 mixed- 

sex flies, as the MI24 does not differ between males and females 
(Katzenberger et al. 2013; Blommer et al. 2021). MI24 values had 
a continuous distribution among the lines, ranging from 35.39 
± 1.85 to 96.54 ± 0.68, suggesting a polygenic basis for the 
variation.

Across genotypes, risk of early mortality following 
TBI is higher for older flies
Contemporaneously with the study of flies injured at 20–27 days 
old, we performed and published an analogous study of the 
same DGRP lines injured at 0–7 days old (Katzenberger et al. 
2015a). MI24 values of flies injured at 0–7 days old ranged from 
6.67 ± 6.7 to 57.53 ± 1.7 (Fig. 1b). To evaluate the effect of aging 
on the MI24, we calculated the difference in MI24 between flies in-
jured at 20–27 vs 0–7 days old (MI24

20–27 days old—MI24
0–7 days old). For 

every DGRP line, older flies had a higher MI24 than younger flies 
(Fig. 1c). Furthermore, the difference in MI24 varied greatly among 
the lines from 11.48 to 83.58 with a mean of 47.02 ± 13.32, but 
there was a positive correlation between MI24 values of flies in-
jured at 20–27 vs 0–7 days old (r = 0.28) (Supplementary Fig. 1). 
These data support the conclusion from our prior studies that 
aging-related processes either inhibit recovery from or exacerbate 
the deleterious effects of primary and secondary injures 
(Katzenberger et al. 2013, 2016).

Wolbachia status does not affect early mortality 
following TBI
We considered the possibility that some extraneous factor unre-
lated to genetic background could be affecting TBI outcomes 
among the various DGRP lines. One plausible candidate was infec-
tion by Wolbachia pipientis, a maternally inherited endosymbiotic 
bacterium that infects at least 20% of insect species 
(Stouthamer et al. 1999). Wolbachia infection in D. melanogaster in-
creases resistance to infection by RNA viruses (Teixeira et al. 2008) 
and is associated with acute and chronic resistance to oxidative 
stress in DGRP lines, ∼53% of which are infected with Wolbachia 
(Jordan et al. 2012; Weber et al. 2012; Huang et al. 2014). However, 
the full extent of the effect of Wolbachia on D. melanogaster devel-
opment and physiology is unknown. To test whether Wolbachia 

Fig. 2. Maps of patronin and lis-1 alleles. Schematic diagrams of (A) Patronin and B) Lis-1 alleles (http://flybase.org). Colored and white boxes indicate coding 
and non-coding exons, respectively, and intervening lines indicate introns. Locations and orientations of transposons are indicated by triangles and 
arrows, respectively. The orientation of Lis-1E415 is not known (Swan et al. 1999), Lis-1G10.14 contains a nonsense mutation (R239stop) (see references in 
Kudumala et al. 2017), and deficiencies Df(2R)BSC355 and Df(2R)Jp8, respectively, delete Patronin and Lis-1 (http://flybase.org). Transcription start sites are 
indicated by horizontal arrows followed by the gene name. Supplementary Table 2 provides genotypes of Patronin and Lis-1 mutant lines.
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contributes to variation in MI24, we reanalyzed the data in Figs. 1a 
and 1b based on Wolbachia status. We found that the mean and 
variance of MI24 values of Wolbachia positive (n = 84) and negative 
(n = 94) lines were similar for flies injured at 20–27 days old (posi-
tive: 67.85 ± 11.99, negative: 71.74 ± 12.37) and at 0–7 days old 
(positive: 22.64 ± 9.76, negative: 22.74 ± 9.08) (Supplementary 
Fig. 2). Therefore, Wolbachia infection does not appear to be a de-
terminant of differences in MI24 among DGRP lines. This conclu-
sion is supported by our prior finding that feeding flies 

antibiotics to eliminate endogenous bacteria did not affect the 
MI24 of DGRP lines (Katzenberger et al. 2015a).

SNPs in LIS-1 and Patronin are associated with 
early mortality following TBI
To identify DNA polymorphisms that might affect the MI24 of 
DGRP lines injured at 20–27 days old, we used the DGRP webserver 
to carry out GWAS of the MI24 data shown in Fig. 1a and 
Supplementary Table 1 (Mackay et al. 2012; Huang et al. 2014). 16 

Fig. 3. Lis-1 mutations increase the MI24 of flies injured at 20–27 or 0–7 days old. The MI24 of mixed-sex Lis-1 mutants of the indicated genotypes injured 
using the standard TBI protocol at (A) 20–27 days old (n = 6) and (B) 0–7 days old (n = 10). Chromosomes wild type for Lis-1 are designated +(w1118), 
+(DGRP774), and +(DGRP892), based on their parental origin. Symbols indicate the following: box, second and third quartiles of data; +, mean; horizonal 
bar, median; and whiskers, minimum and maximum data points. Note that data for DGRP774 and DGRP892 lines are the same in Figs. 4a and b, and data 
for w1118 flies are the same in Fig. 4a.
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minor SNPs that mapped to 14 genes were associated with the 
MI24 at a discovery significance threshold of P < 10−5 (Table 1). 
Although the lack of overlap between the 16 significant SNPs 
and the 216 significant SNPs identified by GWAS of DGRP lines in-
jured at 0–7 days old (Katzenberger et al. 2015a) suggests that dis-
tinct genes influence early mortality at different ages of injury, 
this conclusion is refuted for at least one gene by data in Fig. 3.

The two most significantly associated SNPs were located in 
Patronin and Lissencephaly-1 (Lis-1) (Table 1). The C-to-T minor 
SNP in Patronin was in the 3’ untranslated region (UTR) of 12 
DGRP lines, and the T-to-C minor SNP in Lis-1 was in the 3’ UTR 
of 11 DGRP lines (Figs. 1 and 2). Lines with the SNP in Patronin 
had low MI24 values, and lines with the SNP in Lis-1 had high 
MI24 values, suggesting that Patronin and Lis-1 variants have op-
posite effects on the MI24.

Both Patronin and Lis-1 perform non-centrosomal, 
microtubule-related functions in neurons. Patronin encodes a 
microtubule minus-end binding protein that stabilizes minus 
ends by antagonizing Klp10A (Kinesin-like protein at 10A), a 
kinesin-13 family member involved in depolymerization of micro-
tubules at minus ends (Goodwin and Vale 2010; Akhmanova and 
Steinmetz 2019). Reduction of Patronin leads to fewer 
minus-ends-out microtubules in dendrites and altered micro-
tubule polarity (Feng et al. 2019; Wang et al. 2019). It is not known 
whether microtubule polarity plays a role in mammalian TBI. Lis-1 
encodes a protein that binds dynein, a minus-end-directed micro-
tubule motor, and enhances its force production, velocity, and 
microtubule affinity (Olenick and Holzbaur 2019; Markus et al. 
2020). Lis-1 haploinsufficiency in humans causes lissencephaly, 
a severe developmental disease of the brain characterized by de-
fects in migration of neuronal nuclei that lead to loss of convolu-
tions in the cerebral cortex (Moon and Wynshaw-Boris 2013). Lis-1 
is also required for nuclear migration in Drosophila (Lei and 
Warrior 2000). A mechanistic relationship between Patronin and 
Lis-1 is yet to be described, but loss of a human ortholog of 
Drosophila Patronin, Camsap1 (calmodulin-regulated spectrin-associated 
protein 1), is associated with a neuronal migration disorder similar 
to Lis-1-related lissencephaly (Khalaf-Nazzal et al. 2022), and phe-
notypes of Camsap1-/- knockout mice are indicative of impaired 
neuronal migration (Zhou et al. 2020).

Other genes identified by GWAS also have functions related to 
microtubules, including Nuclear pore localization 4 (Npl4), which is 
implicated in controlling microtubule organization in developing 
motor neurons (Byrne et al. 2017); CG15765, which was originally 
identified as a suppressor of an eye phenotype caused by aberrant 
glial cell positioning similar to that caused by mutations of Dynein 
light chain 90F (Dlc90F) and KP78b that encodes a putative tau ki-
nase (Neuert et al. 2017); and Apoptosis-stimulating protein of p53 
(ASPP), whose mammalian orthologs ASPP1 and ASPP2 are impli-
cated in regulating neuronal loss after axonal injury (Langton 
et al. 2007; Wilson et al. 2014) (Table 1). Among the 14 genes iden-
tified by GWAS, we focused on Patronin and Lis-1 because statistic-
al analysis indicated that association of SNPs in these genes with 
the MI24 was least likely to have occurred by chance and because 
of their well-documented connection to microtubules, which play 
a crucial role in TBI outcomes in mammals.

Lis-1 mutations increase early mortality following 
TBI
To investigate a cause–effect relationship between Lis-1 and early 
mortality following TBI, we determined the effect of Lis-1 muta-
tions on the MI24 of flies injured at 20–27 days old and 0–7 days 
old. We examined four transposon insertion alleles of Lis-1 
(Lis-1K11207, Lis-1K13209, Lis-1EY11274, and Lis-1E415), a nonsense allele 
of Lis-1 (Lis-1G10.14), and a deletion that spanned Lis-1 and 26 other 
genes (Df(2R)Jp8) (Fig. 2a and Supplementary Table 2). Lis-1 mu-
tants were crossed to a standard laboratory line w1118 and DGRP 
lines DGRP774 and DGRP892 to generate Lis-1 heterozygotes 
(Lis-1x/+) and to each other to generate Lis-1 compound heterozy-
gotes (Lis-1x/Lis-1y). Lis-1x/Df(2R)Jp8 flies are hemizygous for Lis-1 
but were grouped in the analyses with compound heterozygotes. 
DGRP774 was used because it had a relatively low MI24 when in-
jured at 20–27 days old (46.66 ± 5.02) and 0–7 days old (14.24 ± 
1.42), and DGRP892 was used because it had a relatively high 
MI24 when injured at 20–27 days old (72.66 ± 2.51) and 0–7 days 
old (42.42 ± 4.31) (Figs. 1a and b and Supplementary Table 1) 
(Katzenberger et al. 2015a). The goal of examining multiple Lis-1 al-
leles in different backgrounds was to distinguish between effects 
of Lis-1 mutations vs genetic background on the MI24.

For flies injured at 20–27 days old, the mean MI24 of 14 Lis-1x/ 
Lis-1y compound heterozygotes (67.56 ± 3.21) was higher than 
that of 14 Lis-1x/+ heterozygotes (55.34 ± 2.24) (P = 0.004, unpaired 
two-tailed t-test) (Fig. 3a and Supplementary Fig. 3a). Similarly, for 
flies injured at 0–7 days old, the mean MI24 of Lis-1x/Lis-1y com-
pound heterozygotes (55.04 ± 1.64) was higher than that of 
Lis-1x/+ heterozygotes (35.98 ± 2.57) (P < 0.0001, unpaired two- 
tailed t-test) (Fig. 3b and Supplementary Fig. 3a). Thus, loss of 
Lis-1 due to different mutant alleles, even in different genetic 
backgrounds, enhances early mortality following injury in 20–27 
and 0–7 days old flies, demonstrating that this phenotype is asso-
ciated with Lis-1 itself rather than some other unidentified genes 
in the genetic background. Furthermore, the fact that Lis-1 mu-
tants enhanced early mortality following injury at 20–27 and 0–7 
days old but the minor SNP in Lis-1 was only associated with early 
mortality following injury at 20–27 days old suggests that follow-
ing injury at 0–7 days old, effects on early mortality of minor SNPs 
in other genes overshadow effects of the minor SNP in Lis-1.

Patronin mutations do not alter early mortality 
following TBI
We performed analyses of Patronin mutants analogous to those of 
Lis-1 mutants by testing three transposon insertion alleles of 
Patronin (Patronine00176, PatroninEY05352, and PatroninK07433) and one 

Table 1. Genes containing SNPs associated with the MI24 of DGRP 
lines.

Fly gene Human ortholog P-value

Patronin CAMSAP1-3, 
Nezha

3.79 × 10−7

Lissencephaly-1 (Lis-1) Lis-1, PAFAH1B1 1.75 × 10−6

Sidestep VIII (side-VIII) Unknown 2.81 × 10−6

CG15765 Unknown 4.47 × 10−6

CG3687/CG7786 Unknown 4.63 × 10−6

GEFmeso PLEKHG1-3 5.86 × 10−6

CG11883 Unknown 6.13 × 10−6

teashirt (tsh) TSHZ1-3 6.29 × 10−6

Nuclear pore localization 4 (Npl4) NPL4 7.38 × 10−6

meru/pH-sensitive chloride channel 1 
(pHCL-1)

RASSF9-10/ 
GLRA2-4

7.82 × 10−6

CG42663, NCK-associated protein 
5-like

NCKAP5 8.27 × 10−6

Apoptosis-stimulating proteins of p53 
(ASPP)

ASPP1-2 8.78 × 10−6

CG14759/CG30369 Unknown 9.63 × 10−6

CG4597a Unknown 9.72 × 10−6

/, genes associated with the same SNP. 
a gene with three associated SNPs.

http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad008#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad008#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad008#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad008#supplementary-data
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deletion that spans Patronin and 14 neighboring genes (Df(2R) 
BSC355) (Fig. 2b and Supplementary Table 2). For flies injured at 
20–27 days old, the mean MI24 of three Patroninx/Patroniny com-
pound heterozygotes (51.93 ± 1.10) was not different from that of 
eight Patroninx/+ heterozygotes (53.35 ± 1.79) (P = 0.66, unpaired 
two-tailed t-test) (Fig. 4a and Supplementary Fig. 3b). Similarly, 
for flies injured at 0–7 days old, the mean MI24 of Patroninx/ 
Patroniny compound heterozygotes (36.29 ± 2.53) was not different 
from that of Patroninx/+ heterozygotes (34.13 ± 2.88) (P = 0.68, un-
paired two-tailed t-test) (Fig. 4b and Supplementary Fig. 3b). 
These data indicate that loss of Patronin does not affect early mor-
tality following TBI.

Overexpression of Lis-1 protein does not alter 
early mortality following TBI
To investigate the effect of increased expression of Lis-1 on early 
mortality following TBI, we used a tubulin-Gal4 (tub-Gal4) driver 
transgene to ubiquitously express Lis-1 from a UAS-Lis-1 target 
transgene (Brand and Perrimon 1993). Western blot analysis of 
head extracts from 0 to 7 day old male flies showed that flies car-
rying both driver and target transgenes had higher Lis-1 protein le-
vel than flies carrying one transgene (P = 0.017, ordinary one-way 
ANOVA with Dunnett’s multiple comparisons test) (Figs. 5a and 
b). However, flies carrying both driver and target transgenes did 
not have an altered MI24 relative to flies carrying only the 
UAS-Lis-1 transgene at either 20–27 or 0–7 days old (P = 0.69 and 
P = 0.52, respectively, unpaired two-tailed t-test) (Figs. 5c and d). 
Thus, ubiquitous overexpression of Lis-1 is not sufficient to alter 
early mortality following TBI.

Overexpression of Patronin protein increases 
early mortality following TBI in younger but not 
older flies
We used the same approach as that described for Lis-1 in Figs. 
5a-d to determine whether overexpression of Patronin affects 
early mortality. Quantitation of Western blots showed that flies 
carrying both the tubulin-Gal4 and UAS-GFP-Patronin transgenes 
overexpressed Patronin protein relative to flies carrying only 
one of the transgenes (P = 0.027, ordinary one-way ANOVA with 
Dunnett’s multiple comparisons test) (Figs. 5e and f). 
Furthermore, flies carrying both transgenes had a higher MI24 

than flies carrying only the UAS-GFP-Patronin transgene when 
injured at 0–7 but not 20–27 days old (P = 0.001 and P = 0.53, 
respectively, unpaired two-tailed t-test) (Figs. 5g and h). 
Therefore, overexpression of Patronin is sufficient to increase 
early mortality following injury of younger flies but not older 
flies.

nudE mutations do not alter early mortality 
following TBI
NudE is another microtubule-associated protein that binds 
directly to Lis-1 and dynein, and like Lis-1, enhances the force pro-
duction of dynein (McKenney et al. 2010; Reddy et al. 2016). 
Therefore, it was of interest to determine whether nudE mutations 
affect the MI24 in a similar manner as Lis-1 mutations or if the 
beneficial effect in response to TBI is somehow more specific for 
Lis-1. We tested three transposon insertion alleles of nudE 
(nudEG14350, nudEd10518, and nudECR00595-TG4.0) (Supplementary Fig. 
4 and Supplementary Table 2). For flies injured at 20–27 days 
old, the mean MI24 of three nudEx/nudEy compound heterozygotes 
(57.83 ± 5.59) was not different from that of nine nudEx/+ heterozy-
gotes (53.87 ± 2.23) (P = 0.45, unpaired two-tailed t-test) 
(Supplementary Figs. 5 and 3c). Similarly, for flies injured at 0–7 

days old, the mean MI24 of nudEx/nudEy compound heterozygotes 
(29.09 ± 2.33) was not different from that of nudEx/+ heterozygotes 
(27.95 ± 2.23) (P = 0.79, unpaired two-tailed t-test) (Supplementary 

Fig. 4. Patronin mutations do not affect the MI24 of flies injured at 20–27 or 
0–7 days old. The MI24 of mixed-sex Patronin mutants of the indicated 
genotypes injured using the standard TBI protocol at (A) 20–27 days old 
(n = 6) and (B) 0–7 days old (n = 10). Chromosomes wild type for Patronin 
are designated +(w1118), +(DGRP774), and +(DGRP892), based on their 
parental origin. Symbols indicate the following: box, second and third 
quartiles of data; +, mean; horizonal bar, median; and whiskers, 
minimum and maximum data points. Note that data for DGRP774 and 
DGRP892 lines are the same in Figs. 3a and b, and data for w1118 flies are 
the same in Fig. 3a.

http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad008#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad008#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad008#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad008#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad008#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad008#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad008#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad008#supplementary-data
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Figs. 5 and 3c). Thus, loss of nudE does not affect early mortality 
following TBI, suggesting that Lis-1 functions independently of 
NudE in a process that confers some protective effect against early 
mortality following TBI.

Lis-1 mutations do not affect lifespan following 
TBI
The pathophysiology of TBI is complex with both short-term and 
long-term effects on viability, behavior, neuronal integrity, and 
lifespan. Some genes may affect underlying mechanisms that me-
diate multiple sequalae, while other genes only affect specific TBI 
outcomes. We have found that variants of Lis-1 affect both sur-
vival within 24 h after injury and neuronal viability several weeks 

later (Fig. 9), suggesting that Lis-1 is involved in several different 
consequences of TBI. Ultimately, TBI is generally associated 
with a reduced lifespan. To determine whether Lis-1 function nor-
mally helps to extend lifespan following TBI, we examined the 
lifespan of Lis-1 variants that survived 24 h following TBI. We 
found that for all Lis-1x/Lis-1y compound heterozygotes and 
Lis-1x/+ heterozygotes, injured flies had a shorter lifespan than 
uninjured flies, consistent with our prior finding that TBI reduces 
lifespan (Fig. 6 and Supplementary Fig. 6 and Table 2) 
(Katzenberger et al. 2013, 2016; Swanson et al. 2020; Swanson 
et al. 2020). However, average median lifespans were the same 
for uninjured Lis-1x/Lis-1y compound heterozygotes (55.34 ± 2.94 
days) and Lis-1x/+ heterozygotes (56.13 ± 4.39 days) (P = 0.87, 

Fig. 5. Overexpression of Patronin increases the MI24 of flies injured at 0–7 day old. a) A representative Western blot and (b) quantitation of Western blots 
for Lis-1 and α-tubulin protein expression in head extracts of 0–7 day old male flies of the indicated genotypes (n = 4). e) A representative Western blot and 
(f) quantitation of Western blots for Patronin and α-tubulin protein expression in head extracts of 0–7 day old male flies of the indicated genotypes (n = 4). 
In panels A and E, protein size markers are indicated on the left in kDa. (c, d, g, and h) The Mi24 of mixed-sex flies of the indicated genotypes injured using 
the standard TBI protocol at the indicated age (n = 12). Symbols indicate the following: box, second and third quartiles of data; +, mean; horizonal bar, 
median; and whiskers, minimum and maximum data points.

http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad008#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad008#supplementary-data
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unpaired two-tailed t-test) and for injured Lis-1x/Lis-1y compound 
heterozygotes (42.55 ± 2.94 days) and Lis-1x/+ heterozygotes (45.53 
± 3.0 days) (P = 0.5, unpaired two-tailed t-test). Similar lifespans of 
Lis-1 compound heterozygotes and heterozygotes when uninjured 
or injured indicate that, whereas Lis-1 function is beneficial for 
immediate survival following TBI, it does not confer similar bene-
fit to improve lifespan, suggesting the operation of distinct 
mechanisms.

Expression of Lis-1 is not altered by the minor 
TBI-associated SNP
The minor SNP in Lis-1 associated with a reduced MI24 following 
injury of 20–27 days old flies is located in the 3’ UTR (Fig. 1a). 3’ 
UTRs are known to contain binding sites for proteins and RNAs 
that alter gene expression by regulating mRNA decay and transla-
tion (Yamashita and Takeuchi 2017; Mayya and Duchaine 2019). 
Thus, we examined whether reduced expression of Lis-1 prior to 
injury might underlie the association of the minor SNP with the ef-
fect on MI24 (Fig. 1a) by quantifying steady-state levels of Lis-1 
mRNA and protein in DGRP lines at 20–27 days old. We also exam-
ined the lines at 0–7 days old because Lis-1 mutants affected the 
MI24 following injury at this age (Fig. 3b). We assayed mRNA ex-
pression in whole male flies by qRT-PCR. Three analyzed DGRP 
lines had the minor SNP in Lis-1 and seven had the major SNP in 
Lis-1. At 20–27 and 0–7 days old, the amount of Lis-1 mRNA did 
not differ between lines with the minor vs major SNP in Lis-1 
(P = 0.94 and P = 0.71, respectively, unpaired two-tailed t-test) 
(Figs. 7a and b). Similarly, investigation of protein expression by 
Western blot analysis of extracts from male heads at both ages 
showed no difference in the amount of Lis-1 between lines with 
the minor vs major SNP in Lis-1 (20–27 days old: P = 0.26 and 0–7 
days old: P = 0.06, unpaired two-tailed t-test) (Figs. 7c-f). These 
data indicate that the minor SNP either does not affect Lis-1 ex-
pression in the absence of injury or it affects expression in a 

subset of cells that cannot be detected in analyses of whole flies 
or fly heads.

Expression of Patronin mRNA is increased by the 
minor TBI-associated SNP in younger but not 
older flies
The minor TBI-associated SNP in Patronin also resides in the 3’ 
UTR, again suggesting that altered expression of Patronin prior to 
injury might underlie this association (Fig. 1a). Thus, we quanti-
fied steady-state levels of Patronin mRNA and protein in DGRP 
lines at 20–27 and 0–7 days old. We measured mRNA expression 
in whole male flies by qRT-PCR. Three DGRP lines analyzed had 
minor SNP in Patronin and seven had major SNP in Patronin. In 
20–27 day-old flies, the amount of Patronin mRNA did not differ be-
tween lines with the minor vs major SNP in Patronin (P = 0.94, un-
paired two-tailed t-test) (Fig. 7a). However, lines with the minor 
SNP had higher expression in 0–7 day-old flies (P < 0.0001, un-
paired two-tailed t-test) (Fig. 7b). Nevertheless, analysis of protein 
expression by Western blots of extracts from male heads showed 
no difference in the amount of Patronin between lines with minor 
vs major SNPs in Patronin at 20–27 or 0–7 days old (20–27 days old: 
P = 0.07 and 0–7 days old: P = 0.89, unpaired two-tailed t-test) 
(Figs. 7g-i). Thus, although these data indicate that the minor 
SNP in Patronin can increase mRNA expression, the age selectivity 
of this expression difference and the lack of an apparent increase 
in protein expression at this point preclude the increase in mRNA 
expression as an explanation for association of the minor SNP in 
Patronin with a low MI24 following injury at 20–27 days old.

Expression of Lis-1 and Patronin mRNAs is largely 
unaffected by TBI
Expression of numerous genes is positively or negatively regulated 
in response to TBI (Cho et al. 2016; Katzenberger et al. 2016; Hazy 
et al. 2019). Consequently, altered expression of Lis-1 and 
Patronin could be a usual consequence of TBI and modification 
of these expression patterns owing to 3’ UTR SNPs could be a fac-
tor in their association with differential TBI outcomes. Consistent 
with this possibility, our previous RNA-seq analyses of whole 
w1118 male flies injured at 20–27 days old revealed increased 
Lis-1 mRNA levels at 4 h after TBI, although the increase was 
small, <1.5-fold (Katzenberger et al. 2016). Moreover, in humans, 
expression of Lis-1 is lower in CTE Stage IV compared with Stage 

Fig. 6. Lis-1 mutations do not affect lifespan following TBI. Percent 
survival of mixed-sex Lis-1 mutants either uninjured or injured using the 
standard TBI protocol. Data are averages and SEM of four Lis-1x/+ 
heterozygous and four Lis-1x/Lis-1y compound heterozygous genotypes 
shown in Table 2. Heterozygous Lis-1 mutants were generated by crossing 
Lis-1 mutants to the w1118 line. For each genotype, at least 100 flies were 
examined in groups of 20. Lifespan analysis of individual Lis-1 mutant 
genotypes is shown in Supplementary Fig. 6.

Table 2. Median lifespan data from Supplementary Fig. 6.

Genotype Injury Median lifespan 
(days)

n P-value at 
mediana

+(w1118)/ 
Lis-1G10.14

− 55.4 ± 3.5 369 2.2 × 10−12

+ 42.3 ± 2.2 344
+(w1118)/Df(2R) 

Jp8
− 44.3 ± 2.0 337 4.1 × 10−7

+ 38.7 ± 3.6 354
+(w1118)/ 

Lis-1K11702
− 59.9 ± 3.9 197 2.4 × 10−3

+ 50.6 ± 2.9 227
+(w1118)/ 

Lis-1K13209
− 64.9 ± 4.5 249 1.5 × 10−12

+ 50.5 ± 3.7 250
Lis-1K13209/ 

Lis-1G10.14
− 50.4 ± 3.8 220 2.5 × 10−2

+ 45.9 ± 6.1 173
Lis-1K13209/ 

Df(2R)Jp8
− 57.5 ± 7.6 192 9.7 × 10−6

+ 42.5 ± 6.5 145
Lis-1K13209/ 

Lis-1K11702
− 50.0 ± 4.5 148 3.0 × 10−4

+ 34.3 ± 7.4 124
Lis-1G10.14/Df(2R) 

Jp8
− 62.5 ± 3.8 118 7.4 × 10−6

+ 47.5 ± 4.1 251

a Comparison of uninjured vs injured using Kaplan–Meier Fisher’s exact 
test.

http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad008#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad008#supplementary-data
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Fig. 7. Effects of minor SNPs identified by GWAS on expression of Lis-1 and Patronin mRNAs and proteins in uninjured flies. qRT-PCR analysis of Lis-1 and 
Patronin mRNAs relative to Rpl32 mRNA in uninjured, whole, male DGRP lines at (a) 20–27 days old and (d) 0–7 days old (n = 3). Dots and whiskers indicate 
the average and SEM, respectively (n = 3). (c and d) Representative Western blots and (e and f) quantitation of Western blots (n = 3) for Lis-1 and α-tubulin 
protein expression in head extracts from (c and e) 20–27 day old and (d and f) 0–7 day old male flies of the indicated DGRP line. (g and h) Representative 
Western blots and (i and j) quantitation of Western blots (n = 3) for Patronin and α-tubulin protein expression in head extracts from (g and i) 20–27 day old 
and (H and J) 0–7 day old male flies of the indicated genotypes. (c, d, g, and h) Protein size markers are indicated on the left in kDa. (e, f, i, and j) Symbols 
indicate the following: box, second and third quartiles of data; +, mean; horizonal bar, median; and whiskers, minimum and maximum data points.
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III (Mufson et al. 2018), and it is developmentally downregulated in 
mature dorsal root ganglion neurons, resulting in decreased axon-
al extension capacity (Kumamoto et al. 2017).

We used qRT-PCR to examine mRNA levels over 24 h after TBI 
and at one-week intervals thereafter to determine the effect of TBI 
on expression levels of Lis-1 and Patronin. Analysis of whole, w1118, 
male flies at 0–8 and 24 h following an injury at 20–27 days old re-
vealed an increase in Lis-1 expression that was limited to the 5 h 
time point (P = 0.02, ordinary one-way ANOVA with Dunnett’s 
multiple comparisons test) but no change in Lis-1 expression fol-
lowing injury at 0–7 days old (P = 0.26, ordinary one-way ANOVA 
with Dunnett’s multiple comparisons test) (Fig. 8a). Similarly, ex-
pression of Patronin in flies injured at 20–27 days old increased at 5 
and 6 h time points (P = 0.001, ordinary one-way ANOVA with 
Dunnett’s multiple comparisons test) but did not change follow-
ing an injury at 0–7 days old (P = 0.67, ordinary one-way ANOVA 
with Dunnett’s multiple comparisons test). As a positive control 
to show that changes in mRNA level induced by TBI can be de-
tected throughout the time course, we previously found using 
the same samples that expression of antimicrobial peptide genes 
such as Attacin C was higher at 30 to 8 h and at 24 h following TBI 
(Katzenberger et al. 2016). We also found that injury did not affect 
Lis-1 and Patronin mRNA levels in whole flies (Fig. 8b) or fly heads 
(Fig. 8c) over seven weeks following an injury at 0–7 days old 

(0.96 > P > 0.1 for all pairwise comparisons of injured vs uninjured 
flies, unpaired two-tailed t-test). Thus, mechanisms underlying 
the roles of Lis-1 and Patronin in response to TBI do not appear 
to involve widespread alteration of their expression.

Lis-1 mutations enhance neurodegeneration 
following TBI
Neurodegeneration in flies is commonly characterized by holes in 
the optic lobes and the central brain neuropil, a region enriched 
for axons, synaptic terminals, and glial cells (McGurk et al. 2015). 
In the fly TBI model, the incidence of large holes (>5 μm in diam-
eter) in the central brain of w1118 flies at two weeks post-injury 
increases with the number of strikes from the HIT device 
(Katzenberger et al. 2013). Here, we found that at two weeks after 
injury of 0–7 day old female flies, the average number of large 
holes per brain was greater for Lis-1x/Lis-1y compound heterozy-
gotes (3.02 ± 0.44 holes) than for Lis-1x/+ heterozygotes (1.81 ± 
0.34 holes) (n = 6, P = 0.04, unpaired two-tailed t-test) (Fig. 9a). In 
contrast, for uninjured flies of the same age, the average number 
of large holes per brain did not differ between Lis-1x/Lis-1y com-
pound heterozygotes (0.35 ± 0.15 holes) and Lis-1x/+ heterozygotes 
(0.67 ± 0.27 holes) (n = 6, P = 0.32, unpaired two-tailed t-test). 
Figures 9b-g show representative images of brain sections from 

Fig. 8. TBI does not markedly alter expression of Lis-1 and Patronin mRNAs in w1118 flies. qRT-PCR analysis of the amount of Lis-1 and Patronin mRNAs 
relative to Rpl32 mRNA in uninjured (U) flies at time zero and at indicated time points after injury using the standard TBI protocol. a) Male w1118 flies were 
injured at 20–27 or 0–7 days old and mRNA level was determined in whole flies at the indicated time points over 24 h following injury (n = 8). mRNA level in 
(b) whole, male w1118 flies and (c) heads of male w1118 flies was determined for flies every 7 days over 49 days following injury or no injury (uninjured) at 
0–7 days old (n = 6). Each data point represents the mean and SEM.
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Fig. 9. Lis-1 mutations enhance neurodegeneration in the brain following TBI. a) The number of large (>5 μM) holes in the brain of female Lis-1 mutants of 
the indicated genotypes at two weeks after injury at 0–7 days old (injured) or at the same age in the absence of injury (uninjured) (n = 4). Lis-1 
heterozygotes were generated by crossing Lis-1 mutants to the w1118 line. Brain sections chosen for analysis were at equivalent depths in the brain. 
Genotypes are ordered from low to high, based on the mean number of holes per brain in injured flies. Symbols indicate the following: box, second and 
third quartiles of data; +, mean; horizonal bar, median; and whiskers, minimum and maximum data points. (b–d) Representative images of sections of fly 
brains from flies of the indicated genotypes and injury status. (e–g) High-magnification images of boxed regions in b–d, respectively. Arrows indicate large 
holes.
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injured Lis-1 mutant flies. Thus, neurodegeneration following TBI 
is more severe in flies with mutant Lis-1.

Discussion
Variants of many genes are likely to affect TBI 
outcomes
Identifying factors that contribute to individual variation in TBI 
outcomes will help with clinical diagnosis, prognosis, and treat-
ment decisions (Cruz Navarro et al. 2022; Reddi et al. 2022). 
Many factors, including genotype, age, and diet, can alter acute 
and chronic outcomes resulting from a given primary injury 
(Weber et al. 2019; Kochanek et al. 2020; Cortes and Pera 2021; 
Smith et al. 2021). This may explain why potential therapies devel-
oped using mammalian TBI models under defined conditions of 
genotype, age, and diet have not proven beneficial under hetero-
geneous conditions associated with TBI in humans (Maas et al. 
2010; Kabadi and Faden 2014; Stein 2015; Ganetzky and 
Wassarman 2016).

Here, we provide evidence that genetic variation causes sub-
stantial variability in TBI outcomes in flies. Early mortality of fly 
lines that received equivalent primary injuries ranged from 7 to 
97% because of differences in genotype and age at the time of in-
jury (Figs. 1a and b). Thus, one way that genetic variation influ-
ences TBI outcomes appears to be through effects on 
aging-related processes. In support of this hypothesis, early mor-
tality following injury at a given chronological age is negatively 
correlated with median lifespan among genetically diverse fly 
lines—lines that live longer have a lower MI24. (Katzenberger 
et al. 2013). Because of the evolutionary conservation of genes 
and mechanistic pathways, genetic variation and its effects on 
aging are likely to be main factors underlying the heterogeneity 
of TBI outcomes in humans.

Our studies identified polymorphisms in 14 genes that may 
contribute to variability in the early mortality of fly lines injured 
at 20–27 days old, several of which encode proteins with 
microtubule-related functions (Table 1). These genes add to the 
98 genes previously identified by GWAS of fly lines injured at 0–7 
days old (Katzenberger et al. 2015a). A considerable amount of 
work remains to test whether polymorphisms in these genes are 
causative for early mortality and other TBI outcomes. To begin 
this work, we characterized effects of Lis-1 and Patronin mutation 
and overexpression on early mortality. Based on the assumption 
that SNPs associated with early mortality reduce gene activity, 
we hypothesized that Lis-1 and Patronin loss-of-function mutants 
would have exceptionally high and low early mortality, respect-
ively, and that flies overexpressing these genes would show the 
opposite effects on early mortality. In support of this hypothesis, 
early mortality was significantly elevated following injury of 
Lis-1 mutants at 20–27 or 0–7 days old (Fig. 3), and overexpression 
of Patronin increased early mortality following injury at 0–7 days 
old (Fig. 5). These data suggest that Lis-1 promotes and Patronin in-
hibits survival within 24 h following TBI.

However, the hypothesis was not fully supported since overex-
pression of Lis-1 and mutation of Patronin had no effect on early 
mortality (Figs. 4 and 5). Furthermore, our studies did not resolve 
why minor SNPs in the 3’ UTR of Lis-1 and Patronin were associated 
with a high and low risk of early mortality, respectively, following 
injury at 20–27 days old (Fig. 1a). We were unable to detect a minor 
SNP-dependent change in Lis-1 expression (Figs. 7a-f) or a pro-
longed change in expression following TBI in w1118 flies (Fig. 8). 
Similarly, the minor SNP in Patronin did not affect Patronin mRNA 
or protein expression in 20–27 day old flies (Figs. 7a, g, and i), 

and TBI did not cause a sustained change in Patronin mRNA level 
(Fig. 8). Yet, the minor SNP was associated with increased 
Patronin mRNA but not protein expression in 0–7 day-old flies 
(Figs. 7b, h, and j). Nonetheless, these data do not rule out the pos-
sibility that the SNPs affect Lis-1 and Patronin expression. The SNPs 
may alter mRNA expression in particular cells of the brain or tis-
sues other than the brain or protein expression following TBI. 
Thus, additional studies are needed to fully understand the regu-
lation of Lis-1 and Patronin expression in the context of TBI.

We also found that neurodegeneration was significantly ele-
vated at two weeks after injury of 0–7 day old Lis-1 mutants 
(Fig. 9), revealing that Lis-1 activity also serves to limit neurode-
generation that occurs over time following TBI. However, Lis-1 ac-
tivity did not affect lifespan of injured or uninjured flies (Fig. 6 and 
Supplementary 6 and Table 2), suggesting that mechanisms by 
which Lis-1 affects early mortality and neurodegeneration are in-
dependent of mechanisms that promote age-dependent survival. 
This is in contrast with effects of the innate immune response on 
early mortality, which appear to act through mechanisms that 
promote aging (Swanson et al. 2020; Swanson et al. 2020). These 
studies demonstrate that GWAS in flies offers a pragmatic ap-
proach to identify specific genes whose naturally occurring vari-
ation could contribute to the diversity of short-term and 
long-term outcomes following TBI in humans.

How might Lis-1 affect TBI outcomes?
We hypothesize that Lis-1 affects TBI outcomes through its docu-
mented effects on microtubule stability and/or dynein-mediated 
retrograde transport of cargo from microtubule minus ends. 
Lis-1 can increase or decrease microtubule stability depending 
on the context and cell type, so either outcome is possible follow-
ing TBI (Sapir et al. 1997; Han et al. 2001; Coquelle et al. 2002; 
Kawano et al. 2022). Alternatively, Lis-1 may facilitate the trans-
port of specific factors that are beneficial to neurons following 
TBI, such as L1-type cell adhesion molecules (L1CAMs) that play 
a role in central nervous system regeneration after injury 
(Becker et al. 2004, 2005; Chen et al. 2007; Maness and Schachner 
2007). In Drosophila, Lis-1 functions in retrograde trafficking of 
L1CAM, since Lis-1 mutations lead to the accumulation of the 
sole L1CAM homolog Neuroglian (Nrg) in vesicular clusters in syn-
aptic terminals of giant fiber neurons (Kudumala et al. 2017). A 
complex of Lis-1 with NudE1/NudE-like 1 (NudEL1) enhances the 
force produced by dynein, allowing dynein to adjust to the cargo 
load (McKenney et al. 2010; Reddy et al. 2016). However, Lis-1 ap-
pears to function independently of NudE in our TBI model 
(Supplementary Fig. 5), as it does in other contexts (Simões et al. 
2018). Lis-1 may also function along with dynein in retrograde 
transport as part of the evolutionarily conserved response to 
axonal injury that triggers Wallerian degeneration of axons distal 
to injuries (Coleman and Freeman 2010; Conforti et al. 2014). 
Consistent with this possibility, Hill et al. (2020) found that TBI out-
comes in flies, including loss of dopaminergic neurons, are im-
proved by inhibition of a Wallerian degeneration signaling 
pathway. Finally, Lis-1 may indirectly mitigate TBI outcomes by 
counteracting the toxic effects of tau. In support of this proposal, 
tau hyperphosphorylation inhibits axonal transport of cargos to 
and from synapses (Alonso et al. 2018; Barbier et al. 2019; Combs 
et al. 2019), and tau toxicity is enhanced when retrograde trans-
port is impaired by knockdown of dynactin subunits that function 
to increase the processivity of dynein (Butzlaff et al. 2015).

In addition to its role in regulating dynein, Lis-1 also has a separ-
ate function in regulating signaling by phospholipids. Lis-1 was ori-
ginally identified as a non-catalytic regulatory subunit of the 
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intracellular 1B isoform of platelet-activating factor acetylhydrolase 
(PAFAH1B1), a heterotrimeric enzyme that catalyzes the removal of 
short acetyl chains from the sn-2 position of platelet-activating fac-
tor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) (Kono 
and Arai 2019) (Table 1). The dual role of Lis-1 raises the possibility 
that it could affect TBI outcomes in a manner unrelated to microtu-
bules. This possibility is supported by the fact that PAF is a signaling 
phospholipid in the central nervous system involved in diverse 
events, including inflammation, and knockout of the PAF receptor 
(PAFR) in mice reduces neuroinflammation and behavioral abnor-
malities following TBI (Yin et al. 2016). Thus, loss of Lis-1/ 
PAFAH1B1 in flies may increase early mortality and neurodegenera-
tion following TBI by altering the amount of PAF isoforms and re-
sultant PAFR activity. Further studies in flies and mice will be 
required to resolve which of Lis-1’s distinct activities are most rele-
vant in the context of TBI.

Broader implications
It is noteworthy that Lis-1 was identified as a modifier of TBI out-
comes in flies, which have a lissencephalic brain. These data indi-
cate that Lis-1 plays a role in TBI that is independent of its role in 
developmental nuclear and neuronal migration events required 
for the formation of gyri and sulci in the cerebral cortex 
(Wynshaw-Boris 2007). This finding adds to the ongoing discus-
sion in the TBI field about the clinical value of pre-clinical TBI 
studies in animals such as flies, mice, and rats that have a lissen-
cephalic brain, when the human brain is gyrencephalic (Vinc 
2017; DeWitt et al. 2018; Sorby-Adams et al. 2018). Structural differ-
ences between lissencephalic and gyrencephalic brains can affect 
the degree of brain deformation that results from a mechanical 
impact. Modeling indicates that maximum mechanical stress is 
experienced near the surface of lissencephalic brains, while it is 
experienced at the base of sulci in gyrencephalic brains (Cloots 
et al. 2008; Ho and Kleiven 2009). Additionally, tau pathology in 
CTE begins at the base of sulci and its progression is associated 
with reduced expression of Lis-1 (McKee et al. 2015; Mufson et al. 
2018). Nevertheless, our data indicate that with regard to TBI, at 
least some genes involved in forming a gyrencephalic brain can 
be studied in animals with a lissencephalic brain.

Parallels between TBI and Alzheimer’s disease, including asso-
ciation with the apoE4 variant, formation of aggregates of hyper-
phosphorylated tau, and increased risk of dementia, raise the 
possibility that Lis-1 is also involved in Alzheimer’s disease 
(Emrani et al. 2020; Cortes and Pera 2021; Li et al. 2021; Mielke 
et al. 2022). Further support for this possibility comes from deep 
learning-based analysis of Alzheimer’s disease patients that iden-
tified a Bicaudal D1 (BICD1) variant as a strong genetic risk factor 
for Alzheimer’s disease (Jo et al. 2022). BICD is an adaptor protein 
that regulates dynein-based movement. In vitro, Lis-1 binds the 
dynein-dynactin-BICD2N complex and enhances its velocity, 
and in Drosophila, BICD acts with Lis-1 to localize nuclei in the de-
veloping nervous system (Swan et al. 1999; Schlager et al. 2014; 
Gutierrez et al. 2017; Olenick and Holzbaur 2019). Additionally, 
while Lis-1 has not been directly implicated in Alzheimer’s disease 
pathologies, impaired retrograde transport has been implicated. 
Dissociation of hyperphosphorylated tau from microtubules inhi-
bits retrograde transport (Butzlaff et al. 2015; Tiernan et al. 2016; 
Butler et al. 2019; Jiang and Bhaskar 2020). Furthermore, in a 
mouse model of Alzheimer’s disease that expresses a mutant 
form of human amyloid precursor protein and in brains of human 
Alzheimer’s disease patients, impaired retrograde transport leads 
to the accumulation of amphisomes, organelles formed by fusion 
of endosomes with autophagosomes, at axonal terminals 

(Tammineni et al. 2017; Tammineni et al. 2017). Inefficient removal 
of autophagic cargos from axons and synapses leads to autopha-
gic stress, which is implicated in Alzheimer’s disease pathology 
(Nixon and Yang 2011). Finally, impaired retrograde transport re-
duces protease delivery to lysosomes and lysosomal proteolytic 
activity, which is linked to Alzheimer’s disease pathogenesis 
(Lee et al. 2011; Tammineni et al. 2017; Tammineni et al. 2017). 
Thus, a better understanding of the role Lis-1 plays in TBI path-
ology may also ultimately yield new mechanistic insights into 
the pathophysiology of Alzheimer’s disease.

In summary, this study provides further evidence that genetic 
variation and its effects on aging are important determinants of het-
erogeneity in TBI outcomes, and it adds Lis-1 and possibly Patronin/ 
Camsap1 variants as drivers of different TBI outcomes. In addition, 
this study highlights that the rational design of therapeutics for 
TBI in humans can be augmented by experimental systems such 
as the fly TBI model that can take multiple variables into account.
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