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Abstract

We report a QDπ-v1.0 for modeling the internal energy of drug molecules containing H, C, 

N and O atoms. The QDπ model is in the form of a quantum mechanical/machine learning 

potential correction (QM/Δ-MLP) that uses a fast 3rd-order self-consistent density-functional 

tight-binding (DFTB3/3OB) model that is corrected to a quantitatively high-level of accuracy 

through a deep-learning potential (DeepPot-SE). The model has the advantage that it is able to 

properly treat electrostatic interactions and handle changes in charge/protonation states. The model 

is trained against reference data computed at the ωB97X/6–31G* level (as in the ANI-1x data 

set) and compared to several other approximate semiempirical and machine learning potentials 

(ANI-1x, ANI-2x, DFTB3, MNDO/d, AM1, PM6, GFN1-xTB and GFN2-xTB). The QDπ 
model is demonstrated to be accurate for a wide range of intra- and intermolecular interactions 

(despite its intended use as an internal energy model), and has shown to perform exceptionally 

well for relative protonation/deprotonation energies and tautomers. An example application to 

model reactions involved in RNA strand cleavage catalyzed by protein and nucleic acid enzymes 

illustrates the QDπ has average errors less than 0.5 kcal/mol, whereas the other models compared 

have errors over an order of magnitude greater. Taken together, this makes QDπ highly attractive 

as a potential force field model for drug discovery.
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1 Introduction

Computational methods that enable the prediction of the binding affinity and selectivity 

of small molecule drugs to protein or nucleic acid targets are essential tools for drug 

discovery.1–4 Among the most powerful of these methods are so-called “alchemical free 

energy” (AFE) simulations: physics-based approaches that strive to rigorously calculate 

the absolute and/or relative binding free energy (ABFE and RBFE, respectively) through 

atomistic simulations.5 The accuracy of such predictions depends critically on the quality 

and robustness of the underlying potential energy model from which atomic forces are 

derived.6

ABFE and RBFE simulations require the construction of thermodynamic cycles whereby 

ligands must dynamically sample phase space in “unbound” (aqueous solution) and 

“target-bound” (e.g., protein complexed) environments. Electrostatic interactions in these 

environments can differ substantially, and hence a desirable feature of the ligand potential 

energy model is the ability to explicitly polarize in order to electronically respond to 

these changes.7 Further, roughly 25% of potential drug molecules can exist in alternative 

tautomeric forms, and almost all of them can have multiple ionizable protonation states. 

These states are important as they are sensitive to their environment (e.g., pH, ionic 

conditions, aqueous versus membrane, etc.) and can change upon binding.8–10 In order 

to accommodate these changes, it is advantageous to have a “universal” potential energy 

model that is not restricted to a specific pre-determined bonding pattern or protonation state 

within the same simulation, unlike conventional molecular mechanical (MM) force fields 

(including polarizable force fields). High-level ab initio quantum mechanical (QM) models 

are universal in this sense, and also have been demonstrated to be robust and accurate,11 

but these methods require tremendous computational resources making them intractable 

for routine simulations. Approximate “semiempirical” QM models, on the other hand, are 

orders of magnitude faster and can be routinely applied in simulations where the QM region 

is limited to up to a few hundred atoms (which encompasses most drug molecules); however, 

these models typically do not have the quantitative accuracy that real-world drug discovery 

applications demand.12

An alternative approach is to develop machine learning (ML) potentials that are both fast 

and accurate within the scope of their training13–18. To date, many such models have been 

developed and more continue to emerge19–35. So-called “pure” ML potentials face many 
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challenges for use in free energy simulations. They must be able to model a wide range 

of intra- and intermolecular interactions,36–38 including relative conformational energies,38 

hydrogen bonding,39 π stacking, London dispersion, and mixed interactions,40,41 in addition 

to different tautomers8 and protonation states10,42,43 as mentioned previously. The models 

must be able to distinguish variable electron number (charge) and spin (multiplicity). 

Finally, the models not only need to be trained to give back accurate energies and 

forces for the regions of configurational space expected to be sampled under relevant 

temperature and pressure conditions, they must also be trained to avoid inaccessible regions 

of configurational space.

Among the first and most widely recognized ML potentials are the ANI30,36,44,45 class 

of models that to a large degree formed the inspiration for the current work. These pure 

ML models are both robust and computationally efficient. The ANI models take as basic 

arguments the positions and identity of atoms in order to return an energy and through 

derivative relations, a set of forces. However, challenges remain for these models to 

distinguish different charge and/or spin states, and properly treat electrostatic interactions 

(although there has been recent progress to determine atomic charges33). This is currently 

a serious limitation, as it has been estimated that up to 95% of drug molecules contain 

ionizable groups that can cause variations in charge state and greatly alter electrostatic 

interactions.46

In the present work, we develop a Quantum Deep-learning Potential Interaction 

(QDπ) model that uses a fast 3rd-order self-consistent density-functional tight-binding 

(DFTB3/3OB) model47,48 that is corrected to a quantitatively high-level of accuracy 

through a range-corrected deep-learning potential (DPRc).49,50 In this way, the QDπ model 

developed here is the form of quantum mechanical/machine learning potential correction 

(QM/Δ-MLP).35,49–54 The use of DFTB3 as a robust QM base model has several important 

advantages. First, it provides a reasonable description of the conformational potential energy 

landscape, greatly reducing the requirement to explicitly train the MLP to avoid inaccessible 

high-energy regions. Second, DFTB3 uses polarizable atomic charge densities that are 

easily integrated into efficient particle-mesh Ewald55 framework to capture long-range 

electrostatic interactions in condensed phase QM/MM56 and QMFF57–59 simulations. Third, 

DFTB3 is able to model changes in charge, protonation and spin state in a size-consistent 

manner. The QDπ is developed and validated with respect to a number of existing and 

new databases (DBs).36,37,39–43,60–66 Special emphasis is placed on developing a universal 

model that is able to quantitatively predict tautomers8 and protonation states.10 The present 

work develops the QDπ for internal ligand energetics. This advance sets the stage for 

intermolecular interactions to be fully developed through quantum mechanical/molecular 

mechanical (QM/MM) Δ-MLP. This would enable alchemical free energy simulations for 

drug discovery to be made using the QDπ model through the use of indirect MM→QDπ 
free energy “book-ending” methods.67–70

2 Methods

This paper brings together several facets in order to develop the QDπ model for drug 

discovery. The first is the collection and curation of several existing molecular databases of 
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structures, energies and forces. The second is the generation of new data sets that fill needed 

gaps in training and/or testing data. Third, we develop new tools within DeePMD-kit71,72 

that enable more general flexible forms of the loss function (including relative energies) 

used in training of the neural networks. Fourth, we create computational infrastructure for 

consistent comparison of a wide array of existing potential energy models. Each of these is 

described in detail below.

2.1 Preparation for data sets

The purpose of this first-generation QDπ model is to create a highly robust universal 

potential that can accurately model drug-like molecules containing H, C, N and O atoms 

as relevant for binding to biological targets. Important properties for consideration include: 

relative conformational energies, a wide range of intermolecular interactions, as well as 

relative energies associated with different tautomers and protonation states. While ultimately 

this model can be extended to predict covalent binding (irreversible inhibition), the initial 

focus here is on non-covalent binding.

We prepared several data sets for training and (benchmark) testing of the QDπ model. 

These are summarized in Table 1 and described in more detail below. As a general theme, 

we endeavored to be consistent with the ANI-1x data set that was generated using the 

ωB97X/6–31G* level of theory. Toward that end, where needed, we recalculated the energy 

and forces, and performed geometry optimizations at a consistent ωB97X/6–31G* level of 

theory73 (all using Gaussian 1674) in order to train evolving versions of the QDπ model. The 

QDπ model is trained to be a QM/Δ-MLP; i.e., a non-electronic DPRc “correction” to the 

DFTB3/3OB75 QM model potential energy similar to previous work.49,50

2.1.1 Broad data sets: ANI-1xm and COMP5m—These data sets contain a diverse 

range of bio and drug-like molecules at equilibrium and non-equilibrium conformations, 

and contain structures, potential energies and forces. Generally, previous chemical space 

data sets76–78 are usually derived from the GDB databases64,65,79 that contains billions of 

SMILES strings80 for organic small molecules. Herein we use modified versions of the 

public ANI-1x37 and COMP636 databases as follows.

ANI-1xm.: The ANI-1x data set is an open-source chemical space data set proposed by 

Smith et al.37 that includes ωB97X/6–31G* energies and forces generated by diverse normal 

mode sampling (DNMS). We examined the ANI-1x data set and observed that the DNMS 

procedure would in some cases generate free radicals by breaking covalent bonds (which 

were still computed with a singlet spin state in the reference data set), and this led to 

problems in the QDπ training (an example is provided in Section 1 of the Supporting 

Information). Thus, we curated a subset of the ANI-1x data to create a modified data set we 

refer to as ANI-1xm by analyzing and removing such predicted free radicals in addition to a 

few other select outlier molecules through the procedure described below.

As an example, the DFTB3/3OB base QM model is known to have rare anomalous outlier 

energies for some inorganic molecules such as cyanogen75 that we did not consider as highly 

relevant for drug discovery. In other cases, it has been reported that some reference values 
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in ANI-1x data set are not reliable.51 We thus used the following outlier detection criteria to 

remove 50 points that satisfy the condition:

Ek − E
σ(E) ≥ 8, (1)

where Ek is the energy difference between ωB97X/6–31G* and DFTB3, and Ē and σ(E) are 

the mean and standard deviation of the energy differences for all molecules with the same 

chemical formula. The threshold is taken from the TorchANI program.81 After curating the 

ANI-1xm data set in this way, we obtained a total of 2,641,429 points (a 46.7% reduction 

from the original ANI-1x data set).

COMP5m.: The COmprehensive Machine-learning Potential (COMP6)36 benchmark is a 

chemical space data set that was built from six separate data sets: 1) the original S66×8 

benchmark,40,41 2) ANI-MD,36 3) GDB7to9,64 4) GDB10to13,65 4) Tripeptide,36 and 5) 

DrugBank66 data sets. We begin by extracting the S66×8 data set, which we will analyze 

separately, and we refer to the truncated data set as “COMP5”. The COMP5 data set, 

like ANI-1x, used the DNMS procedure which cleaved covalent bonds in some instances; 

therefore, we applied the same outlier detection procedure described above to arrive at a 

modified COMP5m data set containing 64,667 data points (a 35.9% reduction from the 

original COMP5 data set).

2.1.2 Intermolecular data sets.—Intermolecular data sets contain dimers at multiple 

separations. Each dimer was geometry optimized at the reference theoretical level and the 

intermonomeric distances without altering the internal geometries.40 The ωB97X/6–31G* 

and DFTB3 energies and forces were evaluated at the reference geometries.

For the S66×8 data set and the HB375×10 data set, we compute the relative energies as 

follows:

ΔE = E − Emin (2)

where Emin is the minimum energy of the dimer (at the most favorable intermolecular 

separation). The QDπ model was trained using all available dimer separations. Because 

most of the interaction energies are quite small, we report only the ΔE of the most separated 

dimer configuration. The following intermolecular data sets are used in the current work.

S66×8.: The S66×8 data set41 is a nonbonded interaction data set containing 66 noncovalent 

pairs at 8 separations. The ωB97X/6–31G* energy and forces are directly taken from the 

COMP6 benchmark.36 The 8 relative energies are computed for each of the 66 dimers.

HB375×10.: The HB375×10 data set39 is an S66×8-like nonbonded interaction data set 

containing 375 hydrogen bonding pairs. We use geometry provided by the data set to 

compute the ωB97X/6–31G* energy and forces.

AEGIS:BP: The AEGIS:BP data set is a subset of 10 hydrogen-bonded nucleic acid 

base pairs (BPs) within the artificially expanded genetic information system (AEGIS)60,82 
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database. The entire list of BPs is given in Figure S2 of the Supporting Information. The 

structures were generated by Open Babel and optimized at the ωB97X/6–31G* level.

2.1.3 Tautomerization data sets.—The tautomerization data sets described below are 

used to evaluate the relative energy of the tautomeric configurations. The relative energy 

between A and B is the difference between their total energies (EA and EB).

ΔE = EA − EB (3)

Each tautomer is optimized from the initial geometry at the ωB97X/6–31G* level. The 

relative energies and force corrections between ωB97X/6–31G* and DFTB3 at the reference 

geometries are used in the neural network training. When tabulating the results to compare 

different methods, we report the mean absolute errors (maE) and root mean squared errors 

(rmsE) of the relative energies; these values evaluate the energies upon geometry optimizing 

the structures with each method.

Tautobase.: The Tautobase data set61 is a broad tautomer data set. A subset of the Tautobase 

data set was constructed by Wieder et al.62 that includes 354 tautomer pairs with C, H, O, 

and N elements. Each pair involves the relocation/bonding of a hydrogen atom. The initial 

geometry is generated by Open Babel83 and optimized at the ωB97X/6–31G* level.

TAUT15.: TAUT15 is a tautomer data set from GMTK55 database42 containing 15 relative 

energies. The initial geometry is provided by the data set and further optimized at the 

ωB97X/6–31G* level.

AEGIS:TAUT.: The AEGIS:TAUT data set is a subset of 25 tautomeric (TAUT) equilibria 

extracted from the AEGIS60 database. The entire list of TAUT is given in Figure S3 of 

the Supporting Information. The initial geometry is provided by the data set and further 

optimized at the ωB97X/6–31G* level.

2.1.4 Protonation energy data sets.—These data sets are intended to be reflective of 

titratable sites in biological and ligand/drug-like molecules. We depart from public data sets 

that provide SMILES strings of absolute deprotonation energies AH → A− + H+; however, 

we train and test the methods against relative protonation energies AH + B− → A− + BH. 

Each reactant or product is optimized. For a generic chemical reaction

νAA + νBB + … νXX + νYY + …, (4)

the relative energy for a reaction (donated ΔErxn) is defined as the potential energy 

difference between total reactants and total products:

ΔErxn = ∑
products,p

νpE − ∑
reactants,r

νrE .
(5)

where νp and νr are the stoichiometric coefficients of each product p and reactant r.
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Amino acids model compounds (AAMC).: The AAMC data set contains 21 O-H and N-H 

bond-containing molecules (OHNH) with deprotonation energies, including amino acids 

model compounds from Ref. 43. The entire list of compounds is given in Section 5.1 of 

the Supporting Information. The initial geometries were generated by Open Babel83 and 

optimized at the ωB97X/6–31G* level.

Nucleic acid model compounds (NAMC).: The NAMC data set contains 53 deprotonation 

energies of nucleic acid (DNA and RNA bases) model compounds introduced in Ref. 43. 

The entire list of compounds is given in Section 5.2 of the Supporting Information. The 

initial geometry is generated by Open Babel83 and optimized at the ωB97X/6–31G* level.

PA26.: The PA26 data set is a subset of the GMTKN55 database42 containing 26 adiabatic 

proton affinities. The initial geometry is provided by the data set and optimized at the 

ωB97X/6–31G* level.

RegioSQM20.: We selected a subset of the RegioSQM2063 database containing C, H, O, 

and N elements. The subset was randomly divided into the training and test sets. Some 

outliers were removed using the procedure described above for the ANI-1x and COMP5m 

data sets. Then, there are 544 and 25 deprotonation energies in the training and test 

sets, respectively. The entire list of compounds is given in Section 5.3 of the Supporting 

Information. The initial geometry is generated by Open Babel83 (or RDKit84 for some 

compounds to get better structures) and optimized at the ωB97X/6–31G* level.

2.2 QDπ (v1.0)

In this work, we develop a general QDπ model as a Δ-MLP correction54 to DFTB3/3OB. 

The correction is parametrized to reproduce target energies and forces for closed-shell bio 

and drug-like organic molecules and ions composed of C, H, O, and N elements. The QDπ 
energy is the sum of DFTB3 and neural network potential (NNP) model energies:

EQDπ = EDFTB3 + ENNP . (6)

where EDFTB3 is the DFTB3/3OB energy, and ENNP is the Δ-MLP correction using the Deep 

Potential — Smooth Edition (DeepPot-SE) functional form.28 DFTB3 was chosen as the 

base model because it is robust, internally consistent, and has been reported36 to have better 

overall accuracy for the ANI-1x data set compared to PM6.

2.2.1 DeepPot-SE—The QDπ model parametrizes a Deep Potential (DP) using the 

DeepPot-SE descriptor28 used as a Δ-MLP correction. The functional form of the DP 

and DeepPot-SE descriptor has been previously described85 and additional details can be 

found in Section 2 of the Supporting Information. DeepPot-SE is a popular descriptor 

implemented in the DeePMD-kit package71,72 which has seen use in over 100 works86 

since its proposal in 2018. It also serves as the foundation for the DPRc49 Δ-MLP. The 

DPRc correction includes corrections for QM/MM interactions. Although the present work 

does not involve QM/MM interactions, the common framework between the DPRc and DP 

potentials affords the opportunity to extend the QDπ model to QM/MM applications using 

the DPRc potential.

Zeng et al. Page 7

J Chem Theory Comput. Author manuscript; available in PMC 2024 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A recent work18 has compared the theories of different NNPs, including ANI-1 and 

DeepPot-SE. NNPs that use atomic-centered symmetry functions (ACSFs),19 such as ANI-1, 

have fixed descriptors that must be determined before training. In contrast, the descriptors 

used in the SchNet24 and DeepPot-SE NNPs are trained to improve accuracy. It was found 

that NNPs with trainable descriptors require more computational effort to train because the 

descriptor includes additional parameters (and thus the additional parameter gradients must 

be evaluated during training).87 To address this issue, a model compression scheme has been 

introduced that can freeze and compress the DeepPot-SE descriptor to improve performance 

(either during or after training).87 In this work, we apply this model compression scheme in 

the latter part of training (see below).

2.2.2 Relative Energy loss—In this work, we introduce a new component to the loss 

function to train relative energies. It is common for ML training algorithms to update 

the neural network parameters using a subset (a “batch”) of the available training data. 

A “loss function”, L, is evaluated using the data contained within the batch, the neural 

network parameters are updated, and a new batch is created for the next optimization step 

by randomly selecting another subset of data.88 In the past, a batch consisted of molecules 

whose total energies and forces are to be trained. In which case, the loss function consisted 

of two components: errors arising from the total energies LE and forces Lf.

L = pELE + pfLf (7)

In the present work, we allow relative energies to be included within a batch.

L = pELE + pΔELΔE + pfLf (8)

where LΔE is the relative energy loss.

LΔE = 1
ℬΔE

∑
k = 1

ℬΔE 1
Nk

ΔEk − ΔEk
∗ 2

(9)

where ℬΔE is the number of relative energies within the batch. Nk is the total number of 

atoms for system k (the sum of all product and reactant atoms in the case of reaction 

energy). ΔEk and ΔEk
∗ are the model and reference relative energies, respectively. LE and Lf 

are defined in the same way.

LE = 1
ℬE

∑
k = 1

ℬE 1
Nk

Ek − Ek
∗ 2

(10)

Lf = 1
ℬf

∑
k = 1

ℬf 1
3Nk

fk − fk
∗ 2

(11)

where ℬE and ℬf are the number of relative energies and forces within the batch, respectively. 

Ek and Ek
∗ are the model and reference energy components, and fk and fk

∗ are the model 
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and reference force components, respectively. pE, pΔE, and pf are weights assigned to energy, 

relative energy, and force contributions to the loss function. The weights are linearly updated 

with the learning rate, α:

pE(t) = pE
0 α(t)

α(0) + pE
∞ 1 − α(t)

α(0) (12)

pΔE(t) = pΔE
0 α(t)

α(0) + pΔE
∞ 1 − α(t)

α(0) (13)

pf(t) = pf
0 α(t)

α(0) + pf
∞ 1 − α(t)

α(0) (14)

The learning rate decays exponentially with the training step, t.

α(t) = α0λt/τ (15)

where α0 is the initial learning rate, λ is the decay rate, and τ is the decay steps. If energy, 

relative energy, or force is not available in a batch, pE, pΔE, or pf will be set to zero to 

disable the corresponding loss contribution. In this work, we set pE
0 = 2, pE

∞ = 20, pΔE
0 = 2, 

pΔE
∞ = 20, pf

0 = 100, pf
∞ = 0.1, α0 = 0.0001, λ = 0.99, and τ = 400. It’s worth mentioning that 

direct training to the relative energies typically will not improve the accuracy of the absolute 

atomic energies (the energy of an atom in a vacuum). We have implemented the relative 

energy loss contributions into the DeePMD-kit package.71,72

2.2.3 Training process—The QDπ model was trained using the DeePMD-kit software 

package. As shown in Table 2, we performed 6 training iterations with different data sets 

and training properties. In the first two iterations, the model was trained to reproduce the 

total energies and forces of the molecules contained within the relative protonation energy 

data set. After the first iteration, the DP Compress87 algorithm was applied to freeze the the 

model descriptor  to improve performance. All subsequent iterations restart the training 

from the previous iteration. Starting from iteration 3, the loss function was changed to train 

against relative energies rather than molecular total energies. All of the tables in the main 

text show results only for the QDπ-v1.0, but the Supporting Information contains extended 

tables that have results for each version to compare.

2.3 Energy/force calculation and geometry optimizations

This section describes the various potentials compared, in addition to the basic methods 

used for performing geometry optimizations. Additional details for how relaxed 2D potential 

energy surface scans are provided in section 3 of the Supporting Information.

ωB97X/6–31G*.—We used Gaussian 1674 to evaluate ωB97X/6–31G* energies and 

perform geometry optimizations.73
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Semiempirical methods.—The AMBER 2089 SQM module90 was used to perform 

geometry optimizations and evaluate the energies and forces of several semiempirical 

models, including DFTB391,92 (3OB parameters75), MNDO/d,93 AM1,94 and PM6.95 The 

DFTB+96 package was used to validate DFTB3 results from AMBER.

The DFTB+96 package was used to calculate GFN1-xTB97 and GFN2-xTB98 energies and 

forces. For these models, the ASE package99 was used to optimize the geometries with the 

Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm.100

QDπ models.—The QDπ energy is the sum of the DFTB3 and the DP contributions. 

The DP contribution was directly evaluated within the DeePMD-kit program.71 The ASE 

package99 was used to optimize the QDπ structures.

ANI models.—The TorchANI program81 was used to provide energies and forces of the 

ANI-1x36 and ANI-2x45 models. Each ANI model consists of 8 independent parameter sets. 

We only use the first model (index 0) for benchmarking. It has been suggested that using 

an average of multiple models will improve the accuracy44 but at additional computational 

cost.81 We performed the geometry optimizations with the ASE package.99

3 Results and Discussion

For consistency, all the reference data used to train and test the QDπ model was performed 

at the ωB97X/6–31G* level, as in the ANI databases30,36,44,45 used to train the ANI-1x 

and ANI-2x models. In making the comparison with the target reference data, we report 

various error metrics such as mean absolute and root-mean-square errors (maEs and 

rmsEs, respectively). Other models compared in this work have been trained to different 

reference data (levels of theory and data sets). Hence, it should not be concluded that 

deviation of these other models from the reference data used in this work implies they 

are necessarily less accurate in the theoretical electronic structure limit (which cannot be 

practically obtained for any of the data considered here). Thus, a comparison of results 

from other models is not meant to be critical, but rather provide a broader context with 

respect to variation from a well-defined reference. In our view, the real litmus test for a drug 

discovery force field is the accuracy of binding free energy predictions from rigorous and 

precise AFE simulations,5,101 which is beyond the scope of this work. The current work 

focuses on developing a robust and internally consistent internal energy model from drug-

like molecules that provide a foundation from which to extend to accurate intermolecular 

interactions as a Δ-MLP to the QM/MM potential.

3.1 Performance for internal (intramolecular) potential energy

The majority of data used to train the QDπ model was from the ANI-1xm data set using 

energies and forces, and validated against the COMP5m data set. The ANI-1x model was 

trained to the energies only, whereas the ANI-2x was trained to both energy and forces. 

Comparison of the force component errors for these models are illustrated in Figure 1, 

and error results for QDπ and all of the established comparison models are summarized in 

Table 3. Not surprisingly, the ANI-2x model performs best among the established models 

compared, having mean absolute errors (maE) of 1.07 kcal/mol and 2.11 kcal/(mol·Å) for 
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the energy and forces, respectively. Moreover, these errors are transferable to COMP5m, 

for which neither the ANI nor QDπ models were trained (maE of 1.67 kcal/mol and 

1.86 kcal/(mol·Å) for energy and force, respectively). The other models ranged in maE 

in forces of 4.69–15.14 kcal/(mol·Å) for the ANI-1xm and 3.68–12.13 kcal/(mol·Å) for 

the COMP5m (energies were not compared for the semiempirical models as the zero of 

total energy uses a different reference than for ωB97X/6–31G*). The worst models overall 

are the NDDO-based semiempirical models (MNDO/d, AM1 and PM6), which require 

additional fixes such as orthogonalization corrections102 or other empirical terms103 in 

order to accurately reproduce relative conformational energies. The tight-binding models 

that explicitly account for orthogonalization through the inclusion of an overlap matrix in 

the generalized eigenvalue problem perform generally better, with the GFN models slightly 

out-performing DFTB3/3OB. The QDπ performs exceptionally well on both the ANI-1xm 

training and COMP5m testing data sets, having maE of 0.83 and 1.48 kcal/mol for the 

energy, respectively, and 1.16 and 1.14 kcal/(mol·Å) for the forces, respectively.

In order to illustrate the degree to which the QDπ model can reproduce conformational 

energy landscapes, we examined relaxed 2D torsion profiles for three systems: the alanine 

dipeptide, and the drug molecules ibuprofen and ketorolac illustrated in Fig. 2. Figure 3 

compares the potential energy surface for 2D torsion scans at the ωB97X/6–31G*, QDπ, 

ANI-2x, GFN2-xTB and DFTB3 levels. All of the models qualitatively predict the correct 

trends. Overall, QDπ and ANI-2x are quite similar and have the closest agreement with 

ωB97X/6–31G*. While none of the models is able to reproduce conformational energy 

barriers below 1 kcal/mol in all cases (see Table S4 of the Supporting Information), the 

DFTB3 model errors are the largest and most systematic in their under-estimation of the 

barriers between minima.

3.2 Performance for intermolecular interactions

Despite the focus being on training a QDπ internal energy model, we felt it important 

to include training and testing data to intermolecular interaction DBs (S66×836,40,41 and 

HB375×1039) as some large, drug-like molecules can form similar interactions (e.g., 

intramolecular hydrogen bonds). Figure 4 and Table 4 compares intermolecular interactions 

(ΔE values) for S66×8. Overall QDπ has the smallest maE (0.30 kcal/mol) relative to the 

other models that ranged in maE from 0.59 kcal/mol (ANI-2x) to 3.59 kcal/mol for DFTB3. 

A more detailed breakdown of the errors into hydrogen bonding (HB), π stacking, London 

dispersion (LD) and mixed interactions are provided in Table 4. The QDπ has maE values 

that range from 0.21–0.41 kcal/mol (the largest is the LD subset), whereas ANI-2x ranges 

from 0.40–0.91 kcal/mol (the largest being for the HB subset). Closer examination of the 

more extensive HB735 data set indicates that QDπ has the lowest maE (0.44 kcal/mol), 

whereas ANI-2x, GFN2-xTB, and DFTB3 have maE values of 1.40, 0.85, and 1.17 kcal/

mol, respectively. In the case of ANI-2x, the distribution of errors has a considerably larger 

variance as indicated by the rmsE value of 3.84 which is over 2.5 times larger than the maE.

3.3 Performance for tautomers

Figure 5 compares the tautomer energies for the Tautobase61 and TAUT1542 and 

AEGIS:TAUT data sets. The QDπ model is the only model that has quantitative (less than 1 
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kcal/mol) accuracy for tautomer energies (maE values that range from 0.70 to 0.82 kcal/mol 

for data subsets listed in Table 5 and 0.79 kcal/mol overall). Of the other models, ANI-2x 

performs the best but still has a maE roughly twice as large (maE 1.63 kcal/mol, with data 

subset values that range from 1.00–1.76 kcal/mol). The GFN2-xTB and DFTB3 models 

have maE values exceeding 4.5 kcal/mol overall with the largest contributions coming from 

the Tautobase data subset (maE values for GFN2-xTB and DFTB3 both approximately 5.5 

kcal/mol). Both QDπ and ANI-2x have a high linear correlation with ωB97X/6–31G* (0.99 

and 0.95, respectively), whereas GFN-xTB and DFTB3 have moderate correlation (0.69 and 

0.55). Hence, the QDπ model is the only model that consistently provides tautomer energies 

with errors below 1 kcal/mol relative to the reference.

3.4 Performance for relative protonation states

Figure 6 compares the differences in protonation energies for a series of amino acid and 

nucleic acid model compounds,43 as well as molecules in the PA2642 data set. Changes 

in charge state are notoriously challenging for minimal valence basis models,104 and are 

particularly problematic for the ANI-2x model that cannot distinguish molecules from ions 

and thus breaks down. Both the GNF2-xTB and DFTB3 models have a high correlation 

(0.99) with the ωB97X/6–31G*, owing mainly to the large range of values that are clustered 

into two sets (0–75 and 125–225 kcal/mol), and have large maE values are 7.78 and 10.24 

kcal/mol, respectively. The QDπ model performs exceptionally well with maE of 0.17 

kcal/mol and almost perfect correlation.

A closer examination of the data subsets is listed in Table 6. The maE values between 

AAMC, NAMC and PA26 data subsets have ranges 0.09–0.39 (QDπ), 5.77–8.45 (GFN2-

xTB), 8.63–12.54 (DFTB3) and 23.8–70.5 kcal/mol (ANI-2x). Examination of errors from 

the RegioSQM* data set that was not used in training reveals more similar maE values: 

2.53 (QDπ), 4.12 (GFN2-xTB), 4.59 (DFTB3) and 13.6 kcal/mol (ANI-2x). The reason for 

this may be due in part to the design of the database to predict the regioselectivities of 

electrophilic aromatic substitution reactions from the calculation of proton affinities, but this 

is not fully clear.

3.5 Example application: acid/base reactions important in enzyme catalyzed RNA 
cleavage

Although the current QDπ model has been designed with the intent ultimately for 

applications to drug discovery, it is nonetheless instructive to consider well-studied examples 

where protonation/deprotonation events are of biological significance. One such example 

presents itself in the chemistry of RNA strand cleavage105–107 that is catalyzed by protein 

ribonucleases108–110 as well as small self-cleaving ribozymes111,112 and several artificially 

engineered DNAzymes.113–116 In this reaction, the 2’-OH group of an RNA nucleotide is 

activated by deprotonation by a general base. The resulting activated nucleophile makes 

an in-line attack to the adjacent phosphorus of the scissile phosphate, and the reaction 

proceeds through a pentacovalent transition state followed by departure of the 5’-O leaving 

group that is facilitated by donation of a proton from a general acid. In the case of protein 

ribonucleases, the general base and acid is thought to be carried out by active site histidine 

residues,108–110 although early work speculated that a functionally important lysine residue 
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might also be a plausible candidate.117 In the case of small self-cleaving ribozymes and 

DNAzymes, general acid-base catalysis is carried out by nucleobases, metal ions or in 

some cases assisted by the 2’-OH of the ribose sugar moiety. Considering the nucleobase 

candidates, the general base is often an active site guanine (at the N1 position), whereas the 

general acid can be either a cytosine (at the N3 position), or else an adenine (either N1 or N3 

positions).

We hence consider the energetics of reactions that involve the relative protonation/

deprotonation of the general acid and base models with respect to the 2’OH nucleophile (a 

secondary alcohol modeled as isopropanol, iPrOH) and the 5’OH leaving group (a primary 

alcohol modeled as ethanol, EtOH). These are listed in Table 7. The model reactions where 

iPrOH is deprotonated to form iPrO− is meant to represent a model system for general 

base activation of the 2’-OH nucleophile, whereas the reactions where EtO− is protonated 

to form EtOH is meant to represent a model system for general acid stabilization of the 

5’-O− leaving group. The values shown in Table 7 show the relative energetics of the non-

interacting molecular and ionic reaction species. In the gas phase, the formation of neutral 

molecules from non-interacting ions from neutral molecules is highly exothermic, although 

for interacting systems in an enzyme environment the differences are expected to be 

much smaller. Nonetheless, the inherent energetics associated with the relative protonation/

deprotonation events still is a major factor that regulates reactivity. For the protein enzyme 

model reactions (top block, Table 7), the QDπ performs exceptionally well with errors all 

less than 0.5 kcal/mol, whereas the DFTB3 and GFN2-xTB errors range from −11.33 to 

11.72 and −7.02 to 9.66 kcal/mol, respectively. For the nucleobase reaction models (middle 

block, Table 7), QDπ has larger errors that range from −1.11 to 1.25 kcal/mol, whereas the 

corresponding ranges are −8.63 to 16.00 and −2.69 to 11.40 for DFTB3 and GFN2-xTB, 

respectively. The relative errors between nucleobase general acids and base (bottom block, 

Table 7), again the QDπ is in very close agreement with the reference values (maximum 

error −0.27 kcal/mol), where the DFTB3 and GFN2-xTB models have considerably larger 

errors (maximum errors 6.99 and 6.07 kcal/mol, respectively). Overall the average errors for 

the QDπ is below 0.5 kcal/mol. As mentioned earlier, the ANI-2x model breaks down for 

system that have varying charge, with average errors of over 100 kcal/mol. These results 

provide an example in a biological context that emphasizes the importance of modeling 

relative protonation/deprotonation events with quantitative accuracy. For drug discovery, 

these will be especially important, as it has been estimated that over 95% of drug molecules 

have ionizable sites, many of which may potentially change upon binding to a biological 

targets.

3.6 Current limitations and future directions

A key aspect of this project was to create a first-generation potential energy model trained 

against broad data all computed at the same level of theory (and where possible, even 

using the same software package). At the time this project was initiated, the largest such 

data set was the ANI-1x DB37 at the ωB97X/6–31G* level that only contained compounds 

with elements H, C, N and O. This chemical space in incomplete, as many drug molecules 

contain phosphorus, sulfur and halogen atoms, and some contain metal ions.118–120 The 

ANI-2x model was extended to include S, F and Cl,45 but the full data set, including the 
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important reference energies and forces at the ωB97X/6–31G* level, to our knowledge, 

has not yet become publicly available. Currently, there are a number of recent data sets 

that include compounds that contain phosphorus, sulfur and halogens at various levels 

of theory121–125 as well as metal ions.118 Among them, only the SPICE data set124 

includes forces at the ωB97M-D3BJ/def2-TZVPPD level and currently includes over 420K 

phosphorus, 520K sulfur, 750K halogen and 8K metal-containing structures.

Hence, current limitations of the QDπ-v1.0 model include restricted chemical space 

(molecules containing H, C, N and O) and the ωB97X/6–31G* reference level of theory. 

The ωB97X/6–31G* reference level, like the DFTB3/3OB base QM model, lacks dispersion 

corrections and also does not include counterpoise corrections and complete basis set 

extrapolations that are important for intermolecular interactions. Further, this reference level 

of theory is not ideal for all molecular properties, including ionization energies and in some 

cases proton affinities of anions that may be sensitive to inclusion of diffuse basis functions. 

So while it is important to start with an established and consistent reference level of theory 

and chemical scope, ultimately as higher-level data sets become more complete and made 

publicly available, QDπ and other machine learning potentials can continue to evolve.

The next step of future work will involve developing an intermolecular QM/MM interaction 

potential as a new range-corrected deep-learning potential.49,50 The full (internal and 

intermolecular interaction) QDπ model is designed to be a correction to the QM/MM 

potential energy using DFTB3/3OB and the latest AMBER FF19SB for proteins,126 OL3/

OL15 for nucleic acids,127–129 OPC model for water130,131 and 12-6-4 ion models.132–134 

Once the intermolecular interaction component of the QDπ model has been developed and 

validated in alchemical free energy simulations,5 next steps will be to extend the chemical 

space of drug molecules to include P, S, F and Cl atoms. With GPU acceleration, the QDπ 
is typically less than 10% overhead relative to a traditional QM/MM energy/force evaluation 

with DFTB3/3OB.49 With this design, the QDπ could in principle also be used to modify 

the internal energy of protein residues and/or solvent molecules in contact with the drug, but 

this would incur greater cost as the size of the QM region grows larger. Should treatment of 

these surrounding residues with a neural network correction potential be deemed necessary, 

an alternative strategy would be to extend the model such that it can directly correct the MM 

potential rather than the QM/MM potential.

4 Conclusion

We report a QDπ-v1.0 for modeling the internal energy of drug molecules. The development 

of this model required: 1) collection and curation of several existing molecular databases of 

structures, energies and forces; 2) generation of new data sets at the ωB97X/6–31G* level 

that fill needed gaps in training and/or testing data; 3) development of new tools within 

DeePMD-kit that enable more general flexible forms of the loss function used in training 

of the neural networks; and 4) creation of computational infrastructure for consistent 

comparison of a wide array of existing potential energy models. The QDπ model has 

the advantage that it is able to properly treat electrostatic interactions and handle changes 

in charge/protonation states. The QDπ model is demonstrated to be accurate for a wide 

range of intra- and intermolecular interactions (despite its intended use as an internal energy 
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model), and has shown to perform exceptionally well for relative protonation/deprotonation 

energies and tautomers. Comparison with several other approximate semiempirical and 

machine learning potentials (ANI-1x, ANI-2x, DFTB3, MNDO/d, AM1, PM6, GFN1-xTB 

and GFN2-xTB) indicates QDπ agrees much more closely with training and testing data at 

the reference ωB97X/6–31G* level. An example application to model reactions involved in 

RNA strand cleavage catalyzed by protein and nucleic acid enzymes further illustrates the 

QDπ accuracy in a biological context. This makes QDπ highly attractive as a potential force 

field model for drug discovery.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Relation between forces in kcal/(mol·Å) calculated by ωB97X/6–31G* and QDπ, ANI-2x, 

and ANI-1x, respectively for the ANI-1xm and COMP5m data sets.
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Figure 2: 
Model (a) alanine dipeptide; (b) ibuprofen; (c) ketorolac. ϕ and ψ represent of the 2D 

torsion angles.
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Figure 3: 
Relaxed 2D torsion profiles for (a) alanine dipeptide; (b) ibuprofen; (c) ketorolac. Each 

molecule was computed using ωB97X/6–31G*, QDπ, DFTB3, ANI/2x, and GFN2-xTB, 

respectively. ωB97X/6–31G* is the reference potential and the other potentials are 

compared with ωB97X/6–31G*. The color bars represent the potential energy (with respect 

to the minimum energy) ωB97X/6–31G* in kcal/mol. The black and red points represent the 

minima and the transition states, respectively, and the black curves represent the transition 

paths between minima.
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Figure 4: 
Relation between relative energies in kcal/mol calculated by ωB97X/6–31G* and QDπ, 

ANI-2x, GFN2-xTB, and DFTB3, respectively for the S66×8 data set. Relative energies 

consist of the difference between the optimized structure and the structure with the furthest 

distance in each of the 66 dimer pairs.
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Figure 5: 
Relation between tautomerization energies in kcal/mol calculated by ωB97X/6–31G* 

and QDπ, ANI-2x, GFN2-xTB, and DFTB3, respectively, for TAUT15 data set and the 

artificially expanded genetic information system: Tautomer (AEGIS:TAUT) data set.
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Figure 6: 
Relation between of relative protonation energies (AH + B− → A− + BH) in kcal/mol 

calculated by ωB97X/6–31G* and QDπ, ANI-2x, GFN2-xTB, and DFTB3, respectively, for 

AAMC, NAMC, and PA26 data sets.
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Table 1:

Data sets used in the current work.
a

Usage data set
# of data points

Ref
E F ΔE

ANI-1x 4,956,005 227,101,443 … 36,37

Training ANI-1xm 2,641,429 130,421,121 … 36,37

S66×8 528 31,536 462 36,40,41

HB375×10 3750 192,690 3375 39

AEGIS:BP 32 1953 10 60

AEGIS:TAUT 37 1668 25 60

Tautobase 700 39,216 350 61,62

AAMC 50 1527 25 43

NAMC 68 3018 53 43

PA26 34 1137 17 42

RegioSQM20 (95%) 1088 84,576 544 63

Testing COMP5m 64,667 5,215,848 … 36,64–66

TAUT15 21 831 13 42

RegioSQM20 (5%) 50 4023 25 63

a
Data sets are described in the Methods section. In the current work, all reference DFT data is computed at the ωB97X/6–31G* level of theory for 

consistency.

J Chem Theory Comput. Author manuscript; available in PMC 2024 February 28.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zeng et al. Page 30

Table 2:

Data sets and neural network optimization steps used in training different QDπ model versions.

Iter. data set Steps Descriptor Output model

1 ANI-1x (E,F) 10,000,000 Normal

2 ANI-1xm (E,F) 60,000,000 Compressed QDπ v0.0

3 ANI-1xm (E,F), Tautobase (ΔE, F), AAMC (ΔE, F) 31,000,000 Compressed QDπ v0.1

4 ANI-1xm (E,F), Tautobase (ΔE, F), AAMC (ΔE, F), NAMC (ΔE, F), S66×8 (ΔE, F) 50,000,000 Compressed QDπ v0.2

5 ANI-1xm (E,F), Tautobase (ΔE, F), AAMC (ΔE, F), NAMC (ΔE, F), S66×8 (ΔE, F), 
PA26 (ΔE, F), RegioSQM20 (95%) (ΔE, F), HB375×10 (ΔE, F)

47,000,000 Compressed QDπ v0.3

6 ANI-1xm (E,F), Tautobase (ΔE, F), AAMC (ΔE, F), NAMC (ΔE, F), S66×8 (ΔE, F), 
PA26 (ΔE, F), RegioSQM20 (95%) (ΔE, F), HB375×10 (ΔE, F), AEGIS:BP (ΔE, F), 
AEGIS:TAUT (ΔE, F)

43,800,000 Compressed QDπ v1.0
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Table 3:

Mean absolute error (MAE) and root mean square error (rmsE) of energies in kcal/mol and forces in kcal/

(mol·Å) for the ANI-1xm training and COMP5m testing (marked with an “*”) data sets (Table 1).
a

Model

ANI-1xm COMP5m*

Energy Force Energy Force

maE rmsE maE rmsE maE rmsE maE rmsE

QDπ v1.0 0.83 1.22 1.16 1.77 1.48 2.44 1.14 1.79

ANI-1x 1.48 2.07 4.48 6.91 1.96 3.33 3.72 5.74

ANI-2x 1.07 1.58 2.11 3.35 1.67 2.66 1.86 3.11

DFTB3 … … 7.58 12.45 … … 5.46 8.76

MNDO/d
b … … 15.14 24.53 … … 11.52 17.77

AM1 … … 14.95 24.29 … … 12.13 18.07

PM6 … … 12.96 23.63 … … 9.33 14.30

GFN1-xTB … … 4.69 7.02 … … 3.68 5.40

GFN2-xTB … … 5.81 8.65 … … 4.33 6.33

a
Models and data sets are described in the Methods section.

b
Some points (<0.1 %) fail to converage and are removed.
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Table 4:

Mean absolute error (maE) and root mean square error (rmsE) of relative energies (ΔE) in kcal/mol for 

hydrogen bonding (HB), π stacking, London dispersion (LD) and mixed influence (Mixed) subsets of the 

S66×8 and HB375×10 training data sets (Table 1).
a

Model

S66×8 ΔE (subsets)

HB π stacking LD Mixed HB375×10

ΔE ΔE ΔE ΔE ΔE

maE rmsE maE rmsE maE rmsE maE rmsE maE rmsE

QDπ v1.0 0.21 0.26 0.35 0.47 0.41 0.51 0.31 0.38 0.90 1.18

ANI-1x 2.01 3.12 1.34 1.49 0.78 0.98 1.42 1.70 1.54 1.97

ANI-2x 0.91 1.11 0.49 0.57 0.40 0.48 0.40 0.49 1.62 3.49

DFTB3 4.64 4.75 3.14 3.39 2.93 3.07 3.06 3.15 4.12 4.34

MNDO/d 5.37 5.73 2.68 2.83 2.49 2.58 2.66 2.75 6.44 7.04

AM1 7.07 7.63 3.76 4.21 3.04 3.26 3.74 3.83 5.28 5.74

PM6 9.86 10.87 3.83 4.33 3.28 3.42 4.12 4.24 3.92 4.23

GFN1-xTB 3.31 3.45 0.88 1.09 0.90 1.03 1.95 2.03 2.52 2.68

GFN2-xTB 3.53 3.59 0.96 1.12 0.65 0.82 1.55 1.69 2.66 2.89

a
Models and data sets are described in the Methods section. Relative energies consist of the difference between the optimized structure and the 

structure with the furthest distance in each of dimer pairs.
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Table 5:

Mean absolute error (maE) and root mean square error (rmsE) of energies and relative energies (ΔE) in 

kcal/mol for the Tautobase/AEGIS:TAUT training and TAUT15 testing (marked with an “*”) data sets (Table 

1).
a

Model

Tautobase TAUT15* AEGIS:TAUT

ΔE ΔE ΔE

maE rmsE maE rmsE maE rmsE

QDπ v1.0 0.82 1.09 0.70 0.89 0.71 0.97

ANI-1x 1.73 2.42 1.63 1.83 1.54 2.08

ANI-2x 1.76 2.39 1.00 1.20 1.41 1.94

DFTB3 5.45 6.93 3.65 4.60 5.25 6.12

MNDO/d 9.69 11.35 7.78 9.55 8.20 9.43

AM1 5.01 6.34 3.99 5.85 3.88 4.66

PM6 4.90 6.12 5.60 7.11 7.39 8.85

GFN1-xTB 5.23 6.51 5.32 6.53 5.61 6.58

GFN2-xTB 5.68 6.81 2.84 3.62 3.16 3.59

a
Models and data sets are described in the Methods section.
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Table 6:

Mean absolute error (maE) and root mean square error (rmsE) of energies and relative energies (ΔE) in 

kcal/mol and forces in kcal/(mol·Å) for relative protonation energies for the AAMC, NAMC and PA26 

training and RegioSQM* testing (validation) data sets (Table 1).
a

Model

AAMC NAMC PA26 RegioSQM*

ΔE ΔE ΔE ΔE

maE rmsE maE rmsE maE rmsE maE rmsE

QDπ v1.0 0.09 0.14 0.17 0.22 0.39 0.49 2.53 3.19

ANI-1x 86.95 112.31 52.68 71.74 43.02 62.28 16.85 22.15

ANI-2x 70.52 89.39 52.48 72.33 23.80 30.54 13.64 17.24

DFTB3 8.63 11.12 10.85 13.33 12.54 15.84 4.59 5.74

MNDO/d 11.71 14.13 11.29 14.08 13.07 16.10 5.18 6.29

AM1 4.43 5.49 7.32 9.10 13.51 20.89 4.13 5.11

PM6 11.23 13.86 11.03 13.58 17.84 34.36 5.30 6.57

GFN1-xTB 5.00 6.07 11.73 35.39 4.43 5.39 4.10 5.07

GFN2-xTB 5.77 7.14 8.45 10.40 7.35 11.73 4.12 4.96

a
Models and data sets are described in the Methods section.
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Table 7:

Selected relative protonation/deprotonation energies from ωB97X/6–31G* and model error (kcal/mol) relevant 

to acid/base catalysis in RNA clevage reactions.
a

Protonation pair

ωB97X/6–31G* QDπ DFTB3 ANI-2x GFN2-xTB

ΔE Err Err Err Err

Lys:NH2 + iPrOH→Lys:NH3
+ + iPrO− 167.76 0.00 6.11 −115.04 0.04

His:Nε + iPrOH → His:NεH+ + iPrO− 158.33 0.02 −11.33 −126.62 −7.02

His:NεH+ + EtO− → His:Nε + EtOH −160.25 0.04 11.71 137.70 9.66

G:N1
− + iPrOH → G:N1H + iPrO− 43.06 −1.11 −8.63 −28.62 −2.69

A:N1H+ + EtO− → A:N1 + EtOH −165.06 1.25 15.21 137.24 10.02

A:N3H+ + EtO− → A:N3 + EtOH −190.89 1.21 16.00 143.42 11.40

C:N3H+ + EtO− → C:N3 + EtOH −160.33 0.89 4.66 145.20 6.58

A:N1H+ + G:N1
− → A:N1 + G:N1H −120.07 0.08 6.20 97.55 4.69

A:N3H+ + G:N1
− → A:N3 + G:N1H −145.91 0.04 6.99 103.73 6.07

C:N3H+ + G:N1
− → C:N3 + G:N1H −115.34 −0.27 −4.35 105.50 1.25

maE … 0.49 9.12 114.06 5.94

rmsE … 0.71 9.96 118.72 6.96

a
Models and data sets are described in the Methods section. Shown are model reactions for protein enzymes (top block) and nucleic acid enzymes 

(middle block). Additionally, the relative acid and base protonation/deprotonation energies for different nucleobases are provided (bottom block).
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