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Purpose: To substantially shorten the acquisition time required for quantitative three-

dimensional (3D) chemical exchange saturation transfer (CEST) and semisolid magnetization 

transfer (MT) imaging and allow for rapid chemical exchange parameter map reconstruction.

Methods: Three-dimensional CEST and MT magnetic resonance fingerprinting (MRF) datasets 

of L-arginine phantoms, whole-brains, and calf muscles from healthy volunteers, cancer patients, 

and cardiac patients were acquired using 3T clinical scanners at three different sites, using 

three different scanner models and coils. A saturation transfer-oriented generative adversarial 

network (GAN-ST) supervised framework was then designed and trained to learn the mapping 

from a reduced input data space to the quantitative exchange parameter space, while preserving 

perceptual and quantitative content.

Results: The GAN-ST 3D acquisition time was 42–52 s, 70% shorter than CEST-MRF. The 

quantitative reconstruction of the entire brain took 0.8 s. An excellent agreement was observed 

between the ground truth and GAN-based L-arginine concentration and pH values (Pearson’s r 
> 0.95, ICC > 0.88, NRMSE < 3%). GAN-ST images from a brain-tumor subject yielded a semi-

solid volume fraction and exchange rate NRMSE of 3.8 ± 1.3% and 4.6 ± 1.3%, respectively, and 

SSIM of 96.3 ± 1.6% and 95.0 ± 2.4%, respectively. The mapping of the calf-muscle exchange 

parameters in a cardiac patient, yielded NRMSE < 7% and SSIM > 94% for the semi-solid 

exchange parameters. In regions with large susceptibility artifacts, GAN-ST has demonstrated 

improved performance and reduced noise compared to MRF.

Conclusion: GAN-ST can substantially reduce the acquisition time for quantitative semi-solid 

MT/CEST mapping, while retaining performance even when facing pathologies and scanner 

models that were not available during training.
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1 | INTRODUCTION

Semi-solid MT and chemical exchange saturation transfer (CEST) are MRI techniques that 

provide unique contrast, based on saturation transfer (ST). While semi-solid MT provides 

a means for studying macromolecules, lipids, and myelin,1 CEST enables the detection of 

millimolar concentrations of mobile proteins, peptides, and metabolites.2 However, most 

CEST imaging protocols provide a semi-quantitative contrast by way of the magnetization 

transfer ratio asymmetry (MTRasym) analysis. While this metric has shown clear value in a 

variety of clinical studies,3–5 it is dependent on numerous factors such as chemical exchange 

rate, volume fraction of the exchangeable solute protons, water longitudinal relaxation rate, 

radiofrequency (RF) saturation time, radiofrequency saturation power, and water transverse 

relaxation rate, all of which must be modeled across a variety of exchangeable proton 

pools.4,6 Additionally, while clinical amide proton transfer weighted CEST protocols can 

now be acquired in just a few minutes,7 the full Z-spectrum acquisition required for the 

analysis of multiple exchangeable proton pools (e.g., via Lorentzian model fitting) requires 

significantly longer acquisition times.8 In addition, for quantification of the exchange 
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parameters, the acquisition of multiple Z-spectra with different saturation powers is typically 

needed,9 resulting in even longer acquisition times.

A variety of methods were previously developed for accelerating ST-weighted MRI.10 

Prominent examples include parallel imaging and transmission,11 compressed sensing12 

ultrafast Z-spectroscopy,13 and pulsed steady-state CEST sequences.14 Recently, rapid 

developments in deep learning have been harnessed for semisolid MT/CEST imaging. 

Fully connected neural networks have been used to rapidly extract Lorentzian fitted 

parameters15 and apparent exchange dependent-relaxation parameters from Z-spectra16 and 

to predict 9.4T CEST contrast from 3T data.17 Convolutional neural networks have been 

used for B0 correction,18 SNR enhancement,19 tumor classification,20 assessment of tumor 

progression,21 and eightfold acceleration of CEST-weighted image acquisition.22

Magnetic resonance fingerprinting (MRF)23 is a rapid and quantitative imaging paradigm 

that uses pseudo-random acquisition schedules to acquire unique signal trajectories, which 

are then matched to an existing database or “dictionary” of Bloch-equation-based simulated 

signals, providing a de facto pixelwise estimation of the underlying magnetic properties. 

Although initially developed for quantification of water T1 and T2 relaxation times, MRF 

has recently been modified and expanded for the quantification of semi-solid MT and CEST 

exchange parameters,6,24,25 in an attempt to ameliorate the above-mentioned challenges of 

conventional ST-weighted imaging methods.

In many pathologies, the chemical exchange parameters of multiple proton pools (e.g. MT 

and amide) vary simultaneously and must be included in any MRF simulated dictionary. 

This leads to an exponential growth in dictionary size and hence very long dictionary 

generation and parameter matching times. The application of deep learning for accelerating 

water pool T1 and T2 MRF is an increasingly investigated field, where various approaches 

demonstrated a marked potential.26–31 However, due to the larger number of tissue 

parameters that must be matched for CEST/MT fingerprinting, the implementation of 

neural networks for exchange parameter map reconstruction is more complicated than that 

employed for “conventional” T1/T2 MRF, and require a separate optimization and research 

endeavor.32,33

Accordingly, several deep-learning-based approaches have been developed specifically for 

shortening the reconstruction part of the semisolid MT/CEST MRF imaging pipeline.34,35 

While these strategies have demonstrated promising results, the acquisition time is still long 

and requires the acquisition of T1, T2, and B0 maps, constituting an obstacle for routine 

clinical adoption.32 Moreover, applying CEST-MRF for multislice imaging would further 

increase the scan time.

Recently, a unique machine learning approach has demonstrated the ability to learn the 

hidden and complicated relations (manifold) between two paired image categories36 and 

generate an approximation of the appropriate image-pair for a given input. This approach, 

termed conditional generative adversarial network (GAN),37 is built on two competing 

neural networks, a generator and a discriminator, which are trained simultaneously. The 

generator aims to synthesize convincingly realistic samples while the discriminator estimates 
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the probability that a sample comes from the training data category.38 During training, the 

generator gradually learns to create more convincing models based on the discriminator’s 

feedback. The GAN framework is highly modular, and adversarial models have been shown 

to be effective for a variety of applications. In particular, the conditional GAN “pix2pix” 

architecture was developed for image-to-image translation problems.37 Conditional GANs 

have shown great performance in translational tasks involving natural images, such as 

the synthesis of night views from pictures taken at daytime, generation of full object 

photos from edges, and maps from aerial photographs. The promise of conditional GANs 

has recently been translated and expanded into medical imaging, where this strategy was 

employed for cross modality synthesis (e.g., MRI to CT) and transformation between T1 and 

T2-weighted MRI maps.39

Here, we hypothesized, that a modified conditional GAN framework could be designed 

and trained to learn the manifold that links between raw semisolid MT/CEST-MRF 

encoded images and their quantitative exchange parameter image counterparts. Moreover, 

we assumed that an efficient quantification could still be obtained as the number of 

raw MRF encoded images is reduced, thereby allowing a substantial shortening of the 

acquisition time. Finally, to transform the developed approach into a clinically attractive and 

practical protocol, we have combined the MRF acquisition block with a three-dimensional 

(3D) Snapshot CEST readout module,40 allowing rapid whole-brain (or any other organ) 

multi-slice imaging.

2 | METHODS

2.1 | ST-oriented GAN (GAN-ST) architecture

A supervised learning framework (Figure 1) was designed based on the conditional GAN 

architecture.37 The generator was a U-Net convolutional network aiming to synthesize 

two proton exchange parameter maps (volume fraction and exchange rate), for either the 

semisolid MT or the CEST compound exchangeable protons. The discriminator aimed to 

predict whether the images are the “real’ corresponding quantitative images, or a “fake” 

(generator synthesized maps). The ground truth was obtained by a dictionary-trained fully 

connected semisolid MT/CEST-MRF neural-network (Figure 1B) that received the full MRF 

acquisition schedule as input (M = 30 raw images). GAN-ST was trained to yield the 

same quantitative maps by receiving only a partial subset of N = 9 raw MRF encoding 

images as input. For the human brain imaging scenario, the water T1, T2, and B0 may vary 

significantly in the WM/GM/tumor tissues. Thus, to improve the reliability and accuracy of 

the ground-truth for this case, the T1, T2, and B0 maps were acquired separately, quantified, 

and given as an additional direct input to the reference ground truth MT/CEST-MRF 

network, as performed and described by Perlman et al.34 Notably, these three maps were 

not given to GAN-ST. To preserve the perceptual and quantitative content of the original 

quantitative images while retaining spatial continuity and smoothness in the GAN-ST 

output, the following total loss (Ltotal) function was used:

Ltotal = λ1L1 + λ2Ladv + λ3Ltv + λ4Lp (1)
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Where L1 is the pixelwise l1 content loss, Ladv is the adversarial loss determined by the 

discriminator, Ltv is the total variation loss, and Lp is the perceptual loss.41 The latter was 

defined as the l2 loss between the feature maps obtained from activating a pretrained deep 

convolutional network architecture (VGG1942) on the ground truth and on the GAN-ST 

approximated quantitative maps. λ1,2,3,4 are the loss weights, determined using a separate 

validation image set (Table 1). The training was performed for 400 epochs with a batch 

size of 4. The learning rates of the generator and discriminator were 0.0001 and 0.0005, 

respectively. The method was realized in Keras43 and implemented on a desktop computer 

equipped with a single Nvidia GeForce RTX 3080 GPU.

2.2 | CEST phantoms

A set of L-arginine (L-arg, chemical shift = 3 ppm) phantoms was prepared by dissolving 

L-arg (Sigma-Aldrich) in a pH 4 Buffer, at a concentration of 25, 50, or 100 mM. The 

phantoms were titrated to different pH levels between 4.0–6.0, and placed in a dedicated 

holder, inside a container filled with saline/PBS. The phantoms were 3D scanned twenty 

times at two different imaging sites (Tubingen and Boston) using two scanner models 

(Prisma and Skyra, Siemens Healthineers, respectively). At each scan, a different subset of 

6–7 vials was used from the general range of 4–6 pH with an L-arg concentration of 25, 50, 

or 100 mM. The imaging was repeated after physically and randomly rotating/moving the 

phantom. The phantoms were independently prepared at each site.

2.3 | Human imaging subjects

All in vivo measurements were performed under approval by the local ethics/IRB 

committee. Each subject gave written, informed consent before the study. A total of 17 

subjects were imaged and allocated into the training, validation, or test set, as described in 

Table 1. The subjects were scanned at three imaging sites (Tubingen, Boston, and Erlangen) 

and were either healthy volunteers, glioblastoma (GBM) patients, or cardiac patients. The 

separate validation set was used for setting the hyperparameters (e.g., the number of epochs, 

as determined by early stopping), and the same determined training parameters were used 

for all imaging scenarios (phantom, brain, and leg). The test set was designed to impose a 

challenging evaluation environment, aiming to explore the GAN-ST robustness and ability 

to extrapolate beyond the environment of the training samples. In particular, while all 

training subjects were healthy volunteers, the test set included a GBM patient, a cardiac 

patient, and a healthy volunteer imaged at a different site and scanner model, which were not 

used in the training set.

2.4 | MRI acquisition

The MRI experiments were conducted at three imaging sites using four 3T clinical 

scanners consisting of three different models (2×Prisma, Trio, and Skyra scanners, Siemens 

Healthineers) and three coil types (64-channel head coil, 32 channel head coil, and a 

single-element leg coil). All acquisition schedules were implemented using the Pulseq 

prototyping framework44 and the open-source Pulseq-CEST sequence standard.45 The MRF 

protocol generated M = 30 raw, molecular information encoding images, using a spin lock 

saturation train (13 × 100 ms, 50% duty-cycle), which varied the saturation pulse power 

between 0 and 4 μT (average pulse amplitude, the complete and exact saturation pulse 
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train parameters are provided in the data availability statement).34 The saturation pulse 

frequency offset was fixed at 3 ppm for L-arginine phantom imaging6,33 or varied between 

6 and 14 ppm for semisolid MT brain/leg imaging.34 The saturation block was fused with 

the 3D centric reordered EPI readout module described by Mueler et al.40 and Akbey et 

al.46 providing a 1.8/1.8/2.5 mm isotropic resolution for phantom/whole-brain/calf-muscle 

imaging, respectively. The field of view was set to 256 × 224 × 156 mm3, echo time = 11ms, 

flip angle = 15◦. The full 3D MRF acquisition (M = 30) took between 2:21 to 2:53 (min:s), 

depending on the scanner and coil configuration. For brain imaging, the same rapid readout 

module and hybrid pulseq-CEST framework were used for acquiring additional B0, T1 

and T2 maps, via WASABI,47 saturation recovery, and multi-echo sequences, respectively, 

resulting in a total scan time of 8.5 min.

2.5 | Data analysis

2.5.1 | Phantom data preprocessing—In vitro images with no L-arginine vials, 

partial vials, or severe image artifacts were removed. The 239 remaining images were 

split into groups of 222 training images, from 20 phantom scans, and 17 test images from 

a different phantom. Canny edge detection and circle Hough Transforms were used for 

background masking and vial segmentation, respectively, implemented in Python. Sevenfold 

data augmentation was performed using translations and horizontal/vertical image flips.

2.5.2 | In vivo preprocessing—All images were motion-corrected and registered 

using elastix.48 Gray-matter and white-matter segmentation was performed using statistical 

parameter mapping (SPM)49 from a T1 map. Quantitative reference CEST-MRF maps were 

obtained using a fully connected neural network trained on simulated dictionaries, where all 

M = 30 raw input measurements were taken as input. For brain imaging, pixelwise T1, T2, 

and B0 values were also incorporated as direct inputs to the NN. For a detailed description 

of the CEST-MRF reconstruction and quantification procedure see the recent publication by 

Perlman et al.34

2.5.3 | Statistical analysis—Pearson’s correlation coefficients were calculated using 

the open-source SciPy scientific computing library for Python.50 Intraclass Correlation 

Coefficients (ICC) were calculated using the open-source Pingouin statistical package for 

Python.51 The structural similarity index (SSIM)52 was computed using the SSIM-python 

imaging library (PIL). In all box plots, the central horizontal lines represent median values, 

box limits represent upper (third) and lower (first) quartiles, whiskers represent 1.5 × the 

interquartile range above and below the upper and lower quartiles, and circles represent 

outliers. Statistics in the text are presented as mean ± SD. Differences were considered 

significant at p < 0.05.

3 | RESULTS

3.1 | Phantom study - exchange parameter quantification performance

Representative GAN-ST generated exchange parameter maps are shown in Figure 2A,B. 

An excellent agreement between the GAN-ST generated and CEST-MRF-based L-arg 

concentration maps was observed, with an average normalized root mean-squared error 
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(NRMSE) of 1.8 ± 0.1%, a SSIM of 0.975 ± 0.005 (Figure 3C,D), and a significant 

correlation across all slices (Pearson’s r = 0.967, ICC = 0.844, p < 0.0001) (Figure 3A). 

GAN-ST generated, and CEST-MRF proton exchange rate maps were similarly correlated 

(Pearson’s r = 0.961, ICC = 0.778 p < 0.0001, Figure 3B), with a NMRSE of 1.9 ± 0.1% and 

SSIM of 0.973 ± 0.005 (Figure 3C,D).

3.2 | Phantom study: direct estimation of concentration and pH

To explore the GAN-ST ability for direct estimation of the pH and compound concentration, 

we created another set of ground-truth reference images, where all pixels in each segmented 

vial were replaced by the pH-meter measured pH, and the analytic-scale determined L-arg 

concentration. GAN-ST was retrained while employing these images as the target, followed 

by an estimation of the pH and L-arg concentration in a different phantom test set (Figure 

2E–H). GAN-ST generated concentration maps were in good agreement with measured 

values, yielding an NRMSE of 2.7 ± 0.4% and SSIM of 0.889±0.045 (Figure 3G,H) and 

a significant correlation across all slices (Pearson’s r = 0.950, ICC = 0.883, p < 0.0001, 

Figure 3E). Similarly, GAN-ST generated pH maps were in good agreement with measured 

values, yielding an NRMSE of 0.6 ± 0.3% and SSIM of 0.993 ± 0.006 (Figure 3G,H) and 

a significant correlation across all slices (Pearson’s r = 0.998, ICC = 0.860, p < 0.0001) 

(Figure 3F).

3.3 | In vivo study—brain parameter quantification

A comparison between the GAN-ST results with the number of raw molecular encoding 

images set to N = 9 and the full-length MRF-based reference (M = 30) for four 

representative slices is shown in Figure 4 (healthy volunteer scanned at a site and scanner 

model that were not available in the training cohort) and Figure 5 (tumor patient). The 

accelerated GAN-ST output was visually very similar to the CEST-MRF reference (average 

SSIM > 0.925, average NRMSE < 5.2%, Figure 6C,D,G,H). Moreover, in regions with large 

susceptibility artifacts, GAN-ST demonstrated improved performance and reduced noise 

compared to MRF (red arrows in Figures 4 and 5). Although the training cohort included 

only healthy volunteers, GAN-ST was able to output CEST-MRF comparable parameter 

maps, even in complex tumor and edema containing image slices (Figure 5). The resulting 

WM/GM fss estimated by the GAN-ST approach for all nontumor-containing slices was 18.7 

± 2.1/13.2 ± 2.5%, compared to 18.7 ± 2.0 / 12.4 ± 2.7% using the full-length MRF. The 

WM/GM kssw estimated by the GAN-ST approach was 36.2 ± 6.1/51.6 ± 8.5 Hz, compared 

to 33.9 ± 5.2/49.1 ± 8.5 Hz, by the full-length MRF reference, with significant correlation 

between individual pixel values obtained by both methods (Pearson’s r = 0.90 and 0.75, ICC 

= 0.88 and 0.72, for fss and kssw, respectively, p < 0.001, Figure 6A,B).

3.4 | In vivo study—calf-muscle parameter quantification

The GAN-ST-based in vivo calf exchange parameter quantification (Figure 7) was 

characterized by an SSIM > 0.94 and an average NRMSE < 7% (Figure 8). A significant 

correlation was observed between the GAN-predicted and reference CEST-MRF-based 

parameters, although the semi-solid volume fraction proton quantification was in better 

agreement with CEST-MRF than the exchange rate (r = 0.73, ICC = 0.71, p < 0.001, and r = 

0.51, ICC = 0.45, p < 0.001, respectively).
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3.5 | Acquisition, training, and inference times

GAN-ST was able to accelerate the scan time by 70% as it required the acquisition of 

only N = 9 raw molecular information encoding images instead of M = 30. This translated 

into a CEST/MT protocol acquisition time of only 42–52 s, depending on the scanner 

model hardware and the number of coil channels. Moreover, for the brain imaging scenario, 

GAN-ST circumvented the need to acquire separate T1, T2, and B0 maps, providing a 

total acceleration of about 91% (44 s instead of 8.5 min). The total training time was 

4.66/8.71/12.81 h, and the 3D inference time was 0.29/0.54/0.80 s, for the phantom, in vivo 

calf muscle, and in vivo brain, respectively.

4 | DISCUSSION

In recent years, the CEST contrast mechanism has been increasingly studied for a variety 

of medical applications.5 The molecular information provided by CEST, most commonly 

by the amide proton transfer (APT) effect, has provided added clinical value compared 

to traditional T1/T2-weighted imaging. For example, endogenous CEST signals have been 

correlated with tumor lesion enhancement following Gadolinium injection.4,53 Furthermore, 

CEST-weighted images were able to better discriminate treatment related changes from 

tumor progression.54 MT signals stemming from semi-solid macromolecules have also been 

shown to be beneficial for cancer characterization and monitoring, either as a standalone 

method55 or in combination with CEST.56 In addition, MT has demonstrated potential as a 

biomarker for pathological skeletal muscle57 and has long been known for its importance for 

multiple sclerosis imaging.58 However, both CEST and semi-solid MT imaging are highly 

sensitive to the acquisition parameters used, as well as to changes in water pool relaxation. 

Moreover, these methods are prone to bias stemming from the analysis metric used and 

are subjected to contaminations from the signals originating from other tissue metabolites 

and compounds.59 All the aforementioned challenges have motivated the development of 

quantitative approaches for semi-solid MT/CEST imaging.60,61 In the context of clinical 

imaging, it is clearly important to also strive for short acquisition times. Semisolid MT/

CEST MRF has recently been suggested as a rapid and quantitative molecular imaging 

pipeline.32 However, as the multiprotocol conventional clinical routine is already lengthy 

(e.g., 30–40 min for each GBM patient monitoring session), it is essential to further 

accelerate semi-solid MT/CEST MRF, rendering it a cost-effective addition to clinical 

imaging protocols. The methodology proposed in this paper has made several contributions 

toward that cause. (1) The CEST-MRF saturation block was fused with a highly efficient 

and rapid snap-shot read-out, allowing 3D semi-solid-MT or CEST-MRF acquisition in 

about 3 min, or 8.5 min (when B0, T1, and T2 maps are also acquired based on the same 

3D readout). (2) It employed GANs to further accelerate the 3D molecular scan time by 

reducing the required number of signal trajectory acquisitions by 70%, requiring acquisition 

times of less than 1 min. (3) The GAN-ST images have demonstrated the ability to mitigate 

the noise arising from field inhomogeneity and susceptibility artifacts (e.g., near the sinuses 

and the eyes, Figures 4 and 5). (4) The GAN-ST was able to extrapolate beyond the training 

data properties, as demonstrated using a subject scanned at a site and scanner model that 

were not used for training (Figures 4 and 6E–H).

Weigand-Whittier et al. Page 8

Magn Reson Med. Author manuscript; available in PMC 2024 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In terms of the reconstruction (or parameter quantification from raw MRF images), one of 

the main limitations of “classical fingerprinting,” is the lengthy dictionary matching times, 

where millions of simulated signals need to be compared to the experimental images (e.g., 

by means of a pixelwise dot-product matching). The framework presented here allows the 

reconstruction of quantitative proton volume fraction and exchange rate maps of the entire 

3D volume acquired, in less than a second. Pixelwise matching using fully connected neural 

networks has previously been used for rapid semisolid MT/CEST MRF reconstruction.34 

However, the use of the GAN architecture, with its inherent spatial dependencies and U-Net 

structure, has also provided the ability to mitigate susceptibility artifacts (Figures 4 and 5).

The semi-solid proton exchange rate was generally slower in the GAN-ST-based images, 

compared to CEST-MRF, in the tumor regions (Figure 5I–P), as well as in some anatomical 

parts of the calf (Figure 7I–K). This is in line with previous quantification attempts that 

faced similar challenges and reduced accuracy with the semisolid MT exchange rate.35,62 

These reports have attributed the poor discrimination ability for this property to the 

relatively small signal fluctuations that were observed as the exchange rate was varied. 

In this work, the reduced accuracy can also be explained by the intentionally challenging 

datasets design, where tumor data were not provided during the training. This assumption 

is supported by the increased correlation observed between the CEST-MRF and GAN-ST 

exchange rates for a healthy volunteer that was evaluated (Figure 4, and Figure 6F compared 

to Figure 6B). The phantom data quantitative exchange parameter maps obtained using 

GAN-ST with 70% acceleration were in excellent agreement with the CEST-MRF-based 

reference (Figures 2 and 3). Moreover, the same GAN architecture has allowed the direct 

estimation of the pH and compound concentration, measured using gold-standard non-MRI 

measures (pH-meter and analytical scale). The worst performance was obtained for the vial 

containing pH = 4 (Figure 3E,F). This is not surprising, given the base-catalyzed exchange 

rate of L-arginine, which results in small CEST signal amplitudes at low pH due to the slow 

exchange rate. While direct mapping from raw CEST data to pH is very attractive, future 

work should explore methods for obtaining in vivo ground-truth reference pH data.

There is a trade-off between the level of acceleration (manifested by the number of raw 

MRF images acquired, N) and the parameter quantification performance. For example, 

increasing N from 9 to 20, improves the GAN-ST visual similarity between the tumor semi-

solid MT proton exchange rate, and those obtained by CEST-MRF (Figure S1). Similarly, 

the kssw NRMSE decreased from 0.052 ± 0.014 using nine input images to 0.045±0.013, 

using 20 input images. In addition, the correlation between the non-tumor tissue exchange 

parameters for GAN-ST compared to CEST-MRF is improved from r = 0.90, ICC = 0.88 (p 
< 0.001) and r = 0.75, ICC=0.72 (p < 0.001) for nine input images, to r = 0.92, ICC=0.90 

(p < 0.001) and r = 0.77, ICC = 0.74 (p < 0.001) using 20 input images. While the 

quantitative maps obtained with a drastic acceleration of 70% are deemed both visually 

and quantitatively satisfactory, future expanded clinical evaluations could determine more 

accurately the degree of acceleration level sufficient for retaining a correct diagnosis.

This work demonstrates the feasibility of using a GAN-based framework to accelerate ST 

MRF. Notably, while the in vivo human studies were focused on semi-solid MT imaging, 

only in vitro experiments were conducted for CEST. The main reason is that a recent work 
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has shown that accurate in vivo CEST-MRF requires a more complicated imaging strategy, 

which involves a serial acquisition of T1, T2, B0, MT, and CEST data, and their integration 

in a sequential reconstruction pipeline.34 In particular the CEST reconstruction pipeline 

receives the MT reconstructed parameter maps as input. While the current study serves as 

the first demonstration that GAN-based architectures can be used to accelerate CEST-MRF, 

future work should be performed to validate its application in-vivo, which will require 

integrating the GAN architecture in a more complicated reconstruction pipeline.

Several additional steps could improve the GAN-ST performance. First, the training set 

used here was intentionally composed of healthy volunteers only, aimed to examine the 

extrapolation ability of the method. In addition, although 3D acquisitions create a large 

number of images, the number of training subjects scanned was relatively small (Table 1). 

Significantly increasing the training cohort, and training on a variety of pathological cases, 

are expected to boost the accuracy of the method. Second, the performance of the proposed 

method is dependent on the original discrimination ability of the M-length acquisition 

schedule, as only images from the end of the acquisition schedule can be removed, and not 

the beginning, due to the acquired spin history induced by earlier acquisitions. Therefore, the 

parameter discrimination ability could be further improved, while benefiting from the spatial 

denoising and extrapolation capabilities demonstrated here, by combining the proposed 

GAN approach with an optimized acquisition schedule, which could be discovered using 

recently developed deep-learning-based sequence optimization approaches.63,64

5 | CONCLUSION

The GAN-ST framework has demonstrated the ability to accelerate 3D acquisitions of 

semisolid MT and CEST mapping by 70% while maintaining excellent agreement with 

full-length CEST-MRF-based reference maps and retaining performance across unseen 

pathologies and scanner models. Furthermore, GAN-ST has shown improvements over 

CEST-MRF in regions with large susceptibility artifacts. GAN-ST has exhibited promising 

initial results in direct estimation of compound concentration and pH from MRF encoded 

images.
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DATA AVAILABILITY STATEMENT

The MRI acquisition schedule presaturation blocks used in this paper are available in the 

Pulseq-CEST open-source format45 at https://github.com/kherz/pulseq-cest-library, under 

the folders MRF CEST Larginine 3T 002 13SL DC50 2500ms and MRF CEST MT 3T 

003 13SL DC50 2500ms. All fully trained networks required to reproduce the GAN-based 

CEST/MT reconstruction presented in this work are available at https://doi.org/10.6084/

m9.figshare.20346369, as well as a sample phantom dataset. The python code for creating 

and training GAN-ST is available at: https://github.com/jweigandwhittier/GAN-ST. The full 

3D human data used in this work are not publicly available due to participant/patient privacy.
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FIGURE 1. 
Generative adversarial network (GAN)-saturation transfer (ST) architecture. (A) A 

conditional GAN framework, receives N raw, molecular information encoding semi-solid 

magnetization transfer/chemical exchange saturation transfer images, and is trained to 

simultaneously output the quantitative proton volume fraction and the exchange rate maps. 

(B) A fully connected neural network, receiving the full-length raw magnetic resonance 

fingerprinting image series (M > N) pixelwise, as well as T1, T2, and B0 maps, and yielding 

the reference proton volume fraction and exchange rate maps.34 The output of this network 

was used for training GAN-ST.
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FIGURE 2. 
Generative adversarial network (GAN)-saturation transfer (ST) in vitro image results. 

(A,B) L-arginine concentration (A) and exchange rate (B) maps from GAN-ST-based 

reconstruction, obtained with N = 9. Vials are numbered 1–6. (C,D) Full-length 

chemical exchange saturation transfer-magnetic resonance fingerprinting-based L-arginine 

concentration (C) and exchange rate (D) maps, obtained with M = 30. (E,F) GAN-ST-based 

(N = 9) concentration (E) and pH (F) maps. (G,H) Concentration (G) and pH (H) maps 

obtained using gold-standard non-MRI measures.

Weigand-Whittier et al. Page 16

Magn Reson Med. Author manuscript; available in PMC 2024 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 3. 
Statistical analysis and quantitative assessment of Generative adversarial network (GAN)-

saturation transfer (ST) performance in vitro. (A,B) Correlation between GAN-ST 

based and chemical exchange saturation transfer-magnetic resonance fingerprinting-based 

concentration (A) and exchange rate (B) maps across the entire three-dimensional volume of 

an L-arginine phantom. (E,F) Box plots showing the distribution of per-vial GAN-ST-based 

L-arg concentration (E) and pH (F) maps with measured values indicated. Vial numbers 

are based on Figure 2A. (C,D,G,H) Structural similarity index and normalized root mean 

squared error for concentration/exchange rate (C,D) and concentration/pH (G,H) maps.
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FIGURE 4. 
Quantitative semisolid magnetization transfer (MT) parameter maps from a healthy 

volunteer, scanned at a site and scanner model that were not used during training. (A–D) 

Generative adversarial network (GAN)-saturation transfer (ST)-based semi-solid MT proton 

volume fraction maps, obtained with N = 9. (E-H) chemical exchange saturation transfer 

(CEST)-magnetic resonance fingerprinting (MRF)-based semisolid MT proton volume 

fraction maps, obtained with M = 30. (I-L) GAN-ST-based semi-solid MT proton exchange 

rate maps, obtained with N = 9. (M-P) CEST-MRF-based semi-solid MT proton exchange 

rate maps, obtained with M = 30. The red arrows indicate regions with susceptibility 

artifacts.
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FIGURE 5. 
Quantitative semisolid magnetization transfer (MT) parameter maps from a glioblastoma 

patient. (A–D) Generative adversarial network (GAN)-saturation transfer (ST)-based semi-

solid MT proton volume fraction maps, obtained with N = 9. (E–H) chemical exchange 

saturation transfer (CEST)-magnetic resonance fingerprinting (MRF)-based semisolid MT 

proton volume fraction maps, obtained with M = 30. (I-L) GAN-ST-based semi-solid MT 

proton exchange rate maps, obtained with N = 9. (M-P) CEST-MRF-based semi-solid MT 

proton exchange rate maps, obtained with M = 30. The red arrows indicate regions with 

susceptibility artifacts.
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FIGURE 6. 
Statistical analysis and quantitative assessment of the generative adversarial network 

(GAN)-saturation transfer (ST) performance in the in vivo brains of a tumor patient (A–

D) and a healthy volunteer (E–H). (A,B) Correlation between all GAN-ST-based proton 

semi-solid magnetization transfer (MT) proton volume fractions (A) and exchange rates 

(B) for the entire brain in the WM/GM, and the corresponding pixel values obtained using 

chemical exchange saturation transfer (CEST)-magnetic resonance fingerprinting (MRF). 

Notably, the GAN-based fss values in the WM are in better agreement with MRF refernce 

than the GM (Pearson’s r = 90 compared to 0.74, respectively, p < 0.001), due to the 

myelin-rich content of the WM. (E,F) A similar analysis for the healthy human volunteer 

scanned at a site and scanner that were not available during training. (C,D,G,H) Structural 

similarity index metric and normalized root mean squared error for the tumor patient (C,D) 

and healthy volunteer (G,H).
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FIGURE 7. 
Quantitative semi-solid magnetization transfer (MT) parameter maps from the calf muscle 

of a cardiac patient. (A–D) Generative adversarial network (GAN)-saturation transfer 

(ST)-based semi-solid MT proton volume fraction maps, obtained with N = 9. (E–H) 

chemical exchange saturation transfer (CEST)-magnetic resonance fingerprinting (MRF)-

based semisolid MT proton volume fraction maps, obtained with M = 30. (I–L) GAN-ST-

based semi-solid MT proton exchange rate maps, obtained with N = 9. (M–P) CEST-MRF-

based semi-solid MT proton exchange rate maps, obtained with M = 30.
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FIGURE 8. 
Statistical analysis and quantitative assessment of the generative adversarial network 

(GAN)-saturation transfer (ST) performance in the calf-muscle of a cardiac patient. (A) 

Structural similarity index metric. (B) Normalized root mean squared error
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