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Abstract

Motivation: The post-transcriptional epigenetic modification on mRNA is an emerging field to study the gene regu-
latory mechanism and their association with diseases. Recently developed high-throughput sequencing technology
named Methylated RNA Immunoprecipitation Sequencing (MeRIP-seq) enables one to profile mRNA epigenetic
modification transcriptome wide. A few computational methods are available to identify transcriptome-wide mRNA
modification, but they are either limited by over-simplified model ignoring the biological variance across replicates
or suffer from low accuracy and efficiency.

Results: In this work, we develop a novel statistical method, based on an empirical Bayesian hierarchical model, to
identify mRNA epigenetic modification regions from MeRIP-seq data. Our method accounts for various sources of
variations in the data through rigorous modeling and applies shrinkage estimation by borrowing information from
transcriptome-wide data to stabilize the parameter estimation. Simulation and real data analyses demonstrate that
our method is more accurate, robust and efficient than the existing peak calling methods.

Availability and implementation: Our method TRES is implemented as an R package and is freely available on

Github at https://github.com/ZhenxingGuo0015/TRES.
Contact: hao.wu@emory.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Epigenetics is the study of inheritable genomic modifications that do
not involve alteration in DNA sequence. These modifications regu-
late gene activities and play important roles in many biological proc-
esses such as cell differentiation, development and aging, as well as a
number of human diseases such as cancer (Bird, 2002; Feinberg,
2004; Greer and Shi, 2012; Portela and Esteller, 2010; Szulwach
et al., 2011; Teschendorff et al., 2010). Traditional epigenetic stud-
ies mostly focus on different types of DNA methylation and histone
modifications. Recently, a number of post-transcriptionally modi-
fied ribonucleosides have been identified in various types of RNA
(Darnell et al., 2011; Dominissini et al., 2012; Meyer et al., 2012;
Roundtree ef al., 2017). These results suggest that post-transcrip-
tional mRNA modifications are dynamically regulated and have
functions beyond fine-tuning the structure and function of RNA.
The study of RNA modifications represents an important new realm
for gene regulation in the form of ‘RNA epigenetics’ or ‘epitranscrip-
tomics’. There are multiple types of RNA modifications, including
N6-methyladenosine (m°®A), N3-methylcytosine (m*C) and N1-
methyladenosine (m'A). Among them, m°A is the most common

and abundant (occurring at roughly 1 in 3 adenosine residues in
mammalian mRNA) modification on RNA molecules in eukaryotes
(Dominissini et al., 2012). N6-Methyladenosine (m°A) refers to
methylation of the adenosine base at the nitrogen-6 position. Studies
have shown that m®A is associated with many human diseases such
as cancer and neuronal disorders (Engel et al., 2018; Lan er al.,
2019; Lin et al., 2019).

Recently developed high-throughput sequencing method named
Methylated RNA Immunoprecipitation Sequencing (MeRIP-seq),
enables one to profile transcriptome-wide m°®A levels. MeRIP-seq
can be technically seen as a combination of two well-known techni-
ques: immunoprecipitation, widely used in chromatin immunopreci-
pitation sequencing (ChIP-seq) (Johnson et al., 2007), and RNA
sequencing (RNA-seq) (Nagalakshmi et al., 2008). In MeRIP-seq,
mRNA is first fragmented into approximately 100-nucleotide-long
oligonucleotides, and then immunoprecipitated (IP) by an anti-m°A
affinity purified antibody. In addition to the IP samples, libraries are
also prepared for input control fragments to measure the corre-
sponding reference mRNA abundance. This process is an RNA-seq
experiment. After sequencing, the reads from both the IP and the in-
put samples are aligned to the reference genome. Due to the
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enrichment from IP process, transcriptomic regions with m°®A will
have more reads clustered and have peak-like shapes when visualiz-
ing the read counts along the genome. Therefore, people often refer
the m®A regions as ‘peaks’, which is a term usually used in ChIP-seq
to represent the protein binding sites. Figure 1 shows some example
peaks on the Fat2 gene from a dataset to study m°A dynamics dur-
ing mouse brain development, where m°A in cerebellums from 2-
week old mice are profiled with two biological replicates.

MeRIP-seq data resemble ChIP-seq data since both consist of
paired IP and input samples. One of the main goals in MeRIP-seq is
also similar to that in ChIP-seq: to identify transcriptomic regions
with m°A methylation (‘peak calling’). Studies have reported that
cells may coordinately modulate m®A modification levels for regula-
tory purposes (Dai et al., 2007). To explore the dynamics of m®A in
response to physiological conditions, knowledge of the accurate lo-
cational distribution and the degree of methylation levels are im-
portant. It is tempting to directly apply ChIP-seq peak calling
methods (Zhang et al., 2008). However, it is not appropriate for at
least two reasons. First, the variation of the input from MeRIP-seq is
much greater than that from ChIP-seq. The input of ChIP-seq con-
sists of stable DNA fragments in which the variation is minimal. In
contrast, the MeRIP-seq input measures the gene expression, which
is known to vary greatly along the genome and across different sub-
jects. This characteristic makes it undesirable to directly apply ChIP-
seq methods on MeRIP-seq data because statistical tests developed
for ChIP-seq data tend to call more peaks for highly expressed genes,
since they have greater power in regions with more input reads
(Chen et al., 2012). Second, due to cost constrains, the number of
biological replicates in MeRIP-seq experiment is often small, making
direct estimate of variance unstable. The small-sample problem is
usually alleviated by ‘variance shrinkage’ procedures that are widely
applied in RNA-seq but not included in ChIP-seq methods.

Compared to the large body of works for RNA- and ChIP-seq
data analysis, method development for MeRIP-seq data is limited.
To the best of our knowledge, there are two statistical methods for
m°A peak calling: exomePeak (Meng et al., 2013) and MeTPeak
(Cui et al., 2016) and two methods for differential peak calling:
MeTDiff (Cui et al., 2018) and RADAR (Zhang et al., 2019).
exomePeak performs a conditional test (C-test) (Przyborowski and
Wilenski, 1940) to detect the enrichment of IP over input. Its main
limitation is that it assumes the same enrichment level within a tran-
script and across biological replicates. In other words, it does not
model the variation of methylation within a transcript and across
biological replicates. MeTPeak models such biological variances
with a hierarchical beta-binomial model. It builds a two-state
(methylated and unmethylated) hidden Markov model (HMM) to
account for the local dependency of nearby read counts. The HMM
model can be problematic because the m°A levels are continuous,
which cannot be modeled by two distinct states. Moreover, the
HMM in MeTPeak runs on each gene independently, implying that
the thresholds for calling m°A peaks can be different on different
genes, which produces inconsistent results.

In this article, we develop a novel statistical method for MeRIP-
seq peak calling. We name it TRES for Toolbox for mRNA
Epigenetics Sequencing analysis. We adapt a Bayesian hierarchical
negative binomial model to account for different sources of vari-
ation and address the small-sample problem in MeRIP-seq data. A
variance shrinkage procedure is derived from the model to provide
robust estimation for the biological variation of m°A levels cross
replicates. Wald tests are then conducted to detect transcriptome-
wide m®A modification regions. Extensive simulation studies and
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Fig. 1. Peaks from MeRIP-seq in a mouse brain study

real data analyses demonstrate that TRES is more accurate, robust
and efficient than existing peak calling methods.

2 Materials and methods

TRES conducts peak calling in two steps. In the first step, it quickly
scans the whole transcriptome and loosely identifies m°A candidate
regions using an ad hoc procedure. In the second step, more rigorous
statistical modeling and hypothesis testing procedures are applied to
detect and rank the peaks. The two-step approach avoids fitting
complicated models on the whole transcriptome, thus greatly
reduces the computational burden. In the meantime, the careful
modeling on the candidate peaks in the second step delivers accurate
and robust results. Reducing the hypothesis testing space also
improves statistical power after multiple testing correction.

2.1 Obtaining the m®A candidate regions

For a MeRIP-seq dataset with multiple replicates, the first step (can-
didate region identification) is performed for each replicate separate-
ly. We first divide the whole genome into equal-sized bins (default
bin size is 50 basepairs), and only keep the bins overlapped with
exons (optionally keep intronic bins as well if explicitly specified).
For bin b in replicate j, the bin-level counts from the input and the
IP  samples are denoted by x;, and y,. We assume
xpj ~ Poisson(s7 23;), yp; ~ Poisson(si'/lly]f), where s7 and s are size
factors corresponding to replicate j’s input and IP samples respect-
ively, and the 2’s are Poisson rates. Here, the size factors are com-
puted from the total read counts and used for normalizing the
sequencing depth effects. Let Tp =x4 +ys, we have
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P-value for each bin from a binomial test with the null hypothesis of
no methylation. Note that even if a region is unmethylated, we still

have lii > 0 because of the background reads in the IP sample. We
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Hochberg method (Benjamini and Hochberg, 1993) is applied to es-

timate false discovery rate (FDR) for all bins. In addition, we also
Y0

calculate the normalized log fold changes as %Z/ log <M/s’ +C/>,

X 0
Xpj/ site

which are then smoothed using moving average to account for spa-

tial correlation in the data. Here, c}) is a constant acting as a pseudo-

count to remove bins of very low counts. The choice of clo is the
mean bin count from both the IP and the input of replicate j. Given
FDR and smoothed log fold changes (LFC) of all bins, we adopt a
bump finding algorithm (Jaffe e al., 2012) to combine bins with
FDR < o (default 0.05) and LFC > C (default 0.7 for fold change
of 2) to loosely identify candidate m°®A regions. It is necessary to
mention that, if there is only one replicate for both Input and IP
samples, TRES will stop at this step. The final peaks are the list of
bumps and the significance of each bump is determined by the afore-
mentioned binomial test.

2.2 mPA peak calling

2.2.1 A hierarchical model for the counts in candidate regions
Given candidate regions from the first step, we obtain the region-
level read counts based on the bin-level counts (note one region can
contain multiple bins). For candidate region i and replicate , denote
the read counts from the input and the IP sample by x; and y;;.
Based on the property of Poisson distribution, we still have x;; ~

i x ) , i Y9\ with F — ox
Poisson(sf 4;;) and yj; ~ Poisson(s) 2}), with 25 = 37, 1inc in region i 45
7y _ ¥ L S
and 4 = 3 pins in region i 43+ 10 model the variation across biologic-
Y Y 0.
2 ~ Gamma(a;, 0;) and

%; ~ Gamma(q}, 0;). Here, os and 0 are shape and scale parameters

al  replicates, we  assume

in the specified Gamma distributions. Marginally, the read counts
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follow a negative binomial (Gamma-Poisson) distribution, which is
widely used in modeling sequence count data (Love et al., 2014;
Robinson et al., 2010; Wu et al., 2013).

To detect methylation regions, we are interested in the ratio of
IP/input, i.e. 2;/2;. However, due to the technical artifact such as
imperfect spec1f1c1ty of antibody, the ratio 4}/ could be greater
than 1 even for unmethylated regions. We defme a new quantity

= +”/V that is monotonic to £, i/ 7%; and naturally follows a beta distri-
if

butlon. We reparameterize the beta distribution by mean (y;) and

dispersion (¢;), with y; = x(uﬁ and ¢; = Then the o’s in the

T +oc’+1
Gamma distribution can be represented by p; and ¢ of =
(1—p)(¢; ' — 1) and & = g;(¢;* — 1). Similar to that in the RNA-
seq DE problem, the dlsperswn parameter ¢; plays an important
role in the peak calling. When the number of biological replicates is
small, it is desirable to impose a prior on ¢;, which induces a
‘shrinkage’ effect and provides robust estimation. Here, we impose a
log-normal prior on ¢;, which is based on the distribution of
observed dispersion in MeRIP-seq data. Based on the above settings,
our complete data model for counts in candidate regions is:

Xij|45; ~ Poisson(sy A7),

Y,~,|/11’.; ~ Poisson(s?) W

Il ~ Gamma((1 — ) (¢; " — 1), 6)), (1)
73\¢i ~ Gamma(p;(¢; ' —1),0),

¢; ~ log N(my, a3).

It is important to note that in our model, the quantity of interest
is p;, which is related to the m®A methylation level. The dispersion
¢, is also related to the biological variation of methylation levels,
and will be shrunk estimated.

2.2.2  Parameter estimation

The peak calling involves making statistical inferences on y;, for

which one needs to obtain ji; and the standard error of fi;. For fi;,

we denote it as fi; = M
E Y /s /s

on the marginal Gamma-Poisson distributions of x;; and y;; (more

details in Supplementary Materials). For the variance of ji;, we show

. . . 1456,
that it can be approximated as: var(fi;) ~ & {Z/ i }E{l 3

by the method of moment based

(details in Supplementary Materials). The variance estimator
involves ¢; and 0;, which need to be estimated first. For that, we use
a maximum likelihood approach. Based on our model specification
in (1), the joint posterior of ¢; and 0, is proportional to the data like-
lihood. Then:

log f(¢;, 0ilYi, X, ;)
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Maximizing the above likelihood provides estimates of ¢; and 0;,
denoted as ¢; and 0; hereafter. Prior to the estimation of ¢; and 0; in
above data likelihood, we need to estimate hyperparameters 14 and
a4 in the log-normal prior of ¢;. For that, we first estimate disper-
sion parameters ¢; with method of moment for all candidate

regions. Then m, and ¢? are estimated based on the moment esti-
mates for dispersion (more details in Supplementary Materials).

2.2.3 Calling and ranking the peaks
It is important to note that the IP sample will have sequence reads in
background regions even with very low m°®A methylation. Those are
background reads brought by various biological or technical noises.
The goal of peak calling is to identify regions with potentially higher
level of m®A signals compared to the background. In our model, the
parameter ; represents the m®A methylation signal in region i.
Assuming that unmethylated regions have background signal of o,
we perform the following one-sided hypothesis test for calling
peaks:

Ho:p; < po versus  Hy :p; > .

The Wald test statistic for the hypothesis test is ;‘L (:" The vari-

l+sy()
ance of fi; is approximated as var(f;) = (ld’;))n‘;ﬁ > },
1

where ¢; and 0; are the posterior estimates from previous section.
The background signal po depends on the quality of the experiment,
e.g. experiment with lower technical noises will have smaller p9. We
use a data-driven approach to estimate . To be specific, we esti-
mate o as the ratios of normalized read counts between IP and in-
put samples in all background regions (non-candidate regions). The
Wald test statistics approximately follow normal distribution
(shown in Section 3), and the P-values can be obtained accordingly.
False discovery rate (FDR) can be estimated using established proce-
dures (Benjamini and Hochberg, 1995).

Note that the P-values from the above hypothesis test represents
the statistical significance, not the biological significance. A region
with low methylation level could have very small P-value, due to
small variance. Even though the P-values and FDRs provide a mean
to call peaks, they are not necessarily the best metric to rank the can-
didate peaks. This is a prevalent problem in many high-throughput
data analyses, and people have developed different ways to address
the problem. For example in differential expression (DE) analysis,
people use volcano plot to visualize the results and use a combin-
ation of FDRs and log fold changes to call DE genes Here, we use

This score prefers peaks whose methylatlon levels are 51gn1f1cantly

higher than the average of all candidates regions, which generates
more robust and meaningful ranks than using the P-value.

the following score to rank the candidates: ¢

2.3 Simulation setup

We conduct comprehensive simulations to evaluate the performance
of TRES. Since our algorithm contains two steps: identification of
candidate regions and calling peaks among the candidates, we con-
structed two types of simulations to validate the performances in dif-
ferent aspects. In the first type, termed as region-level simulation,
we generate read counts at the region levels. The purpose is to valid-
ate the dispersion estimation and statistical inferences procedures in
TRES. The simulation, however, cannot be used to validate other
competing MeRIP-seq methods because those only work for counts
from equal-sized bins. In order to fairly compare with other meth-
ods, we conducted another type of simulation, termed bin-level
simulation, where we generate counts from smaller, equal-sized bins
transcriptome wide. This simulation provide a basis for the compari-
son of overall peak calling performances from different methods.
The methods compared to TRES in this simulation are MeTPeak
and exomePeak, which are the popular choices in analyzing MeRIP-
seq data.

In the region-level simulation, we simulate data for candidate
regions based on our negative binomial model, where we assume
that there are 5000 candidate regions, with 80% of them being posi-
tive (with m®A methylation). Details for the region-level simulation
are provided in Supplementary Materials Section S2.1. In the bin-
level simulation, we first apply TRES on a mouse dataset to obtain a
list of peaks. Given these peaks and the raw data, we simulate bin-
level counts for 50 bp bins transcriptome wide. The details for the
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Fig. 2. Evaluation of dispersion estimates from different methods under the scenario
where m,- = 0.55 and m,+ = 0.7. (A) Comparison of normalized MSE (MSE div-
ided by the true value of ¢) between moment and shrinkage estimates for dispersion
parameters across 500 simulations, when there are two and five replicates respect-
ively. (B) Density of moment and shrinkage dispersion estimates when there are two
replicates

bin-level simulation are provided in Supplementary Materials
Section S2.2. Briefly, the input bin counts are directly obtained from
the real data. The IP bin counts are generated from a Poisson model.
The Poisson rates are related to the input counts and underlying
methylation level, which is generated from a HMM. We carefully
compare the characteristics of the simulated and real data, and dem-
onstrate that the simulated data mimic the real data well in several
aspects. Details for such comparison are provided in Supplementary
Figure S4.

3 Results

3.1 Simulation

3.1.1 Accuracy of dispersion estimation

It has been shown that the estimation accuracy of dispersion parameter
¢; plays crucial roles in different types of sequencing data analysis
(Feng et al., 2014; Love et al., 2014; Wu et al., 2013), with better dis-
persion estimation leading to improved statistical inference. Therefore,
we first assess the dispersion estimation in region-level simulation stud-
ies by comparing the results from our proposed shrinkage estimator
with the moment estimator. To assess the biases of the estimates, we
use normalized mean squared errors (MSE) as criteria, which is defined
as the MSE of ¢; divided by the true value of ¢,.

Figure 2(A) shows the normalized mean squared errors of shrink-
age and moment estimates of ¢; when there are two or five repli-
cates. As expected, more replicates lead to lower biases for both
methods, but the proposed shrinkage estimates outperform the mo-
ment estimates in both cases. Furthermore, the variation in shrink-
age estimates are also smaller than those in moment estimates, no
matter when there are two or five replicates. As an example, the den-
sities of ¢; for two-replicate scenario are shown in Figure 2(B). It
shows that from the proposed shrinkage estimator, the extreme val-
ues are shrunk towards the population mean. These results demon-
strate that our shrinkage dispersion estimator is more accurate and
robust than the moment estimator.

3.1.2  Accuracy of statistical inference

Next we evaluate the statistical inference from the region-level simu-
lation. As we derive P-values based on the normal distribution of
Wald-test statistics, we demonstrate the validity of this inference
method by examining the distribution of Wald statistics. Histogram
of Wald statistics and the normal quantile-quantile (QQ) plots in
Supplementary Figure S2 suggests that the statistics follow a normal
distribution very well in the middle, with the heavier tail to the right
corresponding to methylated regions. Furthermore, we investigate
the P-value distributions from the hypothesis test, for all regions and
the background regions only. Under the null (background regions),
P-values by TRES are roughly uniformly distributed (Supplementary
Fig. S3), and provide accurate type I errors (Supplementary Table
$1) and FDRs (Supplementary Table S2). These results support the
validity of using normal P-values in TRES, and demonstrate that
TRES provides accurate statistical inference.
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Fig. 3. Comparison of overlap proportions among top 5000 peaks called by differ-
ent methods. One panel presents results under one specific scenario. Panels from left
to right in each row contain results with number of replicate 2 and 5. Panels from
top to bottom in each column represent results with the mean of log-dispersion -4.5
and -3

3.1.3 Accuracy of peak calling

We next evaluate the overall peak calling accuracy from TRES
through bin-level simulations. We compare TRES to exomePeak
and MeTPeak, which are the popular choices in analyzing MeRIP-
seq data. Because each method outputs its own ranked peak list, the
total number of peaks and the length of each peak vary by different
methods. We use two metrics in the comparison: (i) the proportions
of called peaks overlapping the true peaks; and (ii) the percentage of
base pairs within the called peak that are also in true peaks (referred
to as %BP). We computed these metrics for different numbers of top
ranked peaks from all methods. Higher values indicate better per-
formance. To avoid potential biases brought by the peak lengths, all
peaks are adjusted to length of 200 base pairs, i.e. we take the center
of the called peaks and extend to both sides by 100 base pairs.

The comparison of the overlapping proportions is shown in
Figure 3. In all cases, TRES outperforms MeTPeak and exomePeak.
When the number of replicates increases (from left to right), TRES
becomes better while MeTPeak and exomePeak do not. This is be-
cause TRES models the variation in biological replicates, which
makes it better take advantage of large sample size. Although
MeTPeak also models the biological variation in replicates, its two-
state and gene-by-gene modeling of methylation may generate in-
consistent inference results. These drawbacks could make it suffer
from large sample. exomePeak neglects the biological variance,
which may report more false positives when there are more than
two biological replicates.

To further assess the precision in peak position, we calculate the
percentage of base pairs in a peak that are also covered by true
peaks. As shown in Supplementary Figure S5, TRES still performs
best in all scenarios compared to MeTPeak and exomePeak.
Consistent with the results in Figure 3, TRES becomes better with
larger sample size, while MeTPeak and exomePeak do not. In add-
ition, the good results of TRES under conditions of large dispersion
(bottom row) suggests the benefits of our shrinkage procedure for
the dispersion of methylation levels. When the dispersion becomes
large, more extreme values will appear, which could cause unstable
inferences in peak calling. A shrinkage procedure of the dispersion
helps to stabilize the dispersion estimate and generate robust
inference.

3.2 Real data application
We apply TRES on three real m°A datasets to investigate its per-
formance, and compare it to three existing peaking calling tools
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MeTPeak, exomePeak and MACS2. All methods take BAM file and
generate a ranked list of m®A peaks. Since the biological truth are
unknown in the real data, we evaluate the results based on some ‘sil-
ver standards’ from prior biological knowledge, including the motif
content of the peaks, as well as the overlaps of peaks with important
transcriptomic features.

3.2.1 Datasets

All data are obtained from the Gene Expression Omnibus (GEO)
database. The first dataset (GEO accession number GSE113781)
referred to as Stress mouse data hereafter, contains samples from
mouse adult cortex under two conditions: treated with 15 min acute
restraint stress (stress), and left in homecage and sacrificed 4 h after
(basal). There are seven and six biological replicates in basal and
stress mouse cortex sample respectively. The second dataset
(GSE144032) referred to as Young mouse data hereafter, contains
mouse brain samples from four brain regions: cerebellum, cortex,
hippocampus and hypothalamus. Each sample contains two repli-
cates. The third dataset (GSE46705) referred to as HeLa data, con-
tains four samples from human HeLa cell line: one control sample
and three treated samples. The treatments correspond to the knock-
out of complex METTL3, METLL14 and WTAP respectively. Each
sample contains two replicates. More details about these three data-
sets are in Supplementary Materials Section S3.1.

3.2.2 Motif content

It has been reported that motif DRACH (D=G/A/U, R=G/A,
H=A/U/C) is the top binding motif of m°A reader YTHDC1 (Xu
et al., 2014). Therefore, motif DRACH are expected to present in
the vicinity of true methylation regions. We assess peaks called by
different methods using the motif information as a silver standard,
under the assumption that peaks with the DRACH motif are more
likely to be true.

First, we explore the motif content in top 5000 peaks called by
different methods. The motif content refers to the proportion of
peaks whose genomic sequences contain DRACH motif. Because
longer peaks tend to have higher motif content, we make the length
of all top peaks similar to each other in order to avoid potential
biases caused by length (Supplementary Fig. S6). Results in
Figure 4(A) and Supplementary Figure S7(A) show that, peaks called
from TRES consistently have the highest motif content across all
datasets, followed by exomePeak, MACS2 and then MeTPeak. It is
also important to note that the motif content curves are always
downward from TRES. It shows that the higher ranked peaks have
greater motif content, indicating good peak ranking. exomePeak
reports a roughly similar trend but lower motif contents compared
to TRES. In contrast, the motif content curves from both MACS2
and MeTPeak sometimes are upward. MeTPeak is particularly bad
in this, since its top ranked peaks often have lower motif content
than the lower ranked peaks. Overall, the motif content results sug-
gest that TRES provides the best peak ranks compared to the other
methods.

In addition, we calculate the distance between DRACH motif to
the summit of each peak. All peaks are adjusted to 200 base pair
long centered around their summit. As shown in Figure 4(B) and
Supplementary Figure S7(B), the distance densities in most samples
peak around zero for TRES, MeTPeak and MACS2, with densities
by TRES have the highest peak at 0. In contrast, the mode of density
by exomePeak in WTAP-Knockout sample is relatively far from
zero. Overall, these figures show that the peaks called by TRES have
the highest peak at 0, indicating that our peak summits are closer to
the motif than others’ peak summits.

To further assess the peaks, we conduct de novo motif search
using HOMER (Heinz et al., 2010) for the top 5000 peak regions
called by different methods. All peaks are adjusted to 400 base pair
long centered around their summit. Supplementary Figure S8 shows
example sequence logos of DRACH motif found in peak regions
called by TRES for all samples in Stress mouse data, two samples in
Young mouse data and two samples in HeLa data. Although
DRACH motif also occurs in peaks called by the other methods for
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Fig. 4. (A) Comparison of DRACH motif content among the top 5000 peak regions
called by TRES, MeTPeak and MACS?2 in basal sample from Stress mouse data, in
control sample from HeLa data and two samples from Young mouse data. (B)
Comparison of distances between DRACH motif to peak summits called by TRES,
MeTPeak, exomePeak and MACS2, in the basal sample from Stress mouse data, the
WTAP-knockout sample from HeLa data

the same dataset, its rank and enrichment score varied. For example,
among the 10 lists of peaks called by each method for all three data-
sets, DRACH is the most enriched motif in 10, 6, 9 and 7 lists of
peaks called by TRES, MeTPeak, exomePeak and MACS2 respect-
ively. In addition, more than half of the enrichment scores |-
log10(P-value) with the P-values reported by HOMER for motif
DRACH], are the highest in peaks called by TRES (Supplementary
Fig. S9) compared to MeTPeak, exomePeak and MACS2. All of
these results together demonstrate that peaks called by TRES are
more accurate and better ranked compared to those from the other
methods.

3.2.3 Consistency with other methods

It is important that peak lists by a newly developed tool show some
consistency with existing tools of the same usage. Here, we investi-
gate the consistency of TRES with other methods, by examining the
overlapping pattern among top 5000 peaks identified by each
method. Again, all peaks are adjusted to 400 base pair long centered
around their summit to avoid potential bias from peak length. As
shown in Supplementary Figure S10, overall, we found that the
peaks called from different methods have moderate overlaps, while
each method has non-trivial number of unique peaks. To further ex-
plore the overlaps, we calculate the proportion of peaks by each
method that are also reported by at least two other methods (details
are included in Supplementary Material Section S3.4). Since there is
not gold standard for peaks, we think the peaks reported by at least
two other methods can serve as ‘silver standard’, thus higher propor-
tion indicates better performance. As shown in Supplementary
Table S3, compared to the other methods, TRES has the largest pro-
portion in most samples. These results indicate that, peaks by TRES


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab181#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab181#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab181#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab181#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab181#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab181#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab181#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab181#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab181#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab181#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab181#supplementary-data

Detection of m®A methylation regions

2823

Basal Stress
08 *' 08 rera— |
§ —t —— —_
E 7
2 o7 o
% Method
5 B3 mAcs2
3 0.6 06 B exomePeak
B8 MeTpoak
— —
05
MACS2  exomePeak MeTPeak  TRES MACS2  exomePeak MeTPeak  TRES

Fig. 5. Comparison of overlapping proportions between top 5000 peaks called with
two and all replicates in basal and stress mouse cortex samples respectively. In the
calculation of overlapping proportions, each method is compared to itself

are more consistent with others than peaks by MeTPeak,
exomePeak and MACS2.

3.2.4 Robustness of the methods

Next, we evaluate the robustness of different peak calling methods.
It is desirable that a method can produce consistent results when the
number of biological replicates varies. We use the Stress mouse data
to assess the consistency of peaks called with different number of
replicates from the same method.

For each method, we first call peaks using all replicates (seven
replicates for basal, and six for stress), and use these as benchmarks.
We then randomly sample two replicates to call peaks, and calculate
the overlapping proportions between the top 5000 peaks called with
two replicates and with all replicates. A more robust method is
expected to have higher overlapping proportions, since the results
are not overly affected by the sample size. There are seven and six
replicates for mouse basal and stress cortex samples respectively,
then each of the three peak calling methods will output 21 and 15
overlapping proportions respectively. Results in Figure 5 show that,
TRES consistently obtains the highest overlapping proportions be-
tween peaks called with two replicates and peaks called with all rep-
licates. These results indicate that TRES is more robust than all
compared methods. MACS is particularly sensitive to the data since
it reports less than 60% overlaps. As the number of replicates are
usually small due to cost constrains of sequencing experiments,
TRES tends to be more stable and trustable than the other compared
methods in such a situation.

In addition to biological replicates, impact of sequencing depth
is another important consideration for a peak calling method.
Studies have shown that the performance of ChIP-seq peak calling
algorithms suffer from low sequencing depth (Jung ez al., 2014).
Here, we investigate how much impacts the sequencing depth has on
different methods. To create data with lower depth, we downsample
raw BAM files at different rates, ranging from 0.3 to 0.7. As a criter-
ion of comparison, for each method and each sample, we calculate
the percentage of peaks called with raw data that are recaptured at
different downsample rates. As shown in Supplementary Figure S11,
TRES reports the highest percentage compared to MeTPeak,
exomePeak and MACS2. Although there is an increasing trend in
the percentage for all methods as sequencing depth increases, the
increasing curve of TRES is more flat, meaning that TRES is more
robust to lower sequencing depth than the other methods.

3.2.5 Location of the peaks over the transcriptome

Lastly, we examine the transcriptomic locations of called peaks
from TRES. We focus on five important transcriptomic regions:
transcription start site (TSS), 5" untranslated region (UTR), coding
sequence (CDS), stop codon and 3'UTR. Supplementary Figure S12
shows the results from two datasets: The cerebellum sample from
the Young mouse data and the basal sample from the Stress mouse
data. The pie charts of Supplementary Figure S12 show the propor-
tions of peaks overlapping with these five regions, where the CDS
and 3'UTR regions contain the most of peaks. Since the lengths of
features are different, Supplementary Figure S12 also shows the
density of peaks (peak counts rescaled by the feature lengths), com-
puted using MetaPlotR (Olarerin-George and Jaffrey, 2017). The
peaks from the Young mouse data cerebellum sample show very
strong enrichment around stop codon, while the peaks from the

Stress mouse data basal sample show strong enrichment at stop
codon as well as 5'UTR. Both the overlapping proportion with CDS
and 3'UTR regions and the enrichment at stop codon are consistent
with previous reports (Dominissini et al., 2012), i.e. m°A is highly
prevalent in coding regions and 3'UTRs, and is particularly abun-
dant around stop codon. As the Stress mouse data was to study both
m°A and m°Am, the relatively high enrichment of peaks around
S'UTR region was contributed by m®Am as reported in (Engel et al.,
2018). Combining all information together, our peaks follow the
unique transcriptomic-wide distribution patterns reported by previ-
ous studies.

3.2.6 Software and computational performance

TRES is implemented as an R package. It has excellent computation-
al performance. To analyze a typical MeRIP-seq dataset with 2 rep-
licates on a MacBook Pro laptop with i5 2.3 GHz CPU and 16 G
RAM, it takes 19.7 min from TRES. However, if it does not consider
intronic regions (note exomePeak and MeTPeak do not include
introic regions), it only takes 3.43 min. With the same computing re-
source and same dataset, it takes 13.03 min from MACS2, 1.5h
from exomePeak and 3.19h from MeTPeak. In other words, with-
out intronic regions, our package is four times faster than MACS2,
30 times faster than exomePeak, 55 times faster than MeTPeak.
Even it is slightly slower than MACS2 when intronic regions are
included, it is still faster than exomePeak and MeTPeak. TRES, to-
gether with an example dataset and example code, is available on
Github at https://github.com/ZhenxingGuo0015/TRES.

4 Discussion

RNA epigenetics, in particular m®A modification, is an emerging
field to study gene expression regulation mechanism. MeRIP-seq is a
recently developed sequencing method to provide transcriptome-
wide m®A profile. Compared to the well-established study of DNA
methylation where a number of data analysis tools have been devel-
oped, method to analyze MeRIP-seq data is still lacking. In this art-
icle, we develop a novel statistical model to detect transcriptome-
wide m°A regions. It conducts peak calling in two steps. First, it
scans the transcriptome to loosely identify candidate regions using
an ad hoc procedure. Second, it detects and then ranks peaks
through rigorous statistical modeling and inference. In particular, a
Bayesian hierarchical negative binomial model is developed to
model read counts of candidate regions, which accounts for all sour-
ces of variations and alleviates the problem caused by small sample
size.

Extensive simulation and real data analyses demonstrate that
TRES is more accurate, robust and efficient than existing peak call-
ing methods such as MeTPeak, exomePeak and MACS2. In simula-
tion, TRES provides more precise or less biased dispersion estimate
than naive moment estimate evaluated by normalized MSE. Our
shrinkage estimation procedure for dispersion of methylation level
stabilizes the biological variance estimates in small-sample problem,
and the proper modeling of dispersion makes it better take advan-
tage of large sample size. In real data analyses, peaks called by
TRES consistently have the best motif content compared to
MeTPeak, exomePeak and MACS2 in all three datasets, which
means peaks called by TRES are more likely to be true m°®A regions.
In addition, TRES is more robust to small number of replicates, and
lower sequencing depth. Lastly, the consistency between transcrip-
tome-wide distribution of peaks called by TRES and the distribution
of m°A reported by previous studies further demonstrate the accur-
acy of TRES in m®A peak calling.

Given the precise locations of m®A modified regions under each
condition, our future work will focus on developing methods to
compare m®A methylation levels for samples under different bio-
logical and clinical conditions. The dynamics of m®A can shed light
on gene regulation mechanisms in response to different conditions
and potentially serve as biomarkers for diseases. In addition, since
the sample profiles from the MeRIP-seq experiments are often mix-
tures of different cell types (e.g. brains or blood), it is desirable to
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identify cell type specific methylation and differential methylation.
Similar works have been proposed for DNA methylation and gene
expression data (Li et al., 2019; Li and Wu, 2019). To develop
method for cell type specific m®A analysis is our research interest in
the near future.
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