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Abstract
Objectives  Diffusion-weighted MRI can assist preoperative planning by reconstructing the trajectory of eloquent fiber 
pathways, such as the corticospinal tract (CST). However, accurate reconstruction of the full extent of the CST remains chal-
lenging with existing tractography methods. We suggest a novel tractography algorithm exploiting unused fiber orientations 
to produce more complete and reliable results.
Methods  Our novel approach, referred to as multi-level fiber tractography (MLFT), reconstructs fiber pathways by progres-
sively considering previously unused fiber orientations at multiple levels of tract propagation. Anatomical priors are used 
to minimize the number of false-positive pathways. The MLFT method was evaluated on synthetic data and in vivo data by 
reconstructing the CST while compared to conventional tractography approaches.
Results  The radial extent of MLFT reconstructions is comparable to that of probabilistic reconstruction: p = 0.21 for the left 
and p = 0.53 for the right hemisphere according to Wilcoxon test, while achieving significantly higher topography preserva-
tion compared to probabilistic tractography: p < 0.01.
Discussion  MLFT provides a novel way to reconstruct fiber pathways by adding the capability of including branching path-
ways in fiber tractography. Thanks to its robustness, feasible reconstruction extent and topography preservation, our approach 
may assist in clinical practice as well as in virtual dissection studies.

Keywords  Diffusion MRI · Corticospinal tract · White matter

Introduction

Diffusion MRI fiber tractography provides an opportunity to 
estimate fiber orientations through the Brownian motion of 
water molecules. This imaging technique allows for explor-
ing brain connectivity in vivo and non-invasively [1, 2] as 
well as performing virtual dissection [3–6], aiding pre-sur-
gical planning [7] and serving as a reference during surgery 
[8]. In case of neurosurgery planning, the extent of resected 
tissue may need to be limited in order to limit function 

deficit, despite maximal tumor resection being one of the 
key factors for prolonged survival [9, 10]. Consequently, 
fiber bundle reconstructions need to have adequate extent to 
enable clinicians to estimate a safe resection margin. Despite 
its promising results, fiber tractography remains challeng-
ing, as the results of existing methods have been shown to 
perform satisfactory on either sensitivity or specificity, but 
not both [11–13].

For the purposes of surgery planning and virtual dissec-
tion, the sensitivity of tractography plays a key role, as the 
correct prediction of the extent of resection is essential to 
avoid functional impairment. The corticospinal tract (CST) 
is one of the bundles which neurosurgeons and neuroradi-
ologists focus on during surgery planning to prevent motor 
function degradation [14]. However, the reconstruction of 
the corticospinal tracts and other pathways are often limited 
by intrinsic flaws of existing tractography algorithms, which 
by design makes it challenging to reconstruct branching con-
figurations, leading to an increased false-negative rate [15].
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Multiple approaches have been proposed to reconstruct 
the organization of fiber pathways from the diffusion signal, 
with the most common being the estimation of the fiber ori-
entation distribution (FOD) with spherical deconvolution 
techniques [16–18]. Based on the way tractography meth-
ods use the information provided by the FOD, they can be 
categorized as either deterministic or probabilistic. Deter-
ministic approaches follow either the dominant diffusion (or 
fiber) direction [19] or one of the main directions that is the 
least deviating from the orientation of a previous step [16, 
20]. On the other hand, probabilistic approaches typically 
sample and propagate orientations based on the FOD in the 
voxel [21]. Probabilistic methods can potentially reconstruct 
branching-like configurations and have been shown able to 
reconstruct more true-positive pathways than deterministic 
methods, but also tend to have a higher false-positive rate 
[11] that complicates their application in pre-surgical set-
tings. For instance, given that directions are sampled from 
orientation distribution, each step introduces a bias in rela-
tion to the peaks of the distribution. Consequently, during 
propagation, the bias may be accumulated to the extent that 
the reconstructed bundle does not follow known internal 
topographic organization [22–26] or accumulates the vol-
ume of plausibly looking pathways that will influence the 
safety margin estimation during tumor resection. In contrast, 
deterministic methods cannot reconstruct branching configu-
rations and are prone to generating false-negative results, but 
their results are reproducible by definition and straightfor-
ward to interpret. Another approach that has the potential of 
resolving the tractography issues related to bundle extent is 
global tractography (GT). GT reconstructs all white-mat-
ter fiber bundles at once by optimizing an energy function 
based on the diffusion data. This group of approaches aims 
at resolving local fiber orientations by modeling pathways as 
a chain of connected segments and maintaining or changing 
the connectivity of the segments based on the underlying 
data. Despite the issue of being computationally expensive 
and suffering from fiber pathways that sometimes do not 
reach the cortex, GT can show improved performance in 
some cases [27].

As it was already briefly mentioned, certain fiber bun-
dles, such as the optic radiation bundle and the CST, appear 
to have specific topographic organization [22–26] which 
assigns function duties to parts of these bundles. Maintain-
ing such internal organization appears to be a challenge for 
probabilistic tractography unless it is specifically taken into 
account [22]. This creates potential issues in cases when 
functional data is used for the placement of either a seed 
region or simply a region of interest, for instance, when 
direct electric or transcranial magnetic stimulation is per-
formed, further complicating the interpretation of the trac-
tography results. In such cases streamline representation 
becomes more important given an additional constraint 

on sub-bundles visiting finer white-matter and cortical 
landmarks.

Incorporating anatomical prior knowledge in the tractog-
raphy might offer a viable solution to improve the quality of 
the CST fiber tractography, given that anatomical landmarks 
are well defined for this tract [6, 28, 29]. For instance, the 
bundle-specific approach MAGNET [30] has been previ-
ously shown to enhance the reconstruction of the optical 
pathways by enforcing a specific direction for tract propaga-
tion using user-defined regions of interest (ROI). A similar 
guidance of the fiber tracking can be achieved also using 
transcranial magnetic stimulation to find the brain regions 
responsible for specific functionality for the purpose of fil-
tering fiber bundles related to those regions [31].

Most anatomy-aware approaches attempt, thus, to either 
improve the streamline propagation or to enhance the FOD 
estimation. However, the aforementioned methods do not 
exploit all information available in the FOD. For one, the 
possibility of incorporating branching configurations with 
high angular deviations along fiber trajectories is not taken 
into account by most existing approaches. This problem has 
been first investigated by introducing the concept of pathway 
splitting [32], but the proposed framework may suffer from 
a high false-positive rate due to complications of the split-
ting procedure.

In this work, we propose a novel approach to fiber trac-
tography that adds branches to fiber pathways in a hierarchi-
cal multi-level approach (Fig. 1). By defining target and seed 
regions based on anatomical priors, the algorithm imposes 
additional constraints on the reconstructed streamlines, 
limiting the number of false-positive reconstructions that 
might be introduced either by the algorithm or via branch-
ing. Additionally, to differentiate crossing and branching 
configurations, only if a pathway does not reach the target, 
the peaks of the corresponding FODs may be considered as 
branches. This concept can be integrated into a wide range 
of tractography algorithms, e.g., any algorithm based on 
an FOD both probabilistic and deterministic. In this work, 
we focus on the proposed multi-level strategy in combina-
tion with deterministic constrained spherical deconvolution 
(CSD)-based tractography [20].

Methods

Multi‑level fiber tractography

The core of our algorithm is a multi-level fiber tractog-
raphy (MLFT) strategy that is compatible with a wide 
range of fiber tractography methods to take potential 
branching configurations into account. It is an iterative 
procedure that is capable of generating multiple spuri-
ous pathways and, consequently, requires user-defined 
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starting and target regions as well as stopping criteria to 
control false-positive rate. MLFT can be combined with 
both deterministic and probabilistic methods. In name of 
clarity, in this first work, we choose to focus on combin-
ing our tractography strategy with deterministic CSD-
based streamline tracking [20].

Our algorithm iteratively expands the reconstruction 
by branching from the pathways not reaching the target 
region. The set of streamlines visiting target region and 
added at one iteration can be considered one level of the 
overall bundle reconstruction. At each iteration, conven-
tional deterministic CSD-based tractography is performed 
while storing information on which peaks were chosen for 
propagation at each point. If a reconstructed streamline 
does not enter the user-defined target region, its points 
that correspond to FODs with unused peaks are used as 
seeds for a new tractography level. Initial directions are 
defined as the FOD peaks that were not used during the 
reconstruction of the previous levels. The algorithm runs 
for a pre-defined number of levels or until a pre-defined 
convergence criterion is met. Finally, tracts that do not 
enter the target region at any of the considered levels 
are discarded (Fig. 1), which is a critical step to prevent 
the generation of aberrant branches. Co-existence of fiber 
crossings and fiber branching is facilitated by treating 
FOD peaks as crossings during propagation and only 
considering them as potential branches at the following 
iteration if a corresponding pathway does not reach a tar-
get region.

Data

We performed experiments on both simulated and 
acquired diffusion weighted images. A numeric phantom 
was generated using ExploreDTI [34] (v4.8.6; PROVIDI 
Lab, Utrecht, the Netherlands; http://​www.​explo​redti.​
com/) with 6 volumes at b = 0 s∕mm2 and 60 volumes 
at b = 1200 s∕mm2 with a resolution of 1 mm isotropic 
(Fig. S1 in Online Resource). The phantom represented 
three fiber bundles with two branching spots, conceptu-
ally mimicking fiber configurations as those that can be 
observed in the CST. The experiments with this phantom 
were performed without noise and for two signal-to-noise 
ratio (SNR) levels: 25 and 15.

To analyze the performance of our method on in vivo 
brain images, the MASSIVE [35] dataset was used. 
The data consisted of 430 volumes at b = 0 s∕mm2 , 
250 volumes at b = 500 s∕mm2 ,  500 volumes at 
b = 1000 s∕mm2, 2000 s∕mm2 and 3000 s∕mm2 each, 600 
volumes at b = 4000 s∕mm2 . The data were acquired with a 
resolution of 2.5 mm isotropic. The MASSIVE dataset was 
corrected for signal drift [36], subject head motion, eddy 
current and echo-planar imaging distortions [37].

Additionally, we applied our method to the preproc-
essed data of ten subjects from the Human Connectome 
Project (HCP). The data had a resolution of 1.25 mm iso-
tropic and contained 18 volumes at b = 0 s∕mm2 and 90 
volumes at b = 1000 s∕mm2 , 2000 s∕mm2 and 3000 s∕mm2 
each.

Fig. 1   (Left) Current fiber tractography methods such as determinis-
tic FOD-based tractography reconstruct only a subset of the pathways 
(blue). However, by propagating along the FOD orientations that 
were not used by a conventional tractography algorithm, the recon-
struction can be iteratively extended by adding new sets of branches 
per iteration (red and green) leading to a final tractography result 
consisting of multiple levels. (Right) The pipeline of the algorithm. 
a The tract produced by the deterministic CSD-based tractography 

includes points with multiple FOD peaks, some of which are ignored. 
b Using these points as seeds with the unused peaks as initial loca-
tions, another iteration of CSD-based tracking is performed to obtain 
a new level of the result. c In the last stage only the tracts that enter 
the pre-defined target region are retained. The background picture on 
the left of the whole-brain fiber tractography result is taken from [33] 
with permission

http://www.exploredti.com/
http://www.exploredti.com/
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Multi-shell CSD [38] was used for the FOD estimation. 
The motor cortex was segmented as a combination of the 
left and right precentral and paracentral gyri (Fig. S2 in 
Online Resource) with FreeSurfer [39–41] (v6.0.0, Labora-
tory for Computational Neuroimaging, Charlestown, MA, 
USA; http://​surfer.​nmr.​mgh.​harva​rd.​edu) and was used as 
a target region.

Experiments

Experiment 1: Tractography in silico

We evaluated MLFT as well as iFOD2 [42], as it is a popu-
lar choice of probabilistic tractography algorithm, using a 
noiseless phantom. In all the experiments the implementa-
tion of iFOD2 from the MRtrix package [43] was used and 
all the options were set to default except for providing the 
seeding region. The same seed point was used for tracking 
in both cases.

The endpoint regions were placed at the separate ends of 
each sub-bundle (Fig. S1 in Online Resource) that served 
as target regions of interest for MLFT. They were also used 
to select the target fibers from the results of iFOD2, which 
was run with default parameters. The parameter setup for 
MLFT was as follows: angle threshold = 45°, maximum 
order of spherical harmonics Lmax = 8 , FOD peak value 
threshold = 0.1, the default value in ExploreDTI. The step 
size was set to half the voxel size and the number of itera-
tions was set to two.

Experiment 2: Robustness to noise

The sensitivity of the MLFT to noise was tested. Fiber track-
ing was performed for the phantoms at varying SNR levels 
with the same settings as in Experiment 1. The target fibers 
were then compared across SNR levels.

Experiment 3: Tractography in vivo

The MLFT approach was used to delineate the CST with the 
MASSIVE and HCP brain data described above. The motor 
cortex area of both hemispheres was used as a target region. 
The added value of our multi-level strategy was investigated 
more closely on the fanning projection of the left CST.

To evaluate whether MLFT reconstructs parts of the path-
ways belonging to the corpus callosum (CC), the bundle was 
delineated with both deterministic CSD-based whole-brain 
tractography and MLFT. The overlap of the CST and the CC 
generated by MLFT and CSD-based whole-brain tractogra-
phy, respectively, was visually evaluated. The results of our 
algorithm were evaluated along with the results produced by 
the conventional deterministic CSD-based tractography from 
ExploreDTI as well as iFOD2 and GT [44] implemented in 

MRtrix. The CSD-based tractography, MLFT and iFOD2 
used the same seed regions. The streamlines reconstructed 
by iFOD2 were further selected to include only the tracts 
that visit the target cortical area. In the case of GT, the 
masks of the seed and target regions were used to delineate 
the CST from the whole-brain tractography. To improve the 
visual interpretation of the results, implausible streamlines 
were removed using identical exclusion regions for all meth-
ods in case of the MASSIVE dataset.

Radial extents of the reconstructed bundles were calcu-
lated. To do that, the area covered by bundles’ endpoints 
in the cortex was calculated given that coronal projection 
of the motor cortex defines a 90º segment. Obtained radial 
extents were compared per hemisphere using paired Wil-
coxon signed-rank test with significance level � = 0.05 . 
Additionally, density distributions of the endpoints in the 
motor cortex were evaluated per subject for each algorithm.

The tractography parameters were set as in Experiment 
1. Reconstructions with two iterations (for both MASSIVE 
and HCP) and three iterations (only for MASSIVE) were 
performed with MLFT. To obtain the whole-brain recon-
struction with GT, the number of iterations was set to 109, 
segment length = 1.5 mm, maximum spherical harmonics 
order Lmax = 8 . The default values were used for the remain-
ing settings.

To reconstruct the CST with the MASSIVE dataset, the 
seed regions were placed close to the internal capsule. In 
case of HCP subjects an axial cross section of the brain stem 
was used. For seeding 100 points per voxel were evenly dis-
tributed at a single slice level. The number of seed points 
per voxel was selected empirically.

To run iFOD2, the FODs that were used for MLFT and 
CSD-based reconstructions were converted to MRtrix format 
using MRIToolKit (Image Sciences Institute, UMC Utrecht, 
the Netherlands; https://​github.​com/​deluc​aal/​MRITo​olKit). 
iFOD2 was provided with a mask of the seed region used 
for MLFT, seed_image option was used. When performing 
iFOD2 on the HCP data, the number of selected pathways 
was empirically set to 10,000. In addition, the target regions 
were provided using include option, while the same function 
was used for filtering as in MLFT in case of the MASSIVE 
dataset. During the analysis of the HCP data, a NOT gate 
was used to remove inter-hemispheric connections, due to 
the use of the common seed region in the brain stem for both 
of the CST branches.

Experiment 4: Topographic organization

Previous research has established that both the motor cortex 
and the internal capsule can be divided into regions corre-
sponding to specific motor functions, and that such organi-
zation is preserved within the CST [25, 45]. The topogra-
phy preservation index (TPI) [46] was calculated, which 

http://surfer.nmr.mgh.harvard.edu
https://github.com/delucaal/MRIToolKit
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highlights whether pathways that pass in close proximity 
to each other through the internal capsule also have closely 
located endpoints in the motor area. This index reflects how 
well the internal organization is preserved in the bundle 
reconstruction. The lower the TPI score the more topo-
graphic organization is preserved in the reconstruction.

To calculate TPI scores, rectangular ROIs were defined 
around the left and right internal capsules, then the longest 
axis of the ROI was used to map all the tract points crossing 
the ROI onto [0; 1] segment. Consequently, each pathway is 
assigned a value vi ∈ [0;1] , where i is an index of a pathway. 
Afterwards, a triangulation is built using the endpoints in 
the motor area and each edge connecting two endpoints of 
pathways j and k is assigned a weight equal to the distance 
of the projections in the ROI: w =

|
|
|
vj − vk

|
|
|
 . Finally, the TPI 

score is an average of the weights. The edge in the calculated 
triangulation signals close proximity of the endpoints in the 
motor area, while the weight serves as a penalty if the cor-
responding pathways' locations in the internal capsule are 
distant.

The TPI was computed for the left and right CST branches 
reconstructed by each of the algorithms. To visually appre-
ciate such organization, the CST streamlines were colored 
according to the part of the area of the motor cortex they 
reach. This allows to visually check whether the pathways 
reconstructed by MLFT and iFOD2 on the MASSIVE data 
corresponded to the anatomical position of the same associ-
ated function in the internal capsule. Additionally, statisti-
cal testing was performed to compare obtained TPI scores 
using paired sign-rank Wilcoxon test with significance level 
� = 0.05.

Experiment 5: Anatomical plausibility

As the previous experiment evaluates topography preser-
vation capability of the algorithms by comparing relative 
placement of the endpoints, the coherence of the pathways 
was evaluated in order to observe whether the geometric 
similarity between pathways closely located to each other 
along their length is associated with the calculated TPI 
scores. We hypothesize that a fiber reconstruction with a 
lower intrinsic geometric similarity corresponds to a 
higher TPI, highlighting the effect of the bias on fiber 
pathway propagation. To this end, the minimum average 
direct-flip (MADF) distance was employed, which previ-
ously has been used in bundle clustering applications [47, 
48]. This metric represents the average point-to-point dis-
tance between two pathways and is invariant to the order-
ing of the points in each pathway (e.g., to which endpoint 
is considered the start/end). It is defined in the following 
way: DAB = min

�
1

N

∑N

i=1
����ai − bi

����,
1

N

∑N

i=1
����ai − bN−i+1

����

�
 , 

where ai and bi are the points of the pathways A and B of 
length N  , respectively. The metric requires the compared 
tracts to contain an equal number of points, which is why 
all the pathways were uniformly resampled to N = 200 
points. Evaluations were performed on the left and right 
CST bundles of the MASSIVE and HCP data obtained by 
the tested methods without filtering gates. For each set of 
the reconstructed pathways of a given subject, an all-to-all 
distance matrix was calculated. Then, for each pathway, 
the minimum distance was calculated based on that matrix.

Fig. 2   Performance of the 
considered methods in phan-
toms (FA map). The top row 
shows the results of MLFT and 
the bottom row those of the 
iFOD2 algorithm. The middle 
row illustrates the target fibers 
per column (orientation-based 
colored FA map). The same sin-
gle seed point (yellow sphere) 
was used for both algorithms. 
The results of iFOD2 were 
subsampled for easier visual 
assessment. Streamlines' colors 
are based on orientation color-
coding
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Results

Experiment 1: Tractography in silico

Both MLFT and iFOD2 reconstructed all the phantom 
branches of the noiseless DWI phantom, as shown in Fig. 2. 
It can be observed that the results of MLFT follow the 
underlying simulated directions, whereas iFOD2 produces 
trajectories oscillating around the ground truth.

Experiment 2: Robustness to noise

The results of MLFT obtained for three different SNRs are 
presented in Fig. 3. A slight misalignment lower than 10° 
can be observed at the branching point at SNR = 25, which 
becomes more evident at SNR = 15 with values up to 30°. 
The case with the lowest SNR is also characterized by an 
increased pathway number of branching configurations at 
the points where original bundles diverge, as can be seen in 
the top row in Fig. 3.

Experiment 3: Tractography in vivo

The multi-level structure of the reconstructed left CST bun-
dle can be seen in Fig. 4, which clearly shows the benefit 
of the proposed algorithm over conventional deterministic 
CSD-based tractography with the improved extent of the 
bundle fanning. The addition of an extra layer increases the 
number of streamlines reaching the motor cortex but does 

not bring further improvement to the coverage of the motor 
cortex: the radial extent with 3 levels amounts to 75.66º, 
while 2-level reconstruction has an extent of 71.48º. Con-
sequently, in all of the in vivo experiments, the number of 
levels was set to two.

The full reconstructions of the CST segmented by MLFT, 
iFOD2, GT and deterministic CSD-based tractography in the 
MASSIVE data are shown in Fig. 5. It can be observed that 
the pathways obtained with MLFT densely cover most of the 
motor cortex unlike the results of deterministic CSD-based 
tractography. At the same time, both MLFT and iFOD2 
cover most of the motor area (Fig. 5). For the iFOD2 recon-
struction, the pathways traversing into contralateral hemi-
sphere are present due to them bending after visiting the 
target region, returning into the white matter and propagat-
ing through the CC.

Regarding the reconstruction achieved by GT using the 
MASSIVE dataset, although the CST fanning is quite sparse, 
it reaches most parts of the motor cortex (Fig. 5). The spar-
sity allows for a closer comparison of the multi-level and 
global tractography results which can be seen in Fig. S3. 
Unlike in the case of GT, the CST reconstructed by MLFT 
does not reach the approximate leg-related motor area. In 
the face area, the pathways generated by GT are aligned to 
those generated by MLFT, although they do not show any 
branching, but rather a smooth curving trajectory.

The CST bundles that were reconstructed for the 
HCP subjects by the proposed approach, iFOD2, GT 
and deterministic CSD-based tractography are shown 
in Fig. 6. Overview of the radial extents achieved by all 

Fig. 3   Tracts reconstructed by 
MLFT on the phantom data (FA 
map) at multiple SNR levels. 
Considerable angular errors 
are only observed at SNR = 15: 
increased number of branching 
configurations and direction 
perturbations up to 30º (red 
arrows). At SNR = 25, there is a 
minor angular deviation below 
10º (red arrow). Streamlines are 
colored using standard orienta-
tion color-coding
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the employed algorithms can be seen in Fig. 7. Regard-
ing iFOD2, the results have the same characteristics as 
the results obtained using the MASSIVE data described 
above. Generally, both MLFT and iFOD2 reconstructions 
are represented by the bundles with a plausible fanning 
extent. GT seems to show lower radial extent compared to 
its result using the MASSIVE data.

Despite iFOD2 and MLFT both showing high radial 
extent, in case of iFOD2 the temporo-lateral part of the 
motor cortex is covered more sparsely than its superior 
part (Fig. 8), At the same time, MLFT provides more uni-
form coverage of the motor cortex, although the superior 
motor cortex coverage is still relatively denser. Given the 
sparse reconstruction achieved by GT, its density distribu-
tion also appears quite uneven as can be seen in Fig. 8.

Performing statistical testing to compare the radial 
extents of the algorithms has shown no statistically sig-
nificant difference between MLFT and iFOD2: p = 0.21 
for the left and p = 0.53 for the right hemisphere. Also, no 
significant difference is observed between GT and CSD-
based tractography: p = 1 for the left and p = 0.06 for the 
right hemisphere. All the other comparison combinations 
when performing Wilcoxon test resulted in p values lower 
than the significance level.

The CST and CC bundles reconstructed using a subject 
from HCP data are depicted in Fig. S4 for comparison. In 
the axial view, it is well visible that part of the CST fan-
ning does not overlap with the CC pathways, as the CC is 
not covering lateral part of the motor cortex.

Fig. 4   Fiber pathways reconstructed by the deterministic CSD-based 
approach (left) and MLFT with two (middle) and three (right) levels 
from the same seed region (green) with the same target region (yel-
low, the motor cortex) using MASSIVE dataset. Adding the second-

level branches (red) to the pathways obtained at the first level (blue) 
improves the extent of the reconstructed bundle. Using three-level 
reconstruction from the same seed region does not show coverage 
improvements over the two-level reconstruction

Fig. 5   Corticospinal pathways reconstructed by the conventional 
deterministic CSD-based tractography, MLFT, iFOD2 and global 
tractography using the MASSIVE data. The motor cortex is shown 

in yellow. Some of the pathways reconstructed by iFOD2 enter the 
motor cortex and diverge into the CC propagating into the contralat-
eral hemisphere
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Experiment 4: Topographic organization

The TPI scores are reported in Table 1. The determin-
istic CSD-based tractography seems to outperform other 
algorithms showing lower values of the TPI metric, and 
thus higher coherence, for every subject. Both MLFT and 
CSD-based tractography achieved TPI scores that are sig-
nificantly different from the scores of both iFOD2 and GT 
with p < 0.001 . Despite rather close mean scores (0.03 and 
0.06 for the left and 0.03 and 0.05 for the right CSD-based 
and MLFT reconstructions, respectively) MLFT and CSD-
based reconstructions were shown to achieve significantly 
different TPI scores ( p < 0.001 ). MLFT is shown to have 
seemingly comparable TPI scores to the CSD-based trac-
tography, while they are still consistently lower than the 
scores of iFOD2 and GT reconstructions. In this regard, 
iFOD2 and GT show generally comparable performance 
to each other without statistically significant difference: 
p = 0.17 for the left and p = 0.21 for the right hemisphere.

Figure 9 shows the pathways color-coded according to 
their final locations in the motor cortex. The visualization 
demonstrates that MLFT maintains the anatomical configu-
ration of the pathways, according to which the organiza-
tion of tracts connecting specific sub-domains of the motor 
cortex is maintained throughout the bundle. In contrast, the 
bundle produced by iFOD2 seems to be less organized.

Experiment 5: Anatomical plausibility

The normalized histograms of the MADF distance are 
shown in Fig. 10. The distributions are similar across sub-
jects per tractography approach and show that the distance 
between the closest pathways obtained by MLFT is generally 
smaller than that of iFOD2. The results of GT showed the 
highest distance, which is attributed to the sparsity of the 
bundles. The CSD-based reconstructions also appear to be 
very similar geometrically according to the MADF distance 
with the peak of the distribution being very close to zero for 
most of the subjects.

Fig. 6   The CST reconstructions obtained by MLFT, iFOD2, GT and 
CSD-based tractography using the HCP data. The reconstructions by 
MLFT bundles are in line with the observations in Fig. 5 and consist-

ent with each other. iFOD2 also achieves high motor cortex coverage. 
The extents of the GT-reconstructed bundles are comparable to the 
ones obtained by MLFT, but with less satisfactorily spatial coverage
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Discussion and conclusion

In this study, we presented MLFT, a novel strategy to 
enhance fiber tractography by reconstructing branching con-
figurations. The strategy we propose achieves anatomically 
plausible reconstructions of the CST bundles, is robust and 
reproducible, and maintains topographic organization. Each 
iteration of the proposed tractography algorithm attempts to 
branch existing streamlines towards the target region, which 
may open up new avenues for investigating more complex 
pathway configurations in the brain [49]. Given that image 
resolution is usually not sufficient to distinguish branching 
points, some of the FOD peaks might not only be an indica-
tion of crossing fibers, but also of branching ones.

Given the improved extent of the bundles and anatomi-
cally imposed control over false positives, our approach is 
attractive for a number of applications. It can be used to 
support pre-surgical planning, as it reveals more extensive 

coverage of the motor cortex than the conventional deter-
ministic CSD-based tractography [50, 51], while maintain-
ing clear structure of the reconstructed bundles.

MLFT features

With simulations, we have shown that MLFT can reliably 
reconstruct branching fiber configurations that are less tortu-
ous as compared to a probabilistic algorithm (Fig. 2). Addi-
tionally, the results of MLFT are reproducible. Although 
higher tortuosity of the probabilistic tractography recon-
struction is an expected behavior, overcrowded recon-
struction makes it a bit more challenging to spot spurious 
pathways. This also can be connected to the ability of the 
tractography algorithms to maintain topographic organiza-
tion, which is relevant in applications involving brain stimu-
lation methods, such as transcranial magnetic stimulation or 
direct electric stimulation.

Fig. 7   Radial extents of the reconstructed CST bundles for both left 
and right hemispheres. MLFT (blue) is shown to improve the radial 
extent compared to the conventional deterministic CSD-based trac-

tography (green). iFOD2 (orange) and MLFT (blue) appear to have 
comparable radial extents. GT (red) achieves high radial extent on the 
MASSIVE dataset, while on HCP data the extent is primarily low
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Fig. 8   Density of the motor cortex coverage by the reconstructed 
CST bundles considering with angular coordinate starting at tempo-
lateral point of coronal projection of the motor cortex and increasing 
towards superior motor cortex separately for each hemisphere. All the 
algorithms appear to densely cover superior part of the motor cor-
tex. However, MLFT (blue) consistently covers most lateral part of 

the motor cortex with its density more evenly distributed compared 
to iFOD2 (orange). GT (red) also occasionally covers temporo-lateral 
motor cortex, although the coverage is very sparse. CSD-based trac-
tography (green) primarily covers superior motor cortex part in all the 
subjects

Table 1   TPI scores of the left 
and right CST reconstructions 
by MLFT, iFOD2 and GT and 
also the TPI score of the first 
level of MLFT only, which is 
reconstructed by deterministic 
CSD-based tractography (the 
lowest score is indicated in 
bold)

According to the TPI values, the CSD-based reconstruction of both CST branches has best-preserved 
topography. The scores of MLFT and CSD are comparable and consistently low in contrast to iFOD2 and 
GT
TPI topography preservation index, CST corticospinal tract, MLFT multi-level fiber tractography, GT 
global tractography, CSD constrained spherical deconvolution

Subject Left Right

CSD MLFT iFOD2 Global CSD MLFT iFOD2 Global

MASSIVE 0.08 0.08 0.15 0.18 0.08 0.08 0.21 0.17
133,019 0.03 0.06 0.13 0.36 0.02 0.05 0.1 0.21
133,625 0.03 0.05 0.36 0.11 0.03 0.05 0.1 0.08
138,231 0.02 0.06 0.36 0.2 0.02 0.04 0.09 0.25
138,534 0.03 0.05 0.3 0.1 0.03 0.05 0.16 0.23
139,233 0.02 0.07 0.43 0.12 0.03 0.07 0.15 0.1
140,117 0.02 0.05 0.11 0.13 0.02 0.04 0.1 0.11
140,420 0.04 0.07 0.15 0.14 0.03 0.06 0.1 0.15
141,422 0.03 0.06 0.46 0.09 0.02 0.04 0.09 0.26
141,826 0.02 0.05 0.18 0.12 0.02 0.05 0.09 0.1
143,325 0.02 0.04 0.08 0.13 0.02 0.04 0.1 0.09
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Robustness to noise is another important aspect to con-
sider. In order to analyze the sensitivity to noise of our algo-
rithm, the same phantom bundles were simulated with three 
different SNR levels. The effect of SNR on the reconstructed 
pathways became clearly visible only at the lowest SNR 
level (SNR = 15), as reflected by an increased number of 

branching configurations and occasional perturbations after 
branching (Fig. 3).

When using the concept of branching for in vivo brain 
tractography, a well-delineated fanning was observed close 
to the motor cortex (Fig. 4). Although, MLFT and iFOD2 
achieved comparable reconstructions (Fig. 7) of the CST 

Fig. 9   Coronal and sagittal views of the left CST reconstructed by 
MLFT and iFOD2 using the MASSIVE data. The fiber pathways 
are colored according to the locations of their endpoints in the motor 

cortex. The pathways reconstructed by MLFT are shown to have a 
clearer topographic organization

Fig. 10   Normalized distributions of the distances from each pathway to the nearest neighbor based on the MADF distance for all the processed 
subjects. The distributions of the distances appear to be similar across subjects



90	 Magnetic Resonance Materials in Physics, Biology and Medicine (2023) 36:79–93

1 3

fanning without statistically significant difference, iFOD2 
reconstruction contains multiple spurious tracts (Figs. 5, 6). 
Apart from that, MLFT reconstructions show more uniform 
coverage of the lateral part of the motor cortex, while iFOD2 
appears to provide much denser coverage of the superior 
motor cortex while sparsely lateral part (Fig. 8).

Most of the fanning consists of second-level branches, 
which might often look as if they diverge into another bun-
dle at the branching points making a sharp turn. However, 
high angular deviations have been observed by Van Wedeen 
et al. [52]. Similarly, Mortazavi, et al. [15] also observed 
axon T-branching as well as sharp turns at sub-millimeter 
scale performing tract tracing experiments in the area under 
the motor cortex. Both of those papers present results based 
on the analysis of the macaque brain, but the statements 
are likely also valid for the human brain, which is report-
edly congruent to the structure of the macaque brain [15], 
although it is difficult to provide estimates on the distribu-
tion of this type of branching in the human CST dissections. 
Additionally, certain cases can be considered a branching 
from a modeling point of view given the resolution. For 
instance, in case of the CST the fibers originating in the 
cortex descend into the trunk of the bundle. At this point, 
they pass through a "bottleneck" (at sulcus circularis insulae) 
and merge together [53]. As was presented in [54], up to 7 
bundles appear to co-exist in a single voxel in the mentioned 
area, which would also suggest that some of the peaks may 
indicate a splitting of a bundle or an overlap of two bundles. 
Additionally, the angle between the CST trunk and the fan-
ning close to the “bottleneck” area appears to be around 90° 
(Fig. 5 in [53]), which is usually absent due to the angular 
deviation threshold as propagation is incapable of making 
sharp turns. For this reason, probabilistic approaches strug-
gle with reconstructing the inferior lateral part of the CST 
without smoothing the angle between the trunk and the fan-
ning of the CST (Fig. 8). However, setting a threshold as 
high as nearly 90° for probabilistic tractography would over-
flow the result with false positives by allowing sampling not 
only around the FOD extremums.

The validity of the MLFT reconstructions can also be 
evaluated with Fig. S4. It is known that part of the CC 
originates from the motor cortex [29, 55] Thus, a success-
ful reconstruction of the motor part of the CC remains 
prone to ambiguity as the CST pathways are present in that 
area as well. Similarity of the shapes of the MLFT-recon-
structed bundles to those presented by Wasserthal et al. 
[56] provides additional confidence in plausibility of the 
results obtained by MLFT. Additionally, the comparison 
to the results of GT (Fig. S3) has shown that this alterna-
tive approach reconstructs similar pathways, although with 
certain smoothing of the high angular bifurcations that are 
observed in MLFT results. In general, the resemblance 
between the second level of the CST and the CC bundle 

can be explained by the co-alignment of the pathways of 
different bundles near the motor region reported by W. 
Krieg for the macaque brain and for the human brain [57]. 
This does not necessarily demonstrate that these similar 
pathways are true positive but serves as a reference which 
shows stable delineation of certain structures across vari-
ous algorithms.

Specific topographic organization is a characteristic of a 
number of brain fiber bundles [23]. Somatotopic organiza-
tion of the CST [24, 45] is one of the established examples 
of known internal bundle organization. Similarly to [22], 
we have evaluated the ability of the algorithms to main-
tain topographic organization using TPI score. According 
to the observed results, MLFT can preserve topographic 
organization of the fiber bundles as can be seen in Fig. 9. 
This is also reflected by the TPI scores (Table 1) across all 
the subjects analyzed in this study. The fact that topogra-
phy preservation of MLFT is hampered compared to the 
deterministic CSD-based tractography might be a con-
sequence of either obvious false-positive streamlines or 
precision mistakes, as in some cases first-level pathways 
terminate close to the target region and then branch at 
acute angles to reach it, and thus change the expected point 
location. By following the FOD peaks, we propagate the 
streamlines along the most reliable fiber orientation and, 
consequently, we are less affected by the noise. This leads 
to a more stable pathway propagation and, consequently, 
to a more anatomically reliable organization of the bundle. 
This is also supported by the presented higher values of 
pathway coherence of CSD-based tractography and MLFT 
compared to iFOD2 and GT (Fig. 10).

Limitations

Some degree of uncertainty propagates in the results 
from the CSD procedure, as the response function is not 
voxel-wise perfect and FOD peaks have limited angular 
resolution. This limitation is, however, inherent to most 
tractography algorithms. Further, branching along a path-
way might generate false-positive reconstructions. In our 
current implementation, correctly chosen anatomical pri-
ors are key to control the rate of false-positive pathways.

As revealed by the experiments with the phantom 
(Fig. 2), deterministic reconstruction from a single point 
may generate a whole dense branch, leading to an unre-
alistic density distribution. This is a result of the current 
implementation choice, of not imposing an upper limit to 
the number of times a streamline is allowed to branch. We 
believe that this aspect could be potentially improved in 
future work, for example, with a microstructure-informed 
extension of our framework.
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Methodological considerations

Given the results of the three-level reconstruction (Fig. 4), 
it seems increasing the number of reconstructed levels 
requires an increasingly accurate delineation of the target 
region. While error propagation across multiple levels may 
lead to spurious results, at the same time, the definition of 
the seed region seems to play a key role in the robustness 
of the reconstruction. In both HCP and MASSIVE datasets, 
the seed regions were placed based on specific landmarks 
(brain stem and internal capsule). Incomplete segmentation 
of those regions would probably lead to reduced density of 
fiber pathways and, as a consequence, reduced quality of the 
reconstruction.

In this work, the analysis was fully focused on the appli-
cation of the CST bundle given the well-defined anatomical 
landmarks that can be associated with the target and seed 
regions. Consequently, spurious pathways are often easy 
to detect which may not be the case for other bundles. For 
instance, to test the generalizability of MLFT, a reconstruc-
tion of the cingulum was performed with the MASSIVE 
dataset (Fig. S6). Despite the reconstruction being visually 
similar to the reference bundle from the ISMRM 2015 chal-
lenge, certain pathways may as well be spurious. For that 
reason, the MLFT reconstruction should be treated as a guid-
ance, unless the target region is defined based on functional 
data. In any case, general prior knowledge of the anatomical 
configuration of the fiber bundle of interest is required to 
disambiguate interdigitating from branching pathways.

We would also like to stress that this approach in its cur-
rent form is only suitable for bundle-specific applications or 
other cases that aim to investigate connections between two 
specific regions. As a consequence, it cannot be combined 
with algorithms for whole-brain reconstructions at the cur-
rent moment.

Future work

Although in this work we integrated the MLFT framework 
with the deterministic tractography, it can also be imple-
mented for probabilistic tractography. In some probabil-
istic tractography methods such as iFOD2, for example, 
new directions are sampled at each propagation step from 
the fiber orientation distribution (concentrating around the 
peaks) only regarding peaks with an angular deviation lower 
than the pre-defined threshold (Fig. S5 in Online Resource). 
In this context, MLFT could be similarly applied to sample 
the propagation direction from the part of distribution out-
side the area conforming with the angular threshold when 
branching into the second level (Fig. S5 in Online Resource).

MLFT has shown promising results in healthy controls, 
but it remains unclear whether its performance will be main-
tained in presence of pathology especially with routinely 

acquired clinical data. Thus, evaluation of the algorithm in 
a clinical setting would also be beneficial.

It must be noted that in this work, we did not focus on 
devising an approach for estimating the required number of 
levels based on convergence criteria, which might be useful 
for clinical translation. For this study, those settings were 
identified empirically. Experiments were performed with up 
to 3 levels, however, there was not much change observed 
between results with 2 and 3 levels. One of the possible 
future directions of this work could be to introduce micro-
structural information in analogy to the dynamic seeding 
approach [58], which may allow for the automatic estima-
tion of the number of levels, and which could facilitate the 
identification of valid branches.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10334-​022-​01033-3.

Acknowledgements  Andrey Zhylka is supported by the European 
Union's Horizon 2020 research and innovation program [grant number 
765148]. We would like to thank Dogu Baran Aydogan, Szabolcs David 
and Samuel St-Jean for the fruitful discussions that helped shaping this 
manuscript. Data were provided [in part] by the Human Connectome 
Project, WU-Minn Consortium (Principal Investigators: David Van 
Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH 
Institutes and Centers that support the NIH Blueprint for Neuroscience 
Research; and by the McDonnell Center for Systems Neuroscience at 
Washington University.

Author contributions  AZ: study conception and design; analysis and 
interpretation of data; drafting of manuscript. AL: study conception 
and design; analysis and interpretation of data; critical revision. JPWP: 
analysis and interpretation of data; critical revision. ADL: study con-
ception and design; analysis and interpretation of data; drafting of 
manuscript, critical revision.

Funding  Andrey Zhylka is supported by the European Union's Horizon 
2020 research and innovation program [grant number 765148].

Declarations 

Conflict of interest  The authors do not have any conflicts of interest.

Ethical approval  The research did not involve any human participants 
or animals.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

https://doi.org/10.1007/s10334-022-01033-3
http://creativecommons.org/licenses/by/4.0/


92	 Magnetic Resonance Materials in Physics, Biology and Medicine (2023) 36:79–93

1 3

References

	 1.	 Fornito A, Zalesky A, Breakspear M (2013) Graph analysis of the 
human connectome: promise, progress, and pitfalls. Neuroimage 
80:426–444

	 2.	 Hagmann P, Kurant M, Gigandet X et al (2007) Mapping human 
whole-brain structural networks with diffusion MRI. PLoS ONE 
2:e597

	 3.	 Catani M, de Schotten MT (2008) A diffusion tensor imag-
ing tractography atlas for virtual in vivo dissections. Cortex 
44:1105–1132

	 4.	 Jacquesson T, Cotton F, Attye A et al (2018) Probabilistic tractog-
raphy to predict the position of cranial nerves displaced by skull 
base tumors: value for surgical strategy through a case series of 
62 patients. Neurosurgery 85:e125–e136

	 5.	 Panesar S, Abhinav K, Yeh F-C, Jacquesson T, Collins M, Fernan-
dez-Miranda J (2019) Tractography for surgical neuro-oncology 
planning: towards a gold standard. Neurotherapeutics 16:36–51

	 6.	 de Schotten MT, Ffytche DH et al (2011) Atlasing location, 
asymmetry and inter-subject variability of white matter tracts in 
the human brain with MR diffusion tractography. Neuroimage 
54:49–59

	 7.	 Clark CA, Byrnes T (2010) DTI and tractography in neurosurgical 
planning. In: Jones DK (ed) Diffusion MRI. Oxford University 
Press, New York, pp 588–607

	 8.	 Costabile JD, Alaswad E, D’Souza S, Thompson JA, Ormond 
DR (2019) Current applications of diffusion tensor imaging and 
tractography in intracranial tumor resection. Front Oncol 9:426

	 9.	 Molinaro AM, Hervey-Jumper S, Morshed RA, Young J, Han 
SJ, Chunduru P et al (2020) Association of maximal extent of 
resection of contrast-enhanced and non-contrast-enhanced tumor 
with survival within molecular subgroups of patients with newly 
diagnosed glioblastoma. JAMA Oncol 6(4):495–503

	10.	 Hervey-Jumper SL, Berger MS (2019) Evidence for improv-
ing outcome through extent of resection. Neurosurg Clin N Am 
30(1):85–93

	11.	 Maier-Hein KH, Neher P, Houde JC et al (2017) The challenge of 
mapping the human connectome based on diffusion tractography. 
Nat Commun 8:1349

	12.	 Schilling KG, Daducci A, Maier-Hein KH et al (2019) Challenges 
in diffusion MRI tractography lessons learned from international 
benchmark competitions. Magn Reson Imaging 57:194–209

	13.	 Sarwar T, Ramamohanarao K, Zalesky A (2019) Mapping con-
nectomes with diffusion MRI: deterministic or probabilistic trac-
tography? Magn Reson Med 81:1368–1384

	14.	 Weiss C, Tursunova I, Neuschmelting V et al (2015) Improved 
NTMS- and DTI-derived CST tractography through anatomical 
ROI seeding on anterior pontine level compared to internal cap-
sule. NeuroImage: Clin 7(424):437

	15.	 Mortazavi F, Oblak AL, Morrison WZ et al (2018) Geometric nav-
igation of axons in a cerebral pathway: comparing dMRI with tract 
tracing and immunohistochemistry. Cereb Cortex 28:1219–1232

	16.	 Tournier JD, Calamante F, Connelly A (2007) Robust determina-
tion of the fibre orientation distribution in diffusion MRI: non-
negativity constrained super-resolved spherical deconvolution. 
Neuroimage 35:1459–1472

	17.	 Guo F, Leemans A, Viergever MA, Dell’Acqua F, De Luca A 
(2020) Generalized Richardson-Lucy (GRL) for analyzing multi-
shell diffusion MRI data. Neuroimage 218:116948

	18.	 Dell’Acqua F, Rizzo G, Scifo P, Clarke RA, Scotti G, Fazio F 
(2007) A model-based deconvolution approach to solve fiber 
crossing in diffusion-weighted MR imaging. IEEE Trans Biomed 
Eng 54(3):462–472

	19.	 Mori S, Crain BJ, Chacko VP, Van Zijl PCM (1999) Three-dimen-
sional tracking of axonal projections in the brain by magnetic 
resonance imaging. Ann Neurol 45:265–269

	20.	 Jeurissen B, Leemans A, Jones DK, Tournier JD, Sijbers J (2011) 
Probabilistic fiber tracking using the residual bootstrap with con-
strained spherical deconvolution. Hum Brain Mapp 32:461–479

	21.	 Tournier JD, Calamante F, Connelly A (2012) MRtrix: diffusion 
tractography in crossing fiber regions. Int J Imaging Syst Technol 
22:53–66

	22.	 Aydogan DB, Shi Y (2018) Tracking and validation techniques for 
topographically organized tractography. Neuroimage 181:64–84

	23.	 Patel GH, Kaplan DM, Snyder LH (2014) Topographic organiza-
tion in the brain: searching for general principles. Trends Cogn 
Sci 18(7):351–363

	24.	 Ruben J, Schwiemann J, Deuchert M, Meyer R, Krause T, Curio 
G, Villringer K, Kurth R, Villringer A (2001) Somatotopic organi-
zation of human secondary somatosensory cortex. Cereb Cortex 
11(5):463–473

	25.	 Lee DH, Lee DW, Han BS (2016) Topographic organization of 
motor fiber tracts in the human brain: findings in multiple loca-
tions using magnetic resonance diffusion tensor tractography. Eur 
Radiol 26:1751–1759

	26.	 Arcaro MJ, Pinsk MA, Kastner S (2015) The anatomical and 
functional organization of the human visual pulvinar. J Neurosci 
35(27):9848–9871

	27.	 Fillard P, Descoteaux M, Goh A et al (2011) Quantitative evalu-
ation of 10 tractography algorithms on a realistic diffusion MR 
phantom. Neuroimage 56:220–234

	28.	 Han BS, Hong JH, Hong C, Yeo SS, Lee Dh, Cho HK, Jang SH 
(2010) Location of the corticospinal tract at the corona radiata in 
human brain. Brain Res 1326:75–80

	29.	 Wassermann D, Makris N, Rathi Y et al (2016) The white matter 
query language: a novel approach for describing human white 
matter anatomy. Brain Struct Funct 221:4705–4721

	30.	 Chamberland M, Scherrer B, Prabhu SP et al (2017) Active deline-
ation of Meyer’s loop using oriented priors through magnetic trac-
tography (MAGNET). Hum Brain Mapp 38:509–527

	31.	 Negwer C, Sollmann N, Ille S et al (2017) Language pathway 
tracking: comparing nTMS-based DTI fiber tracking with a cubic 
ROIs-based protocol. J Neurosurg 126:1006–1014

	32.	 Descoteaux M, Deriche R, Knoesche TR, Anwander A (2009) 
Deterministic and probabilistic tractography based on com-
plex fiber orientation distributions. IEEE Trans Med Imaging 
28:269–286

	33.	 Tournier JD, Mori S, Leemans A (2011) Diffusion tensor imaging 
and beyond. Magn Reson Med 65:1532–1556

	34.	 Leemans A, Jeurissen B, Sijbers J, Jones DK (2009) ExploreDTI: 
a graphical toolbox for processing, analyzing, and visualizing dif-
fusion MR data. In: Proceedings of the 18th International Society 
for Magnetic Resonance in Medicine, p 3537.

	35.	 Froeling M, Tax CMW, Vos SB, Luijten PR, Leemans A (2017) 
MASSIVE brain dataset: multiple acquisitions for standardization 
of structural imaging validation and evaluation. Magn Reson Med 
77:1797–1809

	36.	 Vos SB, Tax CMW, Luijten PR, Ourselin S, Leemans A, Froeling 
M (2017) The importance of correcting for signal drift in diffusion 
MRI. Magn Reson Med 77:285–299

	37.	 Leemans A, Jones DK (2009) The B-matrix must be rotated 
when correcting for subject motion in DTI data. Magn Reson 
Med 61:1336–1349

	38.	 Jeurissen B, Tournier JD, Dhollander T, Connelly A, Sijbers J 
(2014) Multi-tissue constrained spherical deconvolution for 
improved analysis of multi-shell diffusion MRI data. Neuroim-
age 103:411–426



93Magnetic Resonance Materials in Physics, Biology and Medicine (2023) 36:79–93	

1 3

	39.	 Desikan RS, Segonne F, Fischl B et al (2006) An automated labe-
ling system for subdividing the human cerebral cortex on MRI 
scans into gyral based regions of interest. Neuroimage 31:968–980

	40.	 Fischl B, van der Kouwe A, Destrieux C et al (2004) Automati-
cally parcellating the Human Cerebral Cortex. Cereb Cortex 
14:11–22

	41.	 Fischl B (2012) FreeSurfer. NeuroImage 62:774–781
	42.	 Tournier JD, Calamante F, Connelly A (2010) Improved probabil-

istic streamlines tractography by 2nd order integration over fiber 
orientation distributions. In: Proceedings of the 19th International 
Society for Magnetic Resonance in Medicine, p 1670

	43.	 Tournier JD, Smith R, Raffelt D et al (2019) MRtrix3: a fast, flex-
ible and open software framework for medical image processing 
and visualisation. Neuroimage 202:116137

	44.	 Christiaens D, Reisert M, Dhollander T, Sunaert S, Suetens P, 
Maes F (2015) Global tractography of multi-shell diffusion-
weighted imaging data using a multi-tissue model. Neuroimage 
123:89–101

	45.	 Patestas MA, Gartner LP (2006) A Textbook of Neuroanatomy. 
Blackwell Publishing Ltd

	46.	 Aydogan DB, Shi Y (2017) Topography preserving tractography 
for mapping human brain pathways. In: Proceedings of the 26th 
International Society for Magnetic Resonance in Medicine, p 0059

	47.	 Visser E, Nijhuis EHK, Buitelaar JK, Zwiers MP (2011) Partition-
based mass clustering of tractography streamlines. Neuroimage 
54:303–312

	48.	 Garyfallidis E, Brett M, Morgado Correia M, Williams GB, 
Nimmo-Smith I (2012) QuickBundles, a method for tractography 
simplification. Front Neurosci 6:175

	49.	 O’Leary DD, Terashima T (1988) Cortical axons branch to mul-
tiple subcortical targets by interstitial axon budding: implications 
for target recognition and waiting periods. Neuron 1:901–910

	50.	 Farquharson S, Tournier JD, Calamante F et al (2013) White mat-
ter fiber tractography: why we need to move beyond DTI. J Neu-
rosurg 118:1367–1377

	51.	 Fortin D, Aubin-Lemay C, Bore A et al (2012) Tractography in 
the study of the human brain: a neurosurgical perspective. Can J 
of Neurol Sci 39:747–756

	52.	 Wedeen VJ, Rosene DL, Wang R, Dai G et al (2012) The geomet-
ric structure of the brain fiber pathways. Science 335:1628–1634

	53.	 Ebeling U, Reulen HJ (1992) Subcortical topography and propor-
tions of the pyramidal tract. Acta Neurochir 118:164–171

	54.	 Schilling KG, Tax CMW, Rheault F, Landman BA, Anderson AW, 
Descoteaux M, Petit L (2022) Prevalence of white matter path-
ways coming into a single white matter voxel orientation: the bot-
tleneck issue in tractography. Hum Brain Mapp 43(4):1196–1213

	55.	 Witelson SF (1989) Hand and sex differences in the isthmus and 
genu of the human corpus callosum. A postmortem morphological 
study. Brain: J Neurol 112:799–835

	56.	 Wasserthal J, Neher P, Maier-Hein KH (2018) TractSeg - fast 
and accurate white matter tract segmentation. Neuroimage 
183:239–253

	57.	 Krieg WJS (1955) Connections of the frontal cortex of the mon-
key. Charles C Thomas Springfield

	58.	 Smith RE, Tournier JD, Calamante F, Connelly A (2015) SIFT2: 
enabling dense quantitative assessment of brain white mat-
ter connectivity using streamlines tractography. Neuroimage 
119:338–351

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Anatomically informed multi-level fiber tractography for targeted virtual dissection
	Abstract
	Objectives 
	Methods 
	Results 
	Discussion 

	Introduction
	Methods
	Multi-level fiber tractography
	Data
	Experiments
	Experiment 1: Tractography in silico
	Experiment 2: Robustness to noise
	Experiment 3: Tractography in vivo
	Experiment 4: Topographic organization
	Experiment 5: Anatomical plausibility


	Results
	Experiment 1: Tractography in silico
	Experiment 2: Robustness to noise
	Experiment 3: Tractography in vivo
	Experiment 4: Topographic organization
	Experiment 5: Anatomical plausibility

	Discussion and conclusion
	MLFT features
	Limitations
	Methodological considerations
	Future work

	Acknowledgements 
	References




