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Abstract

Motivation: As the number of public data resources continues to proliferate, identifying relevant datasets across
heterogenous repositories is becoming critical to answering scientific questions. To help researchers navigate this
data landscape, we developed Dug: a semantic search tool for biomedical datasets utilizing evidence-based relation-
ships from curated knowledge graphs to find relevant datasets and explain why those results are returned.

Results: Developed through the National Heart, Lung and Blood Institute’s (NHLBI) BioData Catalyst ecosystem, Dug
has indexed more than 15 911 study variables from public datasets. On a manually curated search dataset, Dug’s
total recall (total relevant results/total results) of 0.79 outperformed default Elasticsearch’s total recall of 0.76. When
using synonyms or related concepts as search queries, Dug (0.36) far outperformed Elasticsearch (0.14) in terms of
total recall with no significant loss in the precision of its top results.

Availability and implementation: Dug is freely available at https://github.com/helxplatform/dug. An example Dug
deployment is also available for use at https://search.biodatacatalyst.renci.org/.

Contact: awaldrop@rti.org or scox@renci.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The ability to interrogate large-scale data resources is becoming a
central focus of many research efforts. The U.S. National Institutes
of Health (NIH) and other public funding agencies have supported
data generation at unprecedented scales through projects such as
Trans-Omics for Precision Medicine (TOPMed) (University of
Washington Department of Biostatistics, 2020), All of Us (The ‘All
of Us’ Research Program, 2019) and Helping to End Addiction
Long-Term (HEAL) (Collins et al., 2018). From these efforts, the
ability to integrate data within and across disjoint and complex pub-
lic data repositories is quickly replacing data scarcity as a primary
bottleneck to research progress. While successful data integration

efforts have resulted in novel diagnostics, therapies and prevention
strategies, researchers often lack the necessary tools for navigating
this complex data landscape (Powell, 2021).

There is a growing need for comprehensive search tools that
identify datasets relevant to a researcher’s particular scientific ques-
tion. Despite recent NIH emphasis on making research data more
Findable, Accessible, Interoperable and Re-Usable (‘FAIR’ data prin-
ciples) (Wilkinson et al., 2016), the diversity of public data reposito-
ries has proven to be a formidable barrier to developing intelligent
search strategies. To illustrate, consider that the NIH alone currently
refers to data submission to more than 95 domain-specific reposito-
ries (NIH Data Sharing Resources, 2020). Often, more established
repositories like the NIH database of Genotypes and Phenotypes
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(dbGaP; https://www.ncbi.nlm.nih.gov/gap/) require studies to sub-
mit only free-text descriptions of experimental variables. The com-
plexity of ‘heart attack’ versus ‘myocardial infarction’ exemplifies
the challenges of identifying relevant datasets among the growing
corpus of non-standardized biomedical datasets.

Emerging techniques for natural language processing (NLP) are
enabling semantic search over biomedical datasets. We define se-
mantic search as a search that considers the intent and context of
the query as opposed to a purely lexical approach (Tran et al.,
2007). Many existing search and annotation tools successfully em-
ploy methods for named entity recognition (NER) and disambigu-
ation to annotate free text with synonyms or ontology terms (Bell
et al., 2019; Canakoglu et al., 2019; Chapman et al., 2020; Chen
et al., 2018; Huang et al., 2016; Laulederkind et al., 2012; Pang
et al., 2015; Soto et al., 2019). An ontology defines a set of entities
in a subject area as well as the relationships between them. By map-
ping free text to ontology terms, semantically related ideas can be
explored by traversing related nodes on the knowledge graph struc-
ture defining the ontology.

Similar NLP techniques have been successfully employed by
semantic-aware dataset search engines like Google Dataset Search
(Brickley et al., 2019) and Datamed (Bell et al., 2019) to make data
more discoverable. Broadly, both tools index study-level metadata
describing high-level features of each dataset (e.g. study description
and abstract) to increase findability. For Datamed, study metadata
are augmented with Unified Medical Language System (UMLS) con-
cept identifiers extracted by NLP annotation tools to increase find-
ability. Google Datasets extend this concept by mapping study
metadata elements to Google’s internal knowledge graph, used to
augment metadata with additional relevant search terms. For a
more complete review of dataset search tools, see Chapman et al.
(2020).

Despite the utility of these tools, there remains a need for a bio-
medical dataset search engine that can empower true data re-use. A
critical shortcoming of the search engines described above is a focus
on study-level metadata to the exclusion of variable-level metadata
(i.e. the features measured as part of this study); two or more studies
can be combined and integrated with only a single conceptually over-
lapping variable, enabling a broader set of possible data integrations.

There also remains a need for a biomedical dataset search engine
that combines context-awareness with domain specificity. The abil-
ity to show second- and third-order connections can be helpful for
data discovery but requires an ontological knowledge graph describ-
ing how biological entities and phenomena are related. Despite the
practical utility of Google’s proprietary knowledge graph for general
search, the provenance, depth and quality of its biomedically rele-
vant connections are not easily verifiable. There remains a need for
a search tool capable of leveraging evidence-based biological con-
nections to show researchers datasets useful for hypothesis gener-
ation or scientific support.

Therefore, we present Dug (https://github.com/helxplatform/
dug): a semantic search tool for biomedical datasets that leverages
NLP technologies and ontological knowledge graphs curated by bio-
medical subject matter experts to intelligently identify datasets rele-
vant to a user query. Dug is designed specifically for data
integration and re-use by allowing users to search over variable-level
metadata and high-level study metadata. Dug is also the first bio-
medical search engine that can explain why it returns what it returns
(Fig. 1). For example, if a search for ‘cancer’ were to return a dataset
that measured ‘asbestos exposure’, Dug can show the user—often
with links to supporting literature—that this variable was returned
due to the causal linkage between asbestos exposure and certain
types of cancer. Here, we discuss Dug’s motivations, architecture,
functionality and evaluation and demonstrate its successful deploy-
ment in the NHLBI’s BioData Catalyst Ecosystem (National Heart
Lung and Blood Institute et al., 2020).

2 Materials and methods

Dug consists of two components: A Dug API service that orches-
trates metadata ingestion, indexing and search, and the Dug search

web portal that displays results to end users (Fig. 2). The ingestion/
indexing pipeline is designed to:

Parse heterogenous study metadata formats into a common Dug
metadata format.

Automatically annotate free-text descriptions of study variables
with a set of ontological identifiers.

1. Expand annotations with relevant terms returned from

knowledge-graph queries.

2. Index each study variable, associated ontological concepts and

set of knowledge-graph answers to an Elasticsearch (Ku�c and

Rogozinski, 2016) endpoint. Elasticsearch is a stack of flexible

components that allow users to quickly index and search over

large volumes of structured text data.

2.1 Data and ingestion pipelines
2.1.1 Data ingestion

Dug ingests and indexes study metadata (e.g. text descriptions of
study variables) as opposed to actual study data. To accommodate
the diversity of metadata formats available across public data repo-
sitories, our ingestion pipeline abstracts out retrieval modes (e.g.
local file and network file) and data parsing formats (e.g. XML,
JSON). Similar to the Data Tags Suite (DATS) metadata schema
(Sansone et al., 2017), Dug parses diverse metadata formats into a
common DugElement metadata model, which defines a standard set
of metadata required for indexing. Dug can be flexibly adapted to
ingest nearly any metadata format by extending its plug-in interface
to parse input data into DugElement objects. The DugElement is
designed to make study artifacts searchable through the Dug inter-
face. Unlike many dataset search engines that collect only study-

Fig. 1. The Dug web portal leverages knowledge-graph connections with supporting

links to PubMed literature to explain why certain results are relevant to a user’s

query

Fig. 2. High-level Dug architecture. Dug makes study metadata searchable by pars-

ing heterogenous metadata formats into a common format (ingest), annotating

metadata using NLP tools to extract ontology identifiers from prose text (NLP an-

notation), searching for relevant connections in federated knowledge graphs using

translator query language (TranQL) (concept expansion) and indexing this informa-

tion into an Elasticsearch index. Dug’s web portal utilizes a flexible API to query

and display search results back to end users
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level metadata, Dug does not index any study-level metadata. A
study/collection is made findable because its underlying artifacts are
findable and can link back to a parent/containing study The primary
fields of the DugElement describe basic attributes of the parent
study (id, name and external link) as well as attributes of the element
itself (id, name, description and external link). Supplementary mate-
rials include a detailed discussion of the DugElement metadata
model.

2.1.2 Data annotation

Dug’s data annotation module extracts a set of biomedical ontology
identifiers from ingested metadata elements using tools for NER
(Fig. 3). Typically, we use the/nlp/annotate endpoint exposed by
the Monarch Initiative’s (Mungall et al., 2017) Biolink API. The
underlying Biolink model provides a high-level data model for repre-
senting biomedical knowledge (Reese et al., 2021) and can be used
to integrate across domain-specific ontologies. Monarch’s API ser-
vice accepts prose text as input and returns a set of ontological iden-
tifiers with additional information in JSON. We chose the Biolink
API for NER because it natively interoperates with the Translator
Query Language, which we use for concept expansion (TranQL, see
below).

To accommodate NLP services and tools for biomedical NER,
Dug also abstracts out the Annotation module. To extend Dug’s an-
notation interface, developers can create a child class specifying the
new API endpoint and define a function converting successful API
responses into an internal data structure called a DugIdentifier,
which defines a minimal set of ontological information needed for
downstream processing (e.g. id, name and Biolink type).

By converting free text to ontology identifiers, we can leverage
semantic web services supporting this nomenclature to gather add-
itional information about each identifier. Dug utilizes a normaliza-
tion service (necessary to interoperate with Biolink knowledge
graphs, discussed below) to transform identifiers to the preferred
equivalents (https://github.com/TranslatorSRI/NodeNormalization).
Additionally, Dug uses an ontology metadata service for fetching
identifier names, descriptions, synonyms and Biolink types (https://
onto.renci.org/apidocs/). These specific tools were chosen by default
as they are, to our knowledge, the only tools capable of performing
their respective functions.

2.1.3 Concept expansion

Dug’s ability to retrieve contextualized search results and explain
these connections to end users is undergirded by a process we call

concept expansion, which further annotates ontological identifiers
by identifying relevant connections within ontological knowledge
graphs (Fig. 3).

The data structure for concept expansion is a knowledge graph,
with nodes representing entity types (e.g. disease, gene and chem-
ical exposure) and edges providing predicates that describe the re-
lationship between entities; Biolink predicates include ‘causes’, ‘is
associated with’, and ‘is expressed in’. Biolink provides an ‘upper
ontology’ that defines connections across domain-specific ontolo-
gies (e.g. Mondo, ChEBI and HP). For example, the ChEBI ‘asbes-
tos’ identifier might be linked to the Mondo ‘lung cancer’
identifier via the Biolink ‘risk_factor’ predicate. Inclusion/exclu-
sion of specific ontologies, and creation of links and predicates
across ontologies, is curated by subject matter experts as part of
the Biolink initiative.

To contextualize metadata within a knowledge graph, we lever-
age data integration approaches developed through the NCATS
Biomedical Data Translator (Biomedical Data Translator
Consortium, 2019). Chief among these are ROBOKOP (Bizon et al.,
2019) and TranQL (Translator Query Language; https://tranql.
renci.org) (Cox et al., 2020).

Dug leverages TranQL to gather an expanded set of ontological
concepts related to those extracted via NLP annotation. Because
entities in TranQL knowledge graphs may have hundreds of connec-
tions, Dug defines a set of TranQL query templates prior to indexing
to establish which ontology identifiers and predicates should be con-
sidered relevant. End users will never interact with Dug’s query tem-
plates. Though technically configurable, Dug’s default query
templates were selected through iterative feedback from beta testers
to expose the most interesting connections. Below is an example of a
query template used to retrieve chemical risk factors for a disease:

FIND Chemical_Entity �> Risk_Factors �> Disease
WHERE Disease =¼ fQuery Ontology IDg

During concept expansion, Dug uses templates to substitute ac-
tual ontological identifiers from the previous NLP annotation step
to retrieve a set of relevant terms for a specific variable. In Figure 4,
Dug returns a list of chemical risk factors for lung cancer by substi-
tuting an ontology identifier for lung cancer (MONDO: 0008903)
into the query template. The actual query becomes:

FIND Chemical_Entity �> Risk_Factors �> Disease
WHERE Disease =¼ MONDO:0008903

The ‘answers’ returned by TranQL queries are used to increase
the search relevance of related concepts and to provide a basis for
including explanations for links that led to the result (e.g. peer-
reviewed literature supporting knowledge graph links). TranQL
‘answers’ are also knowledge graphs: a set of nodes (ontological
identifiers), edges (predicates) and metadata including names,

Fig. 3. Detailed example of ingest and index pipeline. After ingesting a variable

called ‘adenocarcinoma of the lung’ from study metadata, Dug uses NLP methods

to annotate the variable with an ontology identifier for ‘Lung Cancer’ from the

Mondo disease ontology. The resulting identifier is used to gather synonyms for

lung cancer such as ‘Neoplasm of lung’ from an external API service. During con-

cept expansion, Dug leverages TranQL to query knowledge graphs for other onto-

logical concepts related to lung cancer through certain predicates; in the figure, we

are looking for risk factors, treatments and anatomical entities impacted by lung

cancer. During indexing, all terms discovered through annotation and concept ex-

pansion are combined with the original metadata into a single Elasticsearch record

so that queries against any of these terms will yield the initial variable measuring

‘adenocarcinoma of the lung’

Fig. 4. An example TranQL query for chemical risk factors of lung cancer. Each

TranQL answer returned is a knowledge subgraph linking one chemical element

node back to the query node
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descriptions, synonyms of ontological identifiers and PubMed litera-
ture links supporting each edge (Fig. 4).

2.1.4 Data indexing

After annotation and concept expansion, the resulting data structure
must be indexed. To maximize speed and flexibility, Dug’s back-end
search architecture is implemented as a set of linked Elasticsearch in-
dices. Elasticsearch provides the basic functionality to ‘save’ struc-
tured bits of text called ‘documents’ into databases called ‘indices’
that can be queried by downstream users. By default, Elasticsearch
uses a ‘fuzzy’ term frequency-inverse document frequency (TF-IDF)
scoring algorithm for text retrieval, a purely lexical search that allows
some character mismatches and ranks the importance of results by the
inverse frequency of each token in the complete set of documents.

Dug’s semantic capabilities result from combining ingested study
and variable metadata with terms harvested through annotation and
concept expansion into a single Elasticsearch record (see Fig. 3). For
each metadata variable, Dug’s indexer adds a ‘search_terms’ field to
the original record containing the names and synonyms of each identi-
fier added via data annotation. The indexer adds an ‘optional_terms’
field by traversing the names of knowledge graph nodes added during
concept expansion. Dug’s results always include text matches from
the original metadata, since Dug’s Elasticsearch query searches over
the original metadata fields parsed during ingestion and the expanded
fields added during annotation and concept expansion.

Dug quickly organizes search results by higher-level concepts
through partitioning (i) ingested metadata records, (ii) core onto-
logical concepts and (iii) expanded knowledge-graph answers re-
spectively into three separate Elasticsearch indices. Any ontological
identifier extracted is added to the concept index. By indexing study
variables with ID pointers to concepts, Dug eliminates the need to
calculate these groups dynamically and eliminates redundant text
stored across study variables mapping to the same ontological con-
cept. Each indexed knowledge-graph answer contains a JSON repre-
sentation of the answer subgraph returned by TranQL and a pointer
back to the ontological concept used in the original query.

2.2 Search engine
2.2.1 Search functionality

Dug’s search API exposes three search endpoints for querying each
underlying Elasticsearch index.

• /search_var—search for study variables matching a user’s query
• /search_concepts—search for ontological concepts matching a

user’s query
• /search_kg—search for knowledge-graph answers matching

user’s query and an ontological concept id

Dug’s search API uses the default Elasticsearch algorithm (cosine
similarity based on vector space model using TF-IDF weighting)
(Elasticsearch, 2021) to rank and retrieve indexed metadata records.
The search field weighting scheme prioritizes exact matches from
the originally ingested text first, followed by synonyms added
through annotation, and lastly, related terms added through concept
expansion.

The Dug search app is implemented in Python 3.9 (https://py
thon.org) and is available via GitHub (https://github.com/helxplat
form/dug). Supplementary materials include a detailed discussion of
the Dug search API implementation.

2.2.2 Search user interface

Dug’s user interface (UI) is a stand-alone React JS-based web appli-
cation designed to provide an intuitive interface for navigating large
collections of data. Dug’s minimalist UI design is intended to reduce
the burden on users and empower them to discover search terms
they are interested in exploring. Dug provides a search box that pri-
oritizes exact phrase matching (AND logic) over partial matching
(OR logic) (Fig. 5). Other features include auto-generated tabbing of
search results by data type.

Dug’s UI organizes search results in two ways: by variable and
by the concept. When organized by variable, Dug returns study vari-
ables sorted by relevance, with each result containing information
about the variable returned (e.g. parent study). When organized by
concept (Fig. 5), Dug aggregates results into higher-level ontological
concepts. Dug can then be used as a preliminary harmonization step
to create de novo groups of similar variables based on NLP annota-
tions (Fig. 5). By providing both approaches, Dug’s concept-based
search gives users an exploratory look at the data landscape, while
its variable-based search allows users to investigate specific variables
of interest.

The defining feature of Dug’s UI is its ability to explain why it
returns certain results (Fig. 6). When Dug returns a result based on
text added during concept expansion, the UI fetches and renders the
corresponding knowledge-graph answer from the knowledge-graph
index to explain the connection (if available, answers include links
to supporting peer-reviewed literature).

2.3 Deployment on BioData catalyst
We deployed Dug on the NHLBI’s BioData Catalyst ecosystem and
indexed the TOPMed freeze 5b and 8 studies (excluding parent stud-
ies). These studies were chosen because they were the datasets

Fig. 5. Dug UI. Dug’s UI aggregates search results for user queries (red) into higher-

order ontological concepts (blue) based on NLP annotation. Links to knowledge

graphs (orange) explain biological relationships between the query and each con-

cept. Concepts may not contain knowledge-graph links if synonymous with the

search query (e.g. ‘lung cancer’ versus ‘adenocarcinoma of the lung’) or if TranQL

did not return answers during concept expansion (A color version of this figure

appears in the online version of this article)

Fig. 6. Dug UI. Dug results show datasets with variables relevant to a user’s query

(e.g. ‘lung cancer’ returns ‘cigarette smoking’), and knowledge-graph disclosures for

understanding why Dug considered those results relevant (e.g. cigarette smoking is a

risk factor for lung cancer)
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available on the BioData Catalyst platform at the time of publica-
tion. Data dictionaries downloaded directly from dbGaP were
ingested and indexed for each of the 76 datasets included in these
freezes.

A total of 15 911 of these variables were manually harmonized
into 65 higher-order groups called ‘phenotype concepts’ by data cur-
ation experts at the TOPMed Data Coordinating Center (DCC)
(Stilp et al., 2021). The TOPMed harmonized phenotypes were cre-
ated to enable interoperability between TOPMed datasets by manu-
ally combining semantically similar dbGaP variables under a single
term.

2.4 Evaluation
We evaluated Dug’s performance against a purely lexical search
strategy (default Elasticsearch; TF-IDF with ‘fuzzy matching’) to
quantify the impact of Dug’s semantic awareness on recall and pre-
cision. We used the TOPMed phenotype concepts dataset as a
framework for evaluation.

Variable descriptions were preprocessed prior to evaluation to
characterize search performance more accurately. Steps included
lowercasing descriptions, removing punctuation, removing the
uninformative ‘Exam fintegerg’ pattern, normalizing whitespace
and de-duplicating to include only unique variable descriptions. We
preprocessed the TOPMed Phenotype concept names by removing
stop words (e.g. ‘the’, ‘in’, ‘of’) and expanding known abbreviations
(e.g. ‘Resting arm systolic BP’ becomes ‘Resting arm systolic blood
pressure’.).

For each of the 65 TOPMed phenotype concepts, we queried
concept titles against Dug’s indexed collection of dbGaP variables to
see how well Dug could recapitulate the manually curated set of var-
iables. Nearly, 76% of the variables in each TOPMed phenotype
concept contained a lexical match to the name of the concept we
had used as a test query. To evaluate Dug’s performance on a less
trivially simplistic dataset, we repeated the evaluation using syno-
nyms of TOPMed phenotype concepts as test queries. We used syno-
nyms from the Unified Medical Language System (UMLS)
(Bodenreider, 2004) with no words in common with the original
query; if no reasonable synonym could be chosen for a TOPMed
phenotype, it was removed.

To quantify Dug’s performance, we used recall and precision.
We report scores at the 10th result (P@10, R@10), at the 50th result
(P@50, R@50) and at the nth result (P, R) for every search. While
(P, R)@10 is a standard metric, we chose (P, R)@50 as the maximum
number of results a person would reasonably scroll through, assum-
ing 25 results per page (Jansen and Spink, 2005).

Within this framework, each variable belonging to a given
TOPMed phenotype concept represents a condition positive (P) we
would expect Dug to return. True positive (TP) results were varia-
bles returned by the TOPMed phenotype concept to which they
belonged. Conversely, false positives (FP) were variables returned by
any TOPMed phenotype concept to which they did not belong.
Recall and precision are calculated at results returned (10, 50 or n)
for each TOPMed phenotype concept query.

Recall ¼ TP

T
(1)

Precision ¼ TP

TP þ FP
: (2)

We evaluated Dug’s performance against a lexical search strat-
egy as a baseline for how ‘findable’ test datasets were without Dug’s
semantic enrichment. We indexed the same set of study metadata
into Elasticsearch using Dug’s ingestion pipeline but did not add any
semantic annotations. Search results were retrieved using the same
default Elasticsearch scoring algorithm Dug uses. This was done to
eliminate the variation between Dug and a baseline search due only
to differences in the underlying lexical search strategies employed,
allowing us to attribute differences in performance to Dug’s seman-
tic annotation. There was no significance to using Elasticsearch

beyond it providing a sophisticated lexical search strategy to make
our evaluation results more directly interpretable.

A post-hoc analysis quantified the average semantic and lexical

similarity between test queries and the top 50 results returned by
Dug and Elasticsearch. Semantic similarity was measured using co-
sine similarity between test queries and search results after using the
BioSentVec (Chen et al., 2019) model to transform queries and
phrases into sentence embeddings. The sent2vec (v0.2.2) Python

package was used to load the pretrained BioSentVec model
(Pagliardini et al., 2018). Lexical similarity was measured using
Levenshtein distance implemented in the python-Levenshtein
Python package (v0.12.2).

To determine the statistical significance of differences in per-
formance metrics between Dug and default Elasticsearch, we used
nonparametric paired Wilcoxon signed-rank tests to test the hypoth-
esis that location shift for each performance metric was non-zero.
We chose this nonparametric test as it allows violations of normality

in the sample distribution of differences. Wilcoxon tests were per-
formed using the Python SciPy (v1.7.3) package using two-sided al-
ternative hypotheses and a critical value of 0.05 (Virtanen et al.,
2020).

3 Results

The initial Dug deployment on the NHLBI Biodata Catalyst ecosys-
tem successfully indexed 15 991 study variables from 76 genomics
datasets. Dug augmented these study variables with 573 ontological
concepts and 11 752 knowledge-graph answers.

The results of our initial evaluation (Supplementary Fig. S1)
showed Dug outperformed default Elasticsearch in terms of mean
recall (0.79 versus 0.76, P<0.001) but was not significantly differ-
ent from Elasticsearch in terms of recall @ 10 and @ 50
(Supplementary Table S1). Additionally, Dug performed slightly but

significantly worse than Elasticsearch in terms of precision @ 10
(P¼0.022) and @ 50 (P¼0.027). The biggest difference between
Dug and a text-based method was Dug’s significantly lower total
precision than Elasticsearch (0.07 versus 0.28, P<0.001), though
this was expected as Dug is designed to return a larger set of more

exploratory results.
After repeating the evaluation with synonyms of original queries

(e.g. ‘lung adenocarcinoma’ versus ‘lung cancer’), Dug vastly outper-

formed lexical search. Shown in Figure 7, Dug significantly outper-
formed default Elasticsearch in terms of mean recall (0.36 versus
0.14, P<0.001), recall @ 10 (0.08 versus 0.04, P¼0.033) and recall
@ 50 (0.18 versus 0.08, P¼0.007). We found no significant differ-
ence between Dug and Elasticsearch in precision @ 10 (P¼0.184)
and precision @ 50 (P¼0.223); Dug’s total precision was

Fig. 7. Dug versus lexical search performance using UMLS synonyms of TOPMed

phenotype concepts to search for underlying variables. Left: Recall, R@10, R@50.

Right: Precision, P@10, P@50. Diamonds represent outliers for each search method.

Dug significantly outperforms lexical search (implemented in Elasticsearch) in terms

of total recall, R@10 and R@50. Precision @10 and P@50 were not significantly dif-

ferent between Dug and Elasticsearch. Though Dug’s total precision was significant-

ly lower, this was expected given Dug’s objective to uncover exploratory

connections
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significantly worse (P¼0.041), as to be expected with Dug’s ex-
ploratory results.

We discount Dug’s lower total precision somewhat as an artifact
of our evaluation rather than reflecting an excess of low-quality
results. For practical reasons our test dataset narrowly defines ‘true’
search results to be only direct synonyms of the query. For example,
our test dataset would not consider ‘smoking behavior’ relevant to a
search for ‘lung cancer’ even though Dug would, and a user might.
As a result, we would naturally expect Dug’s total precision to be
lower than lexical search because Dug returns lexical results plus
closely related but non-synonymous results. For this reason, Dug’s
lower total precision might more accurately be characterized as
reflecting a surplus of contextually relevant results.

Together, these results suggest Dug’s superior recall results from
including semantically equivalent terms that do not appear lexically
similar to the query (e.g. ‘heart attack’ versus ‘myocardial infarc-
tion’). To test this hypothesis, we quantified the average semantic
and lexical distance between queries and results returned by Dug
and Elasticsearch. Dug’s results are on average significantly
(P¼0.021) more lexically divergent from the original query than
Elasticsearch results, despite there being no significant difference
(P¼0.878) in the semantic distances of search results returned by
each (Fig. 8). Together, these results suggest Dug outperforms the
most sophisticated lexical search strategies when the lexical diversity
of the search space is high, as is typical for non-standardized bio-
medical datasets.

4 Discussion

The exponential increase in publicly available datasets has created a
need for comprehensive search tools that identify datasets relevant
to a researcher’s particular scientific question. To help researchers
better navigate this new data landscape, we created Dug: a semantic
search tool for biomedical datasets leveraging ontological know-
ledge graphs to intelligently suggest relevant connections derived
from peer-reviewed research.

Our results demonstrate Dug’s ability to find relevant datasets
regardless of the lexical expression of a query. When compared to a
sophisticated lexical search strategy like Elasticsearch, Dug returns
more relevant results with no significant difference in the precision
of the top 10 or top 50 results. Like all search engines, Dug orders
its result by relevance; as one looks deeper into the results, recall
increases and precision decreases as Dug returns less directly related
concepts. Dug also outperforms lexical search particularly when the
search space is characterized by the type of high lexical diversity typ-
ical of biomedical data repositories.

Dug’s potential for data exploration and discovery is perhaps its
greatest and least quantifiable strength. Dug’s ability to surface rele-
vant datasets may be most useful when the user is not sure what
they are looking for. For example, the relevance of ‘asbestos

exposure’ variables to a search for ‘lung cancer’ datasets is context-
ual and subjective, making it difficult to quantify when and how se-
cond- and third-order connections might be useful. A key
innovation of Dug is its ability to provide exploratory connections
without sacrificing the precision of top results.

Dug’s modular design and stand-alone companion web portal
can flexibly fit myriad use cases. For example, a centrally hosted ver-
sion of Dug could index multiple data repositories to service a much
larger user base. Additionally, smaller data coordinating centers like
NIDDK central repository (Cuticchia et al., 2006; Rasooly et al.,
2015) or large data ecosystem initiatives like NIH’s HEAL Data
Ecosystem (U.S. Department of Health and Human Services) could
use Dug to search across non-standardized data from diverse consor-
tium members via a single portal without the need for significant
manual curation.

Future work focuses on known limitations and responding to
user feedback from the BioData Catalyst consortium. A principal
concern is parallelizing the indexing process to index multiple data-
sets simultaneously and increase the throughput for larger datasets.
Additionally, we are evaluating various strategies for improving
ranking search results by relevance based on input from current
users. We believe Dug provides a powerful, flexible tool for search-
ing intuitively across complex data resources that are increasingly
common in the biomedical data landscape.
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