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Abstract

Generative adversarial networks (GANs) are one powerful type of deep learning models that have 

been successfully utilized in numerous fields. They belong to the broader family of generative 

methods, which learn to generate realistic data with a probabilistic model by learning distributions 

from real samples. In the clinical context, GANs have shown enhanced capabilities in capturing 

spatially complex, nonlinear, and potentially subtle disease effects compared to traditional 

generative methods. This review critically appraises the existing literature on the applications 

of GANs in imaging studies of various neurological conditions, including Alzheimer’s disease, 

brain tumors, brain aging, and multiple sclerosis. We provide an intuitive explanation of various 

GAN methods for each application and further discuss the main challenges, open questions, and 

promising future directions of leveraging GANs in neuroimaging. We aim to bridge the gap 

between advanced deep learning methods and neurology research by highlighting how GANs can 

be leveraged to support clinical decision making and contribute to a better understanding of the 

structural and functional patterns of brain diseases.
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1. Introduction

Advances in medical imaging techniques, including magnetic resonance imaging (MRI) and 

positron emission tomography (PET), have provided in vivo imaging-derived phenotypes 

capturing patterns of brain development, aging as well as of various diseases and disorders 

(Yu et al., 2018; Myszczynska et al., 2020; Rajpurkar et al., 2022). Embracing the “big 

data” era, the medical imaging community has widely adopted artificial intelligence (AI) 

for data analysis, from traditional statistical methods to machine learning (ML) models, 

which provides promise toward clinical translation (Habes et al., 2020; Thompson et al., 

2020; Marek et al., 2022). Statistical tools such as univariate and multivariate prediction 

models are empowered to learn the associations between structural/functional variability and 

cognitive/psychiatric symptomatology in the human brain. Notably, advanced AI techniques 

have been successfully utilized in numerous clinical applications, such as computer-aided 

diagnosis, disease biomarker identification, and personalized disease risk quantification, 

which are bound to further revolutionize medical research and clinical practice. Among 

these techniques, deep learning (DL) has drawn increasing attention in medical imaging. 

DL algorithms are powerful in capturing the complex non-linear relationships between 

input features, thereby extracting low-to-high level latent features that are predictive of 

the response of interest (Zhou et al., 2021; Singh et al., 2022; Bethlehem et al., 2022; 

Abrol et al., 2021; Davatzikos, 2019). So far, DL has been widely adopted in medical 

image processing tasks such as registration, reconstruction, segmentation, and synthesis, and 

analysis tasks such as disease diagnosis, anomaly detection, and pathology and prognosis 

evolution prediction.

Generative adversarial networks (GANs), first introduced in 2014 by Goodfellow et al. 

(2014) have had a profound influence in DL, leading to numerous applications. GAN is 

a generative method which synthesizes realistic-looking features/images by learning the 

sample distribution from real data. GAN and its variants have shown great promise in 

image generation tasks such as image enhancement, cross-modality synthesis, text-to-image 

synthesis, and image-to-image translation (Gui et al., 2022; Wang et al., 2021 a). This 

technique is particularly promising for neuroimaging and clinical neuroscience applications 

because it is capable of discovering and reproducing the complex and non-linear pathology 

patterns from medical images and data.

Many previous reviews of GANs focused on technical details of image synthesis in 

medical imaging (Yi et al., 2019; Laino et al., 2022; Qu et al., 2021; Jeong et al., 2022; 

Sorin et al., 2020). However, less attention has been paid to the adoption of GANs 

in clinical neuroimaging studies. In this review, we present the current state of GANs 

in neuroimaging research, in various applications including neurodegenerative disease 

diagnosis, cancer and anomaly detection, brain development modeling, dementia trajectory 

tracing, lesion evolution prediction, and tumor growth estimation. By showcasing these 
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different applications discussed in the literature, we demonstrate the advantages of GANs 

for neuroimaging studies, compared to traditional ML methods. We also discuss the current 

limitations of GANs and potential opportunities for adopting GANs in future neuroimaging 

research.

Review perspective.

Our review emphasizes discovery and analysis of imaging phenotypes associated with 

neurological diseases via deep learning techniques, focusing on GANs in particular. We 

exclude papers solely focusing on methodology development for tasks such as image 

synthesis, registration, segmentation, reconstruction, modality translation, and dataset 

enlargement. We filter research articles on Google Scholar, PubMed, and several pre-print 

platforms containing words such as ‘GAN’, ‘Generative Adversarial Network’, ‘Medical 

Imaging’, and ‘Brain’. We further screen the titles and abstracts for a thematic match. 

To provide a thorough review, we build connection graphs for each included paper 

using Semantic Scholar in order to find additional relevant publications. Finally, detailed 

examination of the methods and results of each paper helped us decide if they fall in our 

review scope. Based on the application areas of the selected papers, we divide them into two 

main categories: clinical diagnosis and disease progression. Each category is further split 

into finer tasks, which are described in the manuscript organization section.

Manuscript organization.

The rest of the paper is organized as follows. In Section 2, we provide background 

knowledge on GANs and their algorithmic extensions for applications in neuroimaging. 

From Sections 3 to 4, we comprehensively illustrate the applications of GANs in 

neurological research using imaging phenotypes. We discuss clinical diagnosis, including 

disease classification, with a primary focus on Alzheimer’s disease and brain tumor 

detection in Section 3. In Section 4, we present modeling of imaging patterns of brain 

change in cognitively unimpaired brain aging and in several diseases, including Alzheimer’s 

disease, brain lesion evolution and tumor growth. For each application, we introduce the 

background and challenges, describe the essential methodology for tackling the problem, 

showcase its advantages and promises from evaluation results, as well as critique the 

limitations and pitfalls. Finally, in Section 5, we suggest potential promising future 

directions and discuss open questions for each neurological application utilizing GANs, 

based on current issues and challenges.

2. Preliminaries on GANs

GANs have the ability to approximate complex probability distributions and thereby 

generate realistic patterns or images, as well as capture effects of pathologic processes on 

imaging phenotypes. We will describe the mechanism of the standard GAN and its usage 

in neuroimaging studies (see Table 1). Then, we showcase a few GAN variants whose 

architectures have been modified to suit specific clinical tasks, such as disease diagnosis and 

prognosis.
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2.1. Original GAN

GAN was first proposed by Goodfellow et al. (2014) to overcome the intractable 

probabilistic computation difficulty that deep generative models, such as the deep 

Boltzmann machine (Salakhutdinov and Larochelle, 2010), usually suffer from. There 

are two components in a GAN: the generator and the discriminator, as shown in Fig. 

1 A. Intuitively, we can think of the framework mechanism as a two-player game – 

player A and player B competing with each other to produce fake images and detect 

them. The game drives both parties to improve their techniques until the fake images 

are indistinguishable from the real images. Given a finite collection of data points x 
sampled from the natural distribution, which is unknown, we would like to learn or 

approximate the natural distribution from the observations. A generator is defined to be 

a mapping function that projects noise variables sampled from a prior distribution to 

the data space. The prior distribution can be uniform or Gaussian, and the generator is 

parametrized by differentiable neural networks. Given the output of the generator and the 

real observations, the discriminator, which is also parameterized by neural networks, outputs 

the probability that the input comes from a real sample distribution. In this two-player game, 

we simultaneously train the generator to minimize the probability that the discriminator 

treats the generated image as fake and train the discriminator to maximize the probability of 

identifying the generated image as fake. This technique is called adversarial training.

At convergence, the discriminator should theoretically output 50% probability for any input 

and the generator produces samples that are indistinguishable from the real data. One 

advantage of GAN is that it can generate clear and high quality images whereas another 

popular deep generative model, the variational autoencoder (VAE) (Kingma and Welling, 

2013), can only produce blurry figures. Thus, GANs are well-suited for many applications in 

neuroimaging research, such as generating heterogeneous pathological patterns by mapping 

a healthy control image to potential reproducible disease signatures for subtype discovery. 

GANs can also predict the evolution of brain lesions or tumors for personalized disease 

diagnosis and prognosis. We discuss several popular variants of GANs that have been 

adapted for different areas of neuroimaging research in the next subsection.

2.2. Variants of GAN

Based on the original GAN model, different variants were proposed in recent years 

for two main purposes: solving limitations of the original GAN and adapting it to 

different applications. Here, we introduce the main variants that have been applied in the 

neuroimaging studies that will be discussed in the following sections.

2.2.1. Challenge oriented variants—Though the original GAN model has shown 

promising performance in generating realistic high-dimensional data, it still suffers from 

problems such as unstable optimization during training, mode collapse (learning to generate 

images following distributions of only a subset of training images), and poor quality 

(visually chaotic or blurry images) of generated data. Many GAN variants were proposed for 

solving these issues and also proved to be helpful in generating high-quality neuroimaging 

data (Bowles et al., 2018; Han et al., 2019; Gao et al., 2022).
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Wasserstein GAN (W-GAN).—W-GAN (Arjovsky et al., 2017) is one of the important 

variants proposed to address unstable optimization and mode collapse. Compared to the 

original GAN model, W-GAN shares a similar min-max training procedure but has a 

different loss function. With the new loss function, the training procedure aims to minimize 

the Wasserstein distance between distributions of generated data and real data, which is 

shown to be a better distance measure for image synthesis problems. The WGAN-GP 

(Gulrajani et al., 2017) (W-GAN with gradient penalty) model was introduced as one 

improvement on W-GAN for more stable training with the gradient penalty method.

Besides variants in loss function, some other works propose to modify model structures for 

improving the quality of generated images.

Deep convolutional GAN (DC-GAN) and progressive growing GAN (PG-GAN).
—DC-GAN (Radford et al., 2016) is one of the earliest models that uses convolutional 

layers in both generator and discriminator for stable generation of higher quality RGB 

images. PG-GAN (Karras et al., 2018) (Fig. 1 B), further achieves large high-resolution 

image generation by progressively increasing the number of layers during the training 

process. Systematic addition of the layers in both generator and discriminator enables the 

model to effectively learn from coarse-level details to finer details.

Self-attention GAN (SA-GAN).—SA-GAN (Zhang et al., 2019) leverages a self-

attention mechanism in convolutional GANs. The self-attention module, complementary 

to convolutions, helps with modeling long range, multi-level dependencies across image 

regions, and thus avoids using only spatially local properties for generating high-resolution 

images.

2.2.2. Application oriented variants—Besides addressing broader methodological 

challenges above, many other variants of GANs were developed for specific applications. 

Several applications in computer vision are also of great interest to the neuroimaging 

community, including informative latent space and conditional image generation.

2.2.2.1. Informative latent space.: The latent vector in the GAN model is conventionally 

used as a random input for generating images, but does not have clear correspondence 

with the generated output data in an interpretable way. An informative latent space will 

help people interpret both the generative model and generated data, and make better use of 

them. In the field of neuroimaging, an informative latent space can be a low-dimensional 

representation for uncovering disease related imaging patterns (Bowles et al., 2018; Yang 

et al., 2021). Therefore, there are several variants proposed along this direction to make the 

latent vector correspond to features of generated images in an easily interpretable way:

Info-GAN and Cluster-GAN.: Info-GAN (Chen et al., 2016) (Fig. 1 E) divides latent 

variable into two parts z and c and enables c to explicitly explain features in generated 

data G(z, c). The model introduces a parameterized approximation of inverse posterior 

distribution Q (c|G(z, c)) which helps maximize the mutual information between latent 

variables and generated data, I(c, G(z, c)). Minimization of mutual information through 

Q (c|G(z, c)) can also be understood as a regularization on inverse reconstruction of 
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latent variables from generated data. Therefore, compared with basic GAN, Info-GAN 

alternatively solves an information-regularized minimax game. Similar to Info-GAN, 

Cluster-GAN (Mukherjee et al., 2019) shared the idea of reconstructing latent variables from 

generated data, but employed discrete latent variables, further enabling clustering through 

the latent space.

2.2.2.2. Conditional image generation.: Conditional image generation, including image-

to-image translation, generates images using some prior information instead of random 

input. For example, in the field of neuroimaging, there are several works approaches 

focusing on transformation of neuroimages among different modalities (Lin et al., 2021; Yan 

et al., 2018; Wei et al., 2020) and generation of neuroimages based on clinical information 

(Ravi et al., 2022). Most of these works are related to the following variants:

Conditional-GAN (C-GAN).: C-GAN (Mirza and Osindero, 2014) (Fig. 1 C) allows extra 

information, y, to be fed to both generator and discriminator, and thus is able to generate 

data x based on y information. y can be specific clinical information or the corresponding 

image in the source modality for image-to-image translation tasks.

Cycle-GAN.: Paired data y are not available in many cases, especially in the neuroimaging 

field. Dealing with this problem, Cycle-GAN (Zhu et al., 2017) (Fig. 1 D) enables unpaired 

image-to-image translation by imposing a specific cycle consistency loss for regularization 

besides standard GAN loss. The model has two mapping functions, G and F, which 

transform data from source to target and from target to source domain, respectively, while 

encouraging that generated output data can be reconstructed back to the input data, i.e. F 
(G(x)) ≈ x and G(F (y)) ≈ y.

Reversible-GAN (Rev-GAN).: Reversible-GAN (van der Ouderaa and Worrall, 2019) is 

an extension of Cycle-GAN. By utilizing invertible neural networks, the model possesses 

cycle-consistencies by design without explicitly constructing an inverse mapping function, 

thus achieving both output fidelity and memory efficiency.

Multimodal unsupervised image-to-image translation GAN (MUNIT-GAN).: Both Cycle-

GAN and Rev-GAN assume one-to-one mapping in image translation, ignoring diversities in 

transformation directions. MUNIT-GAN (Huang et al., 2018) (Fig. 1 F) tackles this problem 

by first encoding the source data into one shared content space C, and one domain-specific 

style space S. The content code of the input is combined with different style codes in the 

target style space to generate target data with distinct styles.

2.3. Evaluation metrics

A set of metrics has been used for evaluating the quality of data generated by GAN-

based models. Mean square error (MSE), peak signal-to-noise ratio (PSNR) (Wang et al., 

2004), and structural similarity (SSIM) (Wang et al., 2004) were proposed for quantifying 

similarities or distances between paired data. Thus, they are typically used for comparing 

the generated data with the ground truth images. Specifically, MSE and PSNR measure 

the absolute pixel-wise distances between two images, while SSIM measures the structural 
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similarity by considering dependencies among pixels. Two other metrics, Fréchet inception 

distance (FID) (Heusel et al., 2017) and maximum mean discrepancy (MMD) (Tolstikhin et 

al., 2016), are utilized for computing distances between two data distributions when there is 

no paired ground truth. In the application of GAN-based models, they are often applied to 

measure similarities between distributions of generated and real data.

3. GANs in clinical diagnosis

Accurate disease diagnosis is necessary for early intervention that may potentially delay 

disease progression. This is especially true in the case of neurodegenerative diseases, 

which are often highly heterogeneous, comorbid, and progress rapidly with severe 

impacts on the physical and cognitive function of patients. In the last decade, there has 

been pivotal progress in imaging techniques such as structural MRI, Fluorodeoxyglucose-

PET (FDG-PET) and resting state functional MRI (rs-fMRI), enabling more precise 

and accurate measurement of disease-related structural and functional brain change in 
vivo. Simultaneously, advanced DL methods have been developed to analyze large, high-

dimensional datasets and perform tasks such as disease classification and anomaly detection. 

GANs in particular have been leveraged to improve performance in both of these tasks.

This section is organized as follows. First, we discuss the use of GANs in disease 

classification frameworks with a primary focus on Alzheimer’s disease. This is first 

discussed in the context of single modality imaging and then multimodal imaging. Next, 

we discuss the use of GANs in anomaly detection (see Table 2).

3.1. Disease classification

Classification involves clustering observations into distinct groups and assigning class labels 

to these groups based on associated input features. In the context of disease diagnosis, 

the classes could refer to disease stages or disease subtypes, for example. Previous work 

in disease classification relied on traditional ML techniques, such as SVM and logistic 

regression (Varol et al., 2017; Dong et al., 2016). GANs can glean and analyze patterns 

in high-dimensional, multi-modal imaging datasets, detecting signs of neurodegenerative 

processes and underlying pathology at preclinical stages. They can also synthesize whole 

images across modalities, which can be used to assist classification downstream.

While GANs can be applied to many different disease datasets, most of the papers we 

discuss below focus on Alzheimer’s disease, which is an irreversible neurodegenerative 

disease that debilitates cognitive abilities. It is the leading cause of dementia and currently 

impacts five million people in the United States (Arvanitakis et al., 2019). GANs can 

derive powerful imaging markers for individualized diagnosis, classification into conversion 

groups, or even prediction of onset at preclinical and cognitively unimpaired stages.

3.1.1. Disease classification with single-modality imaging

3.1.1.1. Structural MRI.: Structural imaging, including T1- and T2- weighted MRI, 

helps visualize brain anatomy such as shape, position, and size of tissues within the brain. 

Features that are commonly derived from structural MRI include regional brain volumes 

from T1-weighted scans and tissue hyperintensities from T2-weighted scans. Other brain 
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characteristics such as tissue composition fractions and intracranial volume can also be 

extracted from these imaging modalities. Volumetric regional and whole brain atrophies 

derived from structural MRI are now identified as valid biomarkers of neurodegeneration, 

and have been used for clinical assessment and diagnosis (Frisoni et al., 2010 b). Besides 

diagnostic utility, features extracted from structural imaging have been used as imaging 

endpoints to quantify outcomes in clinical trials of disease modifying therapies (Frisoni et 

al., 2010 b).

Machine learning methods such as random forests have been proposed for automated 

Alzheimer’s disease classification but these methods require careful feature extraction and 

selection (Ramírez et al., 2010). Extracting features from structural MRI involves complex 

preprocessing steps, and the following feature selection phase requires advanced clinical 

knowledge. Supervised deep learning methods, such as convolutional neural networks 

(CNN), have also been proposed for Alzheimer’s disease classification (Oh et al., 2019; 

Sarraf and Tofighi, 2016). While CNNs can implicitly extract hierarchical features from 

images, they require large amounts of labeled training data, which are not always available 

(Oh et al., 2019; Sarraf and Tofighi, 2016).

Therefore, Yu et al. (2021) propose a 3D semi-supervised learning based GAN (THS-GAN) 

which utilizes both labeled and unlabeled T1-weighted MRI for classifying mild cognitive 

impairment and Alzheimer’s disease. THS-GAN is modified based on C-GAN, and it has 

a generator, a discriminator, and a classifier. The schematic of the network architecture 

is shown in Fig. 2A. The generator uses 3D transposed convolutions to generate 3D 

T1-weighted MRI, while the discriminator and classifier use 3D DenseNet (Gu, 2017) to 

extract features from high dimensional MR volumes. Specifically, the generator which is 

conditioned on disease class produces a fake image-label pair, whereas the classifier takes an 

unlabeled image, predicts its corresponding disease category, and produces image-label pairs 

for unlabelled images. The discriminator’s job is to identify whether an image-label pair 

comes from the real data distribution. When training three of them together, the generator 

tends to generate more realistic images for a given disease class, the classifier tries to 

improve its predictive accuracy, while the discriminator will maximize the probability of 

assigning fake labels to the image-label pairs generated from the classifier and generator. 

During evaluation, the model is able to learn and generate plausible images (as shown 

in Fig. 2 B). The method achieves 95.5% accuracy in Alzheimer’s disease v.s. healthy 

control classification, and 89.29% accuracy in mild cognitive impairment v.s. healthy control 

classification. We will discuss other GAN-based techniques that use structural imaging for 

disease classification in the multi-modal imaging section.

3.1.1.2. Resting-state fMRI.: Rs-fMRI measures the time series of the blood-

oxygenation-level-dependent (BOLD) fluctuations across brain anatomical regions. It relies 

on the underlying assumption that brain regions that co-activate, i.e. reliably demonstrate 

synchronous, low-frequency fluctuations in BOLD, are more likely to be involved in similar 

neural processes than regions that do not co-activate. Computing the Pearson correlations 

between the time series recorded in different brain regions provides estimates of functional 

connectivity, which is used to extract resting-state functional networks (rsFNs). These 

networks show patterns of synchronous activity across a set of distributed brain areas and 
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provide potential biomarkers for a variety of illnesses (Damoiseaux et al., 2006; Horovitz 

et al., 2008; Smith et al., 2009). Specifically, changes in the representation of rsFNs have 

been observed in groups suffering from brain disorders such as epilepsy, schizophrenia, 

attention deficit hyperactivity disorder and major depressive disorder, and diseases such as 

Alzheimer’s and Parkinson’s (Rajpoot et al., 2015; Koch et al., 2015; Wang et al., 2013; Wee 

et al., 2012; Díez-Cirarda et al., 2018; Dansereau et al., 2017). Prior works in fMRI-based 

disease classification rely on common machine learning techniques such as support vector 

machine (SVM) and nearest neighbors (Saccà et al., 2018). These techniques require careful 

feature engineering and feature selection to achieve optimal performance.

Recently, deep learning techniques such as convolutional neural networks have been 

used for disease classification based on automatic feature extraction (Wen et al., 2018). 

However, due to insufficient data especially from rs-fMRI, these methods show poor 

generalizability. To overcome the limitations of both traditional ML and DL, researchers 

propose to use GANs to improve the classification performance. Zhao et al. (2020) 

propose adapting a 2D GAN model for disease classification using rs-fMRI. They use a 

GAN architecture to classify individuals with mental disorders from healthy controls (HC) 

based on functional connectivity (FC). FC assesses temporal relationships of a subject’s 

brain functional networks by computing the pairwise correlation between the spatially 

segregated networks (Du et al., 2015). Hence, FC reflects connectivity/synchronized activity 

of the brain networks and can be potentially used to identify fMRI-based biomarkers for 

disease classification. The generator takes a noise vector as input and learns to generate 

fake FC networks. The discriminator is used to classify mental disorders from HC, and 

discriminate between real and fake images. Finally, the model can be trained by optimizing 

an objective function that combines both adversarial loss and classification loss. The model 

performance is evaluated on two tasks, namely major depression disorder and schizophrenia 

classifications. The performance of the GAN model is validated against six classification 

techniques including k-nearest neighbors, adaboost, naive Bayes, Gaussian processes, SVM, 

and deep neural net. The GAN model outperforms all other methods in both tasks, i.e., 

major depressive disorder classification and schizophrenia classification, suggesting its 

utility as a potentially powerful tool to aid discriminative diagnosis.

Since the topology of brain connectomes is close to graphs, a natural extension would be 

boosting the classification model by using both graph structures and GANs. Mirakhorli et 

al. (2020) use FC to identify abnormal changes in the brain due to Alzheimer’s disease. The 

technique leverages FC to represent the human brain as a graph and then uses a graph neural 

network to learn structures which differentiate Alzheimer’s disease subjects from healthy 

individuals. Here, a VAE which is implemented by graph convolutional operators serves as 

a generator and a discriminator is used to improve the recovery of the graphs. At inference, 

the encoder part of the VAE converts graph data into a low-dimensional space, and then 

abnormal signals (salience alteration of the brain connection) can be detected by comparing 

the differences of the graph properties (first-and second-order proximities) within these 

latent space features. The model achieves an average five-fold cross-validation accuracy 

of 85.2% for the three-way classification. The model also finds that abnormal connections 

of the frontal gyrus and precentral gyrus with other regions have a high percentage of 

Alzheimer’s disease risk in the early stages and fall into the effective biomarkers category. 
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Additionally, the olfactory cortex, supplementary motor area, and rolandic operculum have 

a high contribution to classify mild cognitive impairment patients. By recovering the 

missing connections with a generative approach and distinguishing the abnormal partial 

correlations from the healthy ones, the model provides biological-meaningful findings with 

high accuracy disease classification performance.

The studies mentioned above focus solely on functional connectivity. Even though 

performing classification using single-modality data from structural or functional MRI 

provides reasonable diagnostic accuracy, it can be boosted by using multi-modality data 

since additional modalities provide complementary information.

3.1.1.3. Disease classification with multi-modal imaging.: Multiple imaging modalities, 

such as MRI, PET, diffusion tensor imaging (DTI), and rs-fMRI, help in capturing diverse 

pathology patterns that may highlight different disease-relevant regions in the brain. This 

enhances the ability of disease classification models to distinguish diseases that are often 

comorbid, such as Alzheimer’s and Parkinson’s. However, the use of multi-modal imaging 

features is particularly challenging because of data sharing limitations, patient dropout, and 

relatively limited datasets with all modalities. Previous studies address this issue by simply 

discarding modality-incomplete samples (Zhang and Shen, 2012; Calhoun and Sui, 2016; 

Frisoni et al., 2010 a; Jie et al., 2016). This approach is prone to reducing classification 

accuracy and deteriorating the model’s generalizability due to the limited sample size. 

Instead, GANs can better handle missing data in multi-modal datasets by generating the 

missing images and preserving sample size, thereby boosting downstream classification 

performance.

Previous work shows direct and indirect relationships between functional and structural 

pathways within the human brain (Honey et al., 2009; Fukushima et al., 2018). These 

interesting studies have pivoted clinical research towards multi-modal integration to 

reliably infer brain connectivity. They also provided key insights into brain dysfunction 

in neurological disorders such as autism (Cociu et al., 2018), schizophrenia (Li et al., 2020 

a), and attention deficit hyperactivity disorder (Qureshi et al., 2017).

Pan et al. (2021 a) propose to use multi-modal imaging to detect crucial discriminative 

neural circuits between Alzheimer’s disease patients and healthy subjects. The model 

can effectively extract complementary topology information between rs-fMRI and DTI 

using a decoupling deep learning model (DecGAN). DecGAN consists of a generator, 

a discriminator, a decoupling module, and a classification module. The generator and 

discriminator modules capture the complex distribution of functional brain networks without 

explicitly modeling the probability density function. The decoupling module is trained to 

detect the sparse graphs which store relationships between region-of-interest connectivity, 

such that the classification module can accurately separate Alzheimer’s disease and the 

healthy ones when taking these sparse graphs as inputs. The method shows accurate 

classification performance when discriminating HC v.s. early mild cognitive impairment 

(86.2% in accuracy), HC v.s. late mild cognitive impairment (85.7% in accuracy) and HC 

v.s. Alzheimer’s disease (85.2% in accuracy). The model also finds that limbic lobe and 

occipital lobe are highly correlated to Alzheimer’s disease pathology (Migliaccio et al., 
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2015; Takahashi et al., 2017). One major limitation of this work is that the authors assume 

the coupling between two regions is static, which conflicts with several recent studies 

that show functional connectivity is dynamic (Hutchison et al., 2013; Honey et al., 2009; 

Barttfeld et al., 2015). Moreover, the sample size of the study is small (236 subjects), 

which hinders the generalizability and reproducibility of region-of-interests detected by the 

model. Future studies could incorporate dynamic connectivity and detect dynamic changes 

predictive of Alzheimer’s disease or other neurodegenerative diseases and disorders.

Lin et al. (2021) use a 3D Rev-GAN (van der Ouderaa and Worrall, 2019) for missing 

data imputation and then evaluate the effect of the inclusion of GANs-generated images 

in Alzheimer’s disease v.s. cognitively unimpaired (CU) as well as stable mild cognitive 

impairment v.s. progressive mild cognitive impairment classification. The method is 

evaluated on CN subjects, subjects with stable mild cognitive impairment and progressive 

mild cognitive impairment and subjects with Alzheimer’s disease. Hippocampus images are 

used in addition to the full brain images in the experiments. Rev-GAN constructs synthetic 

PET images with high image quality that slightly deviates from real PET scans. Compared 

to other image synthesis methods that perform more processing steps to achieve higher 

alignment between the different modalities (Pan et al., 2018,2019, 2020; Hu et al., 2019), 

this approach yields comparable PSNR and higher SSIM in PET images synthesis. In terms 

of MR hippocampus images synthesis, the Rev-GAN achieves the highest SSIM and PSNR. 

The model performance drops for the full image reconstruction due to the difficulties in 

mapping the structure information such as the skull of the MR image from the functional 

image. Overall, the use of only one generator to perform bidirectional image synthesis 

in combination with the stability of reversible architecture enables the training of deeper 

networks with low memory cost. Therefore, the non-linear fitting ability of the model is 

enhanced, resulting in the construction of high quality images (see Fig. 2 C).

After imputing the missing data with GANs, Alzheimer’s disease diagnosis and mild 

cognitive impairment to Alzheimer’s disease conversion prediction are implemented using 

a multi-modal 3D CNN. The model trained using real hippocampus images for one 

modality and fully synthetic data from the other modality yields similar, sometimes superior, 

performance compared to the model using real data for both modalities, and always higher 

performance than the model using missing data. In terms of full images, although the quality 

of the generated MR full images is not as good as that of the generated hippocampus 

images, the classification accuracy using synthetic MR full images exceeds 90% for the 

Alzheimer’s disease diagnosis and 73% for the mild cognitive impairment to Alzheimer’s 

disease conversion prediction. Overall, the prominent improvement of the classification 

results with the use of GAN-synthetic data reveals the ability of the image synthesis model 

to construct images of high quality which also contain useful information about the disease, 

thus significantly contributing to Alzheimer’s diagnosis and mild cognitive impairment 

conversion prediction.

In this study, the authors use missing data synthesis to improve the Alzheimer’s 

disease diagnosis and the prediction of mild cognitive impairment to Alzheimer’s disease 

conversion. However, less attention has been devoted to the FDG metabolic changes and 

the biological significance of the imputed data compared to real data. Additionally, a pre-
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requisite for successful MRI-to-PET mapping is that the disease affects the tissue structure 

and metabolic function at the same time. Further exploration of the MRI-PET relationship in 

diseases such as cancer where structural and functional changes do not occur simultaneously 

is needed.

To date, relatively less attention has been devoted to the generation of amyloid PET 

images. Amyloid PET measures the amount of amyloid beta protein aggregation in the 

brain (Nordberg, 2004), which is one of the key hallmarks of Alzheimer’s disease. However, 

the availability of PET scans is extremely limited (compared to the MR scans) due to the 

radioactive exposure and high cost. Yan et al. (2018) use a 3D conditional GAN to construct 
18 F-florbetapir PET images from MR images and then compare the performance of their 

method with traditional data augmentation techniques, such as image rotation and flipping, 

in a mild cognitive impairment classification task. The conditional GAN generator is a 

U-Net (Ronneberger et al., 2015) based CNN with skip connections and the discriminator 

is PatchGAN discriminator (Zhu et al., 2017). The generator is not only trained to fool 

the discriminator but also to construct images as close to reality as possible. Paired PET-

MRI images are used to train the C-GAN. Then, the trained model is applied to generate 

PET images from MR images and the real PET images are used for the evaluation of 

C-GAN using SSIM metric. The SSIM reaches 0.95, thus indicating the ability of the 

model to generate images with high similarity with the real images. To classify stable 

mild cognitive impairment v.s. progressive mild cognitive impairment, a residual network 

(ResNet) (He et al., 2016) is built. The ResNet is trained using PET images from three 

scenarios: real PET images only, combined real PET and PET images generated using 

traditional augmentation techniques, and combined real PET and C-GAN-generated PET 

images. The classification performance increases with the aid of synthetic data. Between 

the two approaches, the inclusion of C-GAN-generated PET images in training results in 

higher performance compared to the model that used images generated using traditional 

augmentation techniques and this reveals the superiority of GANs in image synthesis over 

traditional image augmentation techniques. Medical images are different from the natural 

ones with a certain centering, alignment and asymmetry geometry, as well as characteristics 

such as contrast and brightness. Thus, computer vision augmentation techniques, such as 

adjusting brightness or contrast, adding noise, might alter the semantic content of the image; 

for example, the distinction between gray and white matter tissues can be impeded when 

changing the contrast of the image.

Hu et al. (2022) extend the MR-to-PET synthesis framework by developing a 3D end-to-

end network, called bidirectional mapping GAN (BMGAN). This model adopts 3D Dense 

U-Net, a variant of U-Net (Çiçek et al., 2016) that leverages the dense connections of 

DenseNet (Gu, 2017), as the generator to synthesize brain PET images from MR images. 

The densely connected paths between layers in DenseNet tackle the vanishing gradient 

problem, foster feature propagation and information flow, and reduce the number of network 

parameters. One advantage of BMGAN is that it sets up an invertible connection between 

the brain PET images and the latent vectors. The model does not only learn a forward 

mapping from the latent vector to the PET images as traditional GANs, but also learns 

a backward mapping that returns the PET images back to the latent space by training an 

encoder simultaneously. This mechanism enables the synthesis of perceptually realistic PET 

Wang et al. Page 12

Neuroimage. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



images while retaining the distinct features of brain structures across individuals. Beside 

the high-quality generated images, the effectiveness of these images in disease diagnosis 

has been demonstrated by performing Alzheimer’s disease v.s. normal classification. The 

classification performance (AUC) using the BMGAN synthesized PET images is better than 

those generated by state-of-the-art medical imaging cross-modality synthesis models such as 

CGAN and PGAN (Dar et al., 2019).

3.1.1.4. Joint image synthesis and classification paradigm.: Many imputation methods 

for multi-modality neuroimaging datasets usually treat image synthesis and disease 

diagnosis as two separate tasks (Lin et al., 2021; Yan et al., 2018; Pan et al., 2021a). This 

ignores the fact that different modalities may identify different relevant regions in the brain 

relevant to the disease being studied. Performing image synthesis and classification in a joint 

framework enables deep learning networks to leverage correlations across input modalities.

Gao et al. (2022) propose a 3D task-induced pyramid and attention GAN (TPA-GAN) 

to generate missing PET data given the paired MRI. The pyramid convolution layers 

can capture multilevel features of MRI while the attention module eliminates redundant 

information and accelerates convergence of the network. The task-induced discriminator 

helps generate images that retain information specific for disease classification. Then, a 

pathwise-dense CNN (PT-DCN) gradually learns and combines the multimodal features 

from both real and imputed images towards the final disease classification. The pathwise 

transfer blocks consist of a concatenation layer, convolution layer, batch normalization and 

ReLU activation layer, and a larger convolution layer. These blocks are used to communicate 

information across the two paths of PET and MRI, making full use of complementary 

information in these two modalities. Under SSIM, PNSR and MDD metrics, the TPA-GAN 

outperforms several baseline methods, including a CycleGAN variant developed by Pan et 

al. (2018) for generation of PET images using MRI. In the experiments, the authors use 

ADNI-1 for training and ADNI-2 for testing, which could be an issue if the imaging data 

is not harmonized appropriately across scanner-changes, acquisition protocols, and subject 

demographics. In the future, cross-study transfer learning or domain adaptation techniques 

can be investigated to alleviate the problem. The following work leverages this idea to 

improve the power of a sample-size limited clinical study.

Pan et al. (2021b) extend on the joint synthesis-classification method developed by Gao 

et al. (2022) by maximizing image similarity within modalities. They propose a disease-

image-specific deep learning (DSDL) framework for joint neuroimage synthesis and disease 

diagnosis using incomplete multi-modality neuroimages. First, disease characteristics 

specific to a given image modality are implicitly modeled and output by a disease-image-

specific network (DSNet), which takes whole-brain images as input. A feature-consistency 

GAN (FGAN) then imputes the missing images. The FGAN encourages feature maps 

between pairs of synthetic and real images to be consistent while preserving the disease-

image-specific information, using the outputs generated by DSNet. Therefore, the FGAN 

is correlated with DSNet and synthesizes the missing modalities in a diagnosis-oriented 

manner, resulting in better performance. Specifically, the DSNet achieves an diagnostic 

performance of 94.39% with only MRI and 94.92% with MRI and PET when using AUROC 

as the metric.
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The joint neuroimage synthesis and representation learning (JSRL) framework proposed 

by Liu et al. (2020) offers a few advantages compared to the previous works. The model 

integrates image synthesis and representation learning into a unified framework where 

the synthesized multimodal representations are used as inputs for representation learning. 

The framework leverages transfer learning for prediction of conversion in subjects with 

subjective cognitive decline, which is the self-reported experience of worsening confusion 

or memory loss. JSRL consists of two major components: a GAN for synthesizing missing 

neuroimaging data, and a classification network for learning neuroimage representations 

and predicting the progression of subjective cognitive decline. These two subnetworks 

share the same feature encoding module, encouraging the generated data to be prediction-

oriented. The underlying association among multimodal images can be effectively modeled 

for accurate prediction with an AUROC of 71.3%. In summary, this method focuses 

on improving the classification of subjective cognitive decline subjects using incomplete 

multimodal neuroimaging data. Since subjective cognitive decline is one of the earliest 

noticeable symptoms of Alzheimer’s disease and related dementias, the classification is 

clinically useful to begin targeted interventions earlier in these subjects. This work is among 

the first multimodal neuroimaging-based studies for subjective cognitive decline conversion 

prediction, which avoids the need to individually extract MRI and real or synthetic PET 

features as in previous works. JSRL leverages transfer learning by harnessing a large scale 

ADNI database to model a smaller scale database on subjective cognitive decline, which 

significantly increases the power of this study.

While many studies apply GANs for image synthesis and classification in neurodegenerative 

diseases, GANs have broader application in neurology, including detection of brain tumors 

and imaging anomalies. These applications are discussed in the next section.

3.2. Tumor and anomaly detection

3.2.1. Supervised tumor detection—Brain tumors, abnormal proliferations of cells in 

the brain, comprise a large portion of deaths related to cancer worldwide (Lapointe et al., 

2018). Tumor detection and classification is an active research area in the medical imaging 

community; however, available imaging data for this research purpose remains relatively 

limited (Bakas et al., 2018). To tackle this problem, many of the following recent works 

leverage the generative abilities of GANs for dataset enrichment and augmentation.

Han et al. (2019) demonstrate the use of GANs in improving the performance of a brain 

tumor detection network. They propose a two-step method for enriching the training dataset 

via data augmentation by generating additional samples of normal and pathologic images. 

They use an initial 2D noise-to-image GAN to produce the anatomical content and rough 

attributes of a scan and sequentially an unpaired image-to-image translation network to 

refine these images.

Park et al. (2021) utilize StyleGAN to create synthetic images while preserving the 

morphologic variations to improve the diagnostic accuracy of isocitrate dehydrogenase 

(IDH) mutant gliomas. The 2D GAN model was trained on normal brains and IDH-mutant 

high-grade astrocytomas to generate the corresponding contrast-enhanced (CE) T1-weighted 

and fluid-attenuated inversion recovery (FLAIR) images. The authors further develop a 
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diagnostic model from the morphologic characteristics of both realistic and synthetic data to 

validate that the synthetic data generated by GAN can improve molecular prediction for IDH 

status of glioblastomas.

While these approaches show initial promise, GAN-based dataset enrichment has not been 

thoroughly studied for brain tumors. For example, GANs might not be able to capture the 

sample distribution of highly heterogeneous tumor data when only limited data is available. 

Given this challenge, GAN-based unsupervised anomaly detection offers distinct advantages 

for tumor detection.

3.2.2. Anomaly detection—Anomaly detection, the identification of scans that deviate 

from the normative distribution, offers a path toward identifying pathology even when the 

anomalous group is not explicitly defined. Anomaly detection has most often been used 

for the detection and segmentation of tumors and lesions (Nguyen et al., 2023; Bengs 

et al., 2021). Prior approaches for anomaly detection are not suited for use at the image 

level and often use regional summary measures from segmented brain regions to identify 

abnormalities from scans. For example, one-class SVM is used to define the normative 

group allowing outliers to be identified (El Azami et al., 2013; Retico et al., 2016). These 

methods have shown promise in specific cases but are sensitive to the selection of summary 

measures used to represent the scan. In general, anomaly detection models are trained using 

both healthy and anomalous brain scans or healthy scans only. Focusing more on the latter 

case, GAN-based anomaly detection in neuroimaging stems from the ability of GANs to 

model the normative distribution of brains accurately. When substantial deviations from the 

expected distribution occur, the model can infer the presence of abnormalities, which has 

been leveraged in neuroimaging for lesion and tumor detection. In 2017, AnoGAN (Schlegl 

et al., 2017) gained popularity as an anomaly detection method using only normative 

samples to define its detection criteria. AnoGAN uses a generator to learn the mapping 

from a low-dimensional latent space to normal 2D images, defining normal/healthy regions 

in the latent space. When a new image is encountered, the latent representation whose 

reconstruction matches the new image most closely would be selected via backpropagation-

guided sampling. Since the generator is only trained on normal samples, the learned 

latent space cannot adequately represent the variation of anomalous scans, and thereby the 

reconstructed images from anomalous images often differed in the anomalous regions (see 

Fig. 3). If deviation between the reconstructed and original image is observed, the image 

would then be marked as anomalous.

Similarly, Nguyen et al. (2023) develop an unsupervised brain tumor segmentation/detection 

method leveraging GAN-based image in-painting technique – the reconstruction of partially 

obscured areas of an image from the surrounding context. If the network is trained on 

healthy images, anomalous regions of an image will be in-painted. The method performed 

well in images with smaller, local anomalies as the surrounding context contained enough 

information for the in-painting of a healthy region. Training in this scenario is performed 

by randomly masking a part of an image and asking the generator to recreate the missing 

portion based on the unmasked regions. During inference, the target image is masked in 

many different positions and then reconstructed by the network. If there exists deviation 

between the reconstructed and original images in several subsets of the masked images, 
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this subject is likely to be marked as an anomaly. By repeatedly masking various parts 

of the scan, the authors are able to generate a tumor segmentation mask. The authors 

report an improvement of tumor segmentation performance over AnoGAN with a Dice 

score from 38% to 77%. Bengs et al. (2021) implement a similar idea of unsupervised 

anomaly detection to detect brain tumors using VAE-based image in-painting. The authors 

demonstrate an improvement over prior 2D methods in brain tumor segmentation with a 

Dice score from 25% to 31%. Although image in-painting methods have shown promise 

for abnormality detection, they have two major limitations. Firstly, they do not perform 

well when the abnormality is large or has a global effect on the scan; secondly, the 

algorithms may produce false positives in regions where normal anatomical variation is 

high, because there might be multiple acceptable ways of in-painting a region only based on 

its surrounding appearance.

GAN-based methods have offered a unique way to identify deviations from the healthy 

distribution. In particular, GAN-based unsupervised anomaly detection shows promising 

performance when pathology data is limited and difficult to acquire. There are a variety of 

potential clinical and research-based applications for such methods. It is foreseeable that 

these methods will be useful in triaging scans, with critical or time sensitive pathology, 

for a radiologist to read. While most published works have focused on identifying gross 

abnormalities, such as stroke and tumor lesions, it remains to be seen how well similar 

approaches perform in identifying subtler pathology. Within the domain of anomaly and 

tumor detection, GANs have also shown promise in enriching training data in cases with 

limited or missing data.

4. GANs in brain aging and modeling disease progression

To understand how a patient’s brain changes due to pathology, it is important to first 

understand how the brain evolves in the absence of pathology. This motivates the need 

for methods that specifically tackle the problems with modeling healthy brain aging, 

and how GANs can be utilized to simulate subject specific brain aging (Xia et al., 

2021). Additionally, modeling abnormal disease specific brain changes is also of clinical 

significance. Disease progression modeling can help screen for people at risk of developing 

neurological conditions and also help plan preventative measures or treatment options. This 

section will discuss the challenges in modeling healthy and abnormal brain changes and 

motivate the need and utility of GANs in disease prognosis. We will also review various 

existing GAN models that are designed to model healthy and abnormal brain changes (see 

Table 3).

4.1. Brain aging

The human brain undergoes morphological and functional changes with age. Deviations 

from these normative brain changes might be indicative of an underlying pathology. 

Neuroimaging techniques such as structural and functional MRI have been successfully 

applied (Kim et al., 2021) to measure and assess these brain changes. Modeling brain aging 

trajectories and simulating future brain states can be valuable in a number of applications 

including early detection of neurological conditions and imputation for missing data in 
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longitudinal studies. In prior work, researchers developed common atlas models (Habas et 

al., 2010; Huizinga et al., 2018; Dittrich et al., 2014) as spatio-temporal references of brain 

development and aging. One of the main challenges with this approach is that individuals 

might exhibit unique brain aging trajectories based on their lifestyle and health status. 

However, common atlas models might not preserve this inter-subject variability resulting in 

in-accurate modeling. In recent years, GANs have been proposed to combat this issue and 

generate subject-specific brain aging image synthesis.

Xia et al. (2021) designed a conditional GAN that synthesizes subject-specific brain images 

given a target age and health condition. Their unique model learns to synthesize older brain 

MR scans from a subject’s current brain scan without relying on any longitudinal scans to 

guide the synthesis. As depicted in Fig. 4 A, their model consists of a generator that is 

conditioned on the target health state and the difference between current age and target age 

of the subject. The generator takes a 2D T1-weighted MRI and synthesizes brain images that 

correspond to target age and health state (control/mild cognitive impairment/Alzheimer’s 

disease) while preserving subject identity. On the other hand, the discriminator ensures that 

the generated images correspond to the target age and health state by learning the joint 

distribution of the brain image, target age, and target health state. To preserve individual 

brain characteristics of the subjects during modeling, the authors train the GAN model 

with a combination loss function that has three elements: an adversarial loss (LGAN is a 

Wasserstein loss with gradient penalty) that encourages the model to generate realistic brain 

images, an identitypreservation loss (LID) that encourages network to preserve the subject’s 

unique characteristics during image generation, and finally a reconstruction loss (Lrec) that 

encourages the network to reconstruct input when the generator is conditioned on the same 

age and health state as the input. Fig. 4B shows the results of the conditional GAN in 

synthesizing images of the brain at multiple target ages. Although the predicted apparent age 

of synthesized images in Fig. 4B is very close to the target age, one limitation of the method 

is that the subject identity might not be preserved during image synthesis. The authors only 

incorporate age and health state in the modeling process, but other factors such as gender 

and genotype can help model finer subject details that might help preserve subject identity. 

Additionally, the model was trained to synthesize older brain scans from younger brain scans 

but not vice-versa. Modeling the opposite will not only strengthen the usability of the model 

for imputing missing timepoints but also provide a more robust model that preserves subject 

identity. Another major limitation is that the model uses a 2D design, to improve visual 

quality of the generated brain images, 3D architectures can be adapted to model the brain as 

a whole volume. The subsequent paper tackles some of these limitations.

Unlike the 2D model presented by Xia et al. (2021), Peng et al. (2021) introduce 3D 

models that longitudinally predict brain volumes in infants during their first year of life. 

The first model they introduce is a single-input-single-output model called perceptual 

adversarial network (PGAN). As depicted in Fig. 4C, PGAN has a 3D U-Net (Çiçek et 

al., 2016) as the generator which aids in volumetric processing. The generator takes T1 or 

T2 weighted brain images from an initial timepoint and learns to generate corresponding 

longitudinal brain images. The discriminator learns to discriminate the fake images from the 

real images using adversarial loss LGAN. Additionally, a voxel-wise reconstruction loss LV R 

encourages the voxel intensities of the generated images to be close to the corresponding 
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voxel intensities of the ground truth images. Since the voxel-wise reconstruction loss might 

over-smooth the generated images an additional loss function called perceptual loss LP 

is introduced. Perpetual loss helps preserve the sharpness of the generated images. Since 

MRI sequences capture complementary features of the brain, the authors propose a second 

model called multi-contrast perceptual adversarial network (MPGAN). This model extends 

the PGAN architecture to incorporate multiple modality inputs and outputs, thereby learning 

complimentary features from both T1- and T2-weighted brain images. As depicted in Fig. 

4D, MPGAN has two generators based on a 3D U-Net architecture, but unlike PGAN, 

the 3D U-Net has a shared encoder that takes T1- and T2-weighted images at a given 

time point as input, and two independent decoders that synthesize the longitudinal T1- and 

T2-weighted brain images, respectively. Two discriminator networks learn to discriminate 

between real and fake T1- and T2-weighted images. The models are evaluated on an infant 

brain imaging dataset with T1- and T2-weighted volumes available at 6 months and 12 

months of life. The model performance is measured on two tasks: predicting six month 

images from twelve month images as well as predicting twelve month images from six 

month images. A major limitation of this work is that it’s constrained to modeling two 

timepoints since paired images are used to train and model brain aging at 6 and 12 months 

of life. Hence the model cannot synthesize brain images over the whole lifespan, to do 

so would require scanning subjects across their whole lifespan. This leads us back to a 

recurring problem in modeling the brain aging process: models might require longitudinal 

data for training, which may be infeasible to acquire.

Brain aging is a complex process and each individual presents a unique brain aging 

trajectory that is influenced by their age, genetic code, demographics, and any underlying 

neuropathy. GANs allow for subject specific synthesis of the aging brain, but there is no 

guarantee that the subject identity is preserved during synthesis. Hence, future research 

needs to focus on integrating multiomic, imaging, and clinical data for brain aging synthesis 

while ensuring the preservation of subject identity.

4.2. Alzheimer’s disease progression

The human brain deviates from normative brain aging when underlying disease processes 

affect its structure and function. Disease progression models trained on longitudinal imaging 

data can characterize the future course of the disease progression, making them valuable 

for clinical trial management, treatment planning and prognosis. Traditional ML algorithms 

have been widely applied for modeling Alzheimer’s disease progression, with a focus on 

extrapolating biomarker metrics and cognitive scores. For example, Zhou et al. (2012) 

propose a least absolute shrinkage and selection operator (LASSO) formulation to predict 

Alzheimer’s disease patients’ cognitive scores at different time points. Recently, disease 

progression modeling is not only approached as a regression task, but also a generative 

task where models generate realistic high-dimensional image data. Researchers leverage the 

ability of GANs to synthesize realistic images and other data in general, in order to simulate 

future states of Alzheimer’s disease (Bowles et al., 2018; Yang et al., 2021; Ravi et al., 

2022). Generating realistic high dimensional data in the medical field is far from being 

considered a trivial task, due to the complexity and irregular availability of longitudinal 

and annotated data. GANs have been predominantly used in disease progression modeling 
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because of their superior ability in learning sharp distributions from training data and 

producing high resolution images, compared to other generative techniques (Bowles et al., 

2018; Yang et al., 2021; Ravi et al., 2022; Xia et al., 2021; Peng et al., 2021).

For example, Ravi et al. (2022) present a 4D-degenerative adversarial neuroimage net 

(4D-DANI-Net), with the goal of generating high resolution, longitudinal 3D MRIs that 

mimic the personalized neurodegeneration using spatiotemporal and biologically-informed 

constraints. The 4D-DANI-Net is composed of three main blocks:a preprocessing block, 

a progression block, and a 3D super resolution block. The preprocessing blockremoves 

irrelevant variations in the data. The progression modeling block is implemented using 

the degenerative adversarial neuroimage (DANI) net (Ravi et al., 2019) (see Fig. 5A). 

A conditional autoencoder (CAD), a set of adversarial networks and a set of biological 

constraints are the main elements of DANI net. The CAD is responsible for producing the 

longitudinal 2D MRI with the use of the biological constraints in the optimization and a 

discriminator that is going to compare the fake longitudinal data produced by the CAD with 

the real ones. Multiple DANI-Nets are trained, one for every 2D MR slice, and all these 

DANI nets compose the progression model of the 4D-DANI-Net. In order to unify the low 

resolution images produced by the DANI nets, the authors employ the 3D super-resolution 

block that produces the 3D high resolution MR image. The final block is the super resolution 

one that transforms the low-resolution images, produced by the DANI nets, into the 3D high 

resolution MR image. In Fig. 5B, there are qualitative results that showcase the ability of 

4D-DANI-Net to produce MR scans over time that correspond in different ages of the same 

subject.

In the same spectrum of simulating Alzheimer’s disease progression but in 2D space, 

Bowles et al. (2018) built a progression model for Alzheimer’s disease that leverages 

the imaging arithmetic and isolates the features in the latent space that correspond to 

Alzheimer’s pathology. The core model is W-GAN along with a re-weighting scheme. The 

re-weighting scheme increases the weighting of those real images that are misclassified. 

This forces the discriminator to better represent the most extreme parts of the images, which 

in turn forces the generator to produce images from this region. Using imaging arithmetic 

and the latent encodings that correspond to Alzheimer’s disease features one can simulate 

scans with Alzheimer’s with different grades of severity. For example, by adding the latent 

encoding of Alzheimer’s, with a specific scaling, in the MR scan of a cognitive normal 

subject one can see en-larged ventricles and cortical atrophy in the output MRI. However, 

this paper makes several potentially problematic assumptions. They have assumed that the 

progression is a linear process over time. Furthermore, they hypothesized that morphological 

changes across all subjects with Alzheimer’s disease are symmetric. Additionally, this 

methodology is developed using a small window size, 64 by 64 which therefore makes 

it unrealistic for a use case scenario.

Yang et al. (2021) present an alternative GAN-based approach for Alzheimer’s disease 

progression analysis built on tabular volumetric data. Firstly, they worked on disentangling 

the structural heterogeneity of the diseased brain and then with meta-analysis connected 

the cross-sectional patterns to longitudinal data. They propose semi-supervised clustering 

GAN (SMILE-GAN), a method that manages to disentangle pathologic neuroanatomical 
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heterogeneity and define subtypes of neurodegeneration. In general, SMILE-GAN learns 

mappings from cognitive unimpaired individuals to dementia patients in a generative 

approach. Through this approach, SMILE-GAN captures disease effects that contribute to 

brain anatomy changes and avoids learning non-disease related variations such as covariate 

effects. Technically, the model learns one-to-many mappings from the CN group, X, to the 

patient (PT) group Y. The goal is to learn a mapping function f: X × Z → Y which generates 

fake PT data from real CN data. The subtype variable z is used as an additional input to 

the mapping function f, along with the CN scan x. Along with the mapping function, the 

model also trains the discriminator D to distinguish real PT data y from synthesized PT 

y′ The optimal number of clusters is determined using cross-validation and evaluating for 

reproducibility of the results. These clusters define a four-dimensional coordinate system 

that captures major neuroanatomical patterns which are visualized in Fig. 6B.

This work goes on to connect the identified clusters with longitudinal progression pathways. 

Yang et al. (2021) provide an alternative and robust way to model progression, by 

identifying patterns of atrophy. No assumptions on imaging data distribution and its 

independence from confounding factors and variability make it a powerful model that could 

potentially be used in subtyping of other heterogeneous diseases. Furthermore, with more 

representative data such a method can potentially identify more intricate subtypes that now 

are covert due to its limited instances in the current datasets.

Modeling the progression of Alzheimer’s is a challenging task due to the complexity, 

availability, and the multiple modalities, ranging from imaging ones such as MRI and PET 

to genomic and clinical information. Understanding the underlying biological processes and 

trying to comprehend potential factors that connect these modalities is the way to interpret 

and build knowledge for heterogeneous diseases such as Alzheimer’s. A future challenge 

and research opportunity is to develop GAN models incorporating high resolution genomic 

information as single nucleotide polymorphisms (SNPs). Exploring a pathway between 

genomic data and imaging signatures will shed light on Alzheimer’s endophenotypes and 

such knowledge is valuable for potential future treatments.

4.3. Progression of brain lesions

MRI-visible brain lesions, such as white matter hyperintensities and multiple sclerosis 

lesions, reflect white matter or gray matter damage caused by chronic ischaemia associated 

with cerebral small vessel disease or inflammation that results from the malfunction 

of the immune system (Wardlaw et al., 2017; Bodini et al., 2016). Since white matter 

hyperintensities play a key role in aging, stroke, and dementia, it is important to quantify 

white matter hyperintensities using measures such as volume, shape and location. These 

measures are associated with the presence and severity of clinical symptoms that support 

diagnosis, prognosis, and treatment monitoring (Kuijf et al., 2019). We can observe the 

hyperintense regions clearly in T2-weighted and FLAIR brain MRI. The evolution of white 

matter hyperintensities over a period of time can be characterized as volume decrease 

(regress), volume stability, or volume increase (progress). It is challenging to predict the 

evolution of white matter hyperintensities because its influence factors such as hypertension 

and aging are poorly understood (Wardlaw et al., 2013). White matter hyperintensities 
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evolution prediction is under-explored in the literature, though other lesion progression, 

e.g. ischemic stroke lesion, has been modeled using a non-linear registration method called 

longitudinal metamorphosis (Rekik et al., 2014).

Rachmadi et al. (2020) predict the evolution of white matter hyperintensities by generating 

a “disease evolution map ” using 2D GANs. In the study, the baseline and follow-up 

scans are represented with irregularity maps which describe the abnormal level in voxel 

resolution. Further, the disease evolution maps are obtained by subtracting the baseline 

irregularity maps from the follow-up irregularity maps. To model the evolution process 

of white matter hyperintensities, a generator, which is implemented with an autoencoder 

namely U-Net (Ronneberger et al., 2015), is introduced to project an irregularity map at 

baseline to its corresponding disease evolution map in the follow-up year. A discriminator 

is used to classify if the disease evolution map came from the generator or the real scans. 

To enforce anatomically realistic modifications to the follow-year irregularity maps, another 

discriminator is introduced to identify the irregularity maps at follow-up year from those 

follow-year generated maps which is obtained by summing up the generator input and 

output. The model schematic is shown in Fig. 7A. The GAN model can accurately predict 

a subject’s white matter hyperintensities volume in the follow-up year with 1.19 ml error 

in average, and its classification accuracy on whether each white matter hyperintensities 

subject will regress or progress is 72% without accessing any ground-truth labels. The 

qualitative assessment of the disease evolution maps are shown in Fig. 7B with red color 

indicating progress and blue color indicating regress. Since this is a very early attempt 

in tackling white matter hyperintensities dynamic prediction, there are several limitations 

in this work. Firstly, the model requires manual white matter hyperintensities labels from 

both baseline and follow-up sessions, which is not practical and tedious for human experts. 

Secondly, the method depends on the quality of the extracted irregularity map which tends to 

overestimate white matter hyperintensities in the optical radiation and underestimate it in the 

frontal lobe.

Multiple sclerosis is one of the most prevalent autoimmune disorders which affects the 

central nervous system (Carass et al., 2017). With a relatively young age onset, multiple 

sclerosis has multiple symptoms such as vision loss, dizziness, and cognitive decline (Carass 

et al., 2017). To better understand the physiopathology of multiple sclerosis, PET with [11 C] 

Pittsburgh Compound-B radiotracer has been proposed to visualize and measure the myelin 

which insulates and protects the axon in the central nervous system, loss and repair in 

multiple sclerosis lesions (Stankoff et al., 2011). Specifically, the loss of myelin surrounding 

the axon leads to the axon degeneration called demyelination. On the contrary, new myelin 

sheath generation can repair the damaged axon, namely remyelination. However, PET is 

an invasive and expensive imaging technique which is only available in limited hospitals 

around the world. Recently, a lot of interest has been drawn in predicting the PET-derived 

myelin evolution in multiple sclerosis from non-invasive and low-cost MRI. Although many 

studies (Burgos et al., 2014; Huynh et al., 2016) utilize traditional machine learning tools, 

such as structured random forest, for image modality prediction and artifact reduction, 

they seldom focus on the underlying pathology dynamics. Wei et al. (2020) propose to 

predict the dynamic of myelin content changes, represented by the distribution volume ratio 

parametric map, using a two-stage conditional 3D GAN with attention regularization for 
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multiple sclerosis lesions. At the first stage, a conditional GAN is utilized to map noise 

variable sampled from standard Gaussian distribution to PET image domain, where both 

the generator and the discriminator are conditioned on four multi-sequential MRIs from the 

same patient, including magnetization transfer ratio map (MTR) and three DTI measures: 

fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD). Next, the 

second stage generator takes in both the multi-sequential MR images and the output from 

the first stage generator and produces a refined PET image. The other discriminator tries 

to distinguish between the generator output and the ground-truth PET image conditioned 

on the four multi-sequential MR images. To model the spatially sparse lesion relationships, 

self-attention layers have been incorporated in the network architecture. The detailed model 

structure is shown in Fig. 7C. To validate the network, PET images of 18 multiple 

sclerosis patients are generated from both baseline and follow-up multi-sequence MRIs. 

Compared with the true longitudinal [11 C] PIB PETs, the Dice coefficient for the masks 

of demyelination and remyelination voxels in the GAN generated predictions are 71% and 

69% on average separately. Visual assessments of the lesional myelin content changes are 

demonstrated in Fig. 7D. However, there are several shortcomings in this work. Firstly, 

the lesion segmentation masks used in the model are manually pre-defined, which is not 

practical for clinical usage. Secondly, the method utilizes multi-sequence MRIs as input for 

better PET synthesis quality. Incomplete inputs will cause performance degradation. Finally, 

the model has been only validated on a small, single-center dataset.

In this section, we introduced GAN-based tools which are developed for brain lesion 

progression estimation. Although these studies show promising potential in accurately 

predicting the dynamics of white matter hyperintensities and multiple sclerosis lesions 

with generative models, they suffer from problems in real-world deployment. For example, 

manually annotated lesion masks should be replaced by automated segmentation algorithms 

to reduce human labor cost. Additionally, longitudinal analysis benefits from the rich 

information from multi-modal data. In practice, however, the scarcity of complete multi-

sequence MRIs for each patient induces another challenge. Finally, reproducibility and 

replicability are huge issues for machine learning research in small-scale datasets. We will 

provide potential solutions to these shortcomings in the discussion section.

4.4. Brain tumor growth

Glioblastoma multiforme tumors, the most common and aggressive type of primary brain 

tumors, have high intra-tumor heterogeneity, leading to treatment failure and reduced 

survival (Sottoriva et al., 2013). Medical imaging techniques such as MRI, DTI, and PET 

are commonly used in clinical practice for the detection, diagnosis and examination of 

gliomas. Leveraging multiple time points of these imaging modalities can provide rich 

information for predicting tumor evolution. Importantly, the study of brain tumor growth 

is critical for the clinical diagnosis of the disease, particularly for treatment planning, 

tumor aggressiveness quantification and progression prediction (Fathi Kazerooni et al., 

2019; Kazerooni and Davatzikos, 2021).

Previous work on brain tumor growth modeling mainly rely on complex mathematical 

formulations such as a system of partial differential equations to capture the effects of the 
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invasion and diffusion of tumor cells (Elazab et al., 2018). However, these models are often 

insufficient to represent various growth processes due to their limited number of parameters. 

Additionally, the estimations of model parameters are also difficult for each individual 

without leveraging broader knowledge of tumor patterns in the cohort. A Bayesian approach 

has also been proposed by Angeli et al. (2018) for the prediction of patient-specific tumor 

cell density from MRI and PET modalities. But this work was designed for personalized 

radiotherapy treatment planning by only using the cross-sectional dataset instead of 

longitudinal dataset, which does not enable the investigation of tumor growth pattern as 

time progresses. Deep learning-based methods have also been developed for tumor growth 

studies. For example, Zhang et al. (2020) propose a spatial-temporal convolutional long 

short-term memory method to capture the temporal dynamics of pancreatic tumors from 

multiple time points of CT images, while the method has not been applied to study cerebral 

tumors. To address the above limitations, GANs have been leveraged for its ability to 

generate realistic data and have been lately applied in the prediction of brain tumor growth.

Elazab et al. (2020) propose a novel method using stacked 3D GANs (GP-GAN) for the 

growth prediction of glioma. The framework consists of n − 1 stacked GANs where n 
denotes the number of time points. The generators are initialized by tumor boundaries and 

tissue feature maps (FMs), while FMs have semantic labels for white matter, gray matter 

and CSF. As shown in Fig. 8A, within each GAN block, T1 MR images and FMs are 

fed into the generator Gi for every time point ti. The FMs can help guide the generator 

to better estimate the tumor boundary at the next time point. Meanwhile, the discriminator 

Di is trained to distinguish between the generated tumor boundary and the ground truth. 

The entire GP-GAN can thus be progressively trained in an end-to-end fashion for jointly 

training all the network parameters. The training will enable generator Gi+1 to construct a 

good estimation of the tumor at the next time point from the current input. The objective 

function for training the network includes two loss terms as Dice and L1 norm losses, which 

are beneficial for the generated images to be more similar to the ground truth at ti+1 and 

for the model to be less affected by artifacts. GP-GAN further adapts a modified 3D U-Net 

architecture for the generators, which has the advantage of skip connections to integrate 

hierarchical features to better generate the images. Fig. 8B shows growth prediction results 

for subjects with low-grade glioma and high-grade glioma at different time points via 

GP-GAN. GP-GAN outperforms the other state-of-the-art reaction diffusion-based and deep 

learning-based tumor growth modeling methods, as measured by Dice coefficients and 

Jaccard index of 78.97% and 88.26%. For clinical applications, this method can potentially 

facilitate the computer-aided prognosis of brain tumors, while more detailed investigations 

are required, such as in vivo experiments for validation. However, there exist noticeable 

limitations to this method. Firstly, the current tumor growth study may not develop a 

more refined model for various segmented parts of the tumor, such as edema, tumor core 

and necrosis. This detailed tumor modeling by considering different tumor regions could 

generate more accurate and clinically relevant tumor growth prediction since different tumor 

parts could exhibit distinct growth patterns. Additionally, the refined model could potentially 

bring in a larger number of parameters, as required by modeling different tumor regions. 

This will increase the difficulty of training and the likelihood of overfitting, especially on 

medical imaging datasets with limited sample size.
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Due to privacy concerns and the obstacles in establishing a large data consortium across 

multiple institutions, data shortage is another major challenge in studying brain tumor 

growth. Since GANs are commonly used to generate realistic data, Kamli et al. (2020) 

propose a synthetic medical image generator (SMIG) based on 3D GAN to generate 

anonymised MRI for data augmentation. The objective of the proposed model is to tackle the 

issues of data privacy, imbalanced data and insufficient training samples, which could result 

in poor performance in terms of classification accuracy and sensitivity. In particular, SMIG 

creates different types of synthetic MR images, e.g., the generation of the abnormal brain 

based on the healthy brain and tumor volume, as well as changing tumor to a new location 

from the input of original image and tumor volume, as shown in Fig. 8C. Thus, SMIG 

is superior to traditional data augmentation techniques by providing different images with 

rich tumor information instead of applying geometric transformation to the original image. 

Fig. 8D shows examples of the application of the SMIG model on single patient images 

from the BraTS dataset. Additionally, the authors develop a tumor growth predictor (TGP) 

model based on an end-to-end CNN for tumor growth prediction. The prediction model 

is motivated by the lack of deep learning-based models for investigating tumor volume 

growth prediction as well as the availability of synthetic data from SMIG. The TGP network 

takes the first patient scan as the input and predicts the scan after 90 days (i.e., tumor 

volume). The network architecture consists of an encoder-decoder framework. The encoder 

extracts features into a low-dimensional latent representation, and the decoder produces the 

final output as the same size of input. The results demonstrate that a high accuracy for 

the tumor prediction can be obtained as 69.9%, 71.7% and 72.3% of recall, precision and 

Dice coefficient due to the increased sample size generated by the SMIG model. Therefore, 

the advantages of the SMIG model include privacy protection by generating synthetic 

data for research, medical data anonymising, which enables the future data sharing across 

multiple institutions and low-cost dataset generation procedure with high-quality MRIs. 

Nevertheless, there are few limitations of the paper. Firstly, the model has not been trained 

on other datasets for methodological validation. Secondly, the method has not integrated a 

mathematical model of glioblastoma growth in the TGP module.

The possibility of applying GAN for brain tumor growth prediction has been demonstrated 

in the reviewed papers. There are several directions for future works. Firstly, an extension of 

the current research can be the integration of multi-modal neuroimaging data, which should 

improve the prediction performance by leveraging rich information for glioblastoma from 

different medical imaging data sources. Secondly, the dataset collection for a larger sample 

size is of central significance for GAN-based methods. Data augmentation techniques 

and patch-based training strategy can also be considered to remedy the data shortage. 

Alternatively, the models should also be validated on animal experiments to evaluate the 

feasibility for human subjects in clinical scenarios.

5. Discussion and future directions

GAN-based techniques have shown great promise in disease classification, anomaly and 

tumor detection, healthy brain aging modeling, Alzheimer’s disease progression, and brain 

lesion evolution, as well as brain tumor growth modeling. Here, we briefly summarize 
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the development of the adoption of GANs in neuroimaging and clinical neuroscience 

applications and provide future perspectives correspondingly.

Disease classification.

GANs can identify patterns in high-dimensional, multi-modal imaging datasets and detect 

disease biomarkers at early stages. They can also enrich the dataset by synthesizing 

other modalities, and thereby boost classification performance through leveraging the 

complementary information provided by different modalities. In this section, we discussed 

the use of GANs in disease classification with a primary focus on Alzheimer’s disease. 

We firstly examined GAN-based models on performing disease classification using single-

modality data such as structural T1-weighted MRI and rs-fMRI (Zhao et al., 2020; 

Mirakhorli et al., 2020). Additionally, we investigated disease classification frameworks 

using multi-modal imaging data where GANs are used for missing data imputation such as 

PET images, which are usually scarcely available due to high cost and radioactive exposure, 

synthesis from MRI (Gao et al., 2022; Lin et al., 2021; Yan et al., 2018; Liu et al., 2020; Hu 

et al., 2022). Functional measures are often studied in isolation but might provide important 

insights on behavior and cognitive ability, which are clinical markers of disease progression. 

In the future, we can potentially improve disease classification and diagnosis performance 

of neurodegenerative disease by leveraging both structural MRI and resting-state functional 

connectivity network components and relating the learned representations with cognitive 

measures.

Tumor detection.

Tumor detection is a challenging task for machine learning systems due to the highly 

heterogeneous presentation of brain tumors as well as the relatively limited amount of 

labeled data available (Bakas et al., 2018). GANs have shown promise in tumor detection 

tasks, in both supervised and unsupervised anomaly detection (Han et al., 2019; Park et 

al., 2021; Schlegl et al., 2017; Nguyen et al., 2023). In terms of dataset enrichment for 

supervised learning, GANs have difficulty modeling the heterogeneity of tumor data, given 

the limited sample size. On the other hand, GAN-based unsupervised anomaly detection 

only requires data from healthy subjects and is, instead, better suited to this problem. So far, 

many approaches have been proposed in GAN-based anomaly detection, but standardized 

benchmarks for principled evaluation and comparison are still absent.

Brain aging.

In contrast to group/cohort analysis, where a one-size-fits-all approach is used to capture 

a homogenous pattern of brain aging for all subjects within a group (Huizinga et al., 

2018), GAN models reviewed in this section (Xia et al., 2021; Peng et al., 2021) help in 

capturing individual-level neuroanatomical variation which is conditioned on each subject’s 

baseline brain anatomy, age, and diagnosis. Since many factors in addition to age and 

disease can influence brain changes, (Franz et al., 2023) a stratified approach for brain 

age modeling is necessary, which can further accommodate additive effects of confounding 

factors, such as genotype and lifestyle. However, GANs are often susceptible to mode 

collapse. Thus, learning individualized brain development is a non-trivial problem that 
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requires careful model selection and training, as well as descriptive quantitative metrics to 

measure generative performance.

Disease progression.

In this section, we discussed models that leverage GANs to simulate disease effects or 

stages using structural brain images and covariates, such as diagnosis and age (Ravi et al., 

2022). To simplify the disease effects models, unrealistic assumptions are usually made in 

the literature. GAN has shown its ability in disentangling the structural heterogeneity of 

Alzheimer’s disease in a baseline setting where assumptions are not necessary (Yang et 

al., 2021). However, capturing disease effects in a longitudinal setting is non-trivial. Thus, 

extending these algorithms for longitudinal analysis is a potential promising future direction 

of modeling disease progression.

Lesion progression.

We discussed two pioneering GAN-based studies in predicting the progression of white 

matter hyperintensities and multiple sclerosis separately in this section (Wei et al., 2020; 

Rachmadi et al., 2020). Longitudinal analysis is a challenging task especially at image 

level. Instead of directly estimating the dynamics of the brain lesions, authors from both 

works take the shortcut by leveraging GANs to generate the evolution maps from baseline 

scan to follow-up scan. These early attempts show the potential of GANs in tackling 

voxel-level lesion dynamics prediction which is clinically important for doctors’ treatment 

decision making. Given the small sample size from both studies, GANs are very likely to be 

over-fitted to the training data as other deep learning methods in general. Thus, large-scale 

consortia need to be established to cover the diverse populations world-wide for unbiased 

precision medicine.

Tumor growth.

Accurate prediction of brain tumor growth from non-invasive medical imaging scans is 

critical for disease prognosis and treatment planning. In this section, two GAN-based 

methods have demonstrated their ability in both predicting the glioma growth at a future 

time point and generating realistic tumor images for data augmentation (Elazab et al., 2020; 

Kamli et al., 2020). In terms of longitudinal prediction, the study shows GANs empirically 

outperform other tumor growth models in the regime of limited sample size. In the data 

enrichment study, the tumor volume prediction task largely benefits from the increase of 

training dataset. These efforts illustrate the advantages of GANs in capturing the tumor 

growth characteristics by generating synthetic tumor scans. However, thorough validation of 

tumor growth prediction using GANs is necessary to evaluate the reliability of the model 

deployment at the clinical setting. Additionally, multimodal neuroimaging features might 

help in improving the growth prediction performance. Lastly, GANs-based tumor growth 

prediction algorithms can further facilitate survival prediction of the patients.

Besides these early successes, there are still limitations and challenges in developing 

diagnosis and longitudinal progression prediction models using these GAN-based methods. 

Here we discuss some potential issues and open questions to be addressed in the future.

Wang et al. Page 26

Neuroimage. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cross-study robustness.

In order for deep learning models to be clinically useful, generalizability across multi-study 

datasets with diverse populations is important. GAN-based techniques perform well on 

single-site and single-study datasets, but previous research suggests that pooling data from 

multiple centers can reduce their statistical power and generalizability (Onofrey et al., 

2023; Wang et al., 2022 a; Li et al., 2020 b). Data harmonization methods (Fortin et al., 

2017; Pomponio et al., 2020; Wang et al., 2021 b; Moyer et al., 2020; Radua et al., 2020; 

Shishegar et al., 2021) offer a potential solution to tackle this challenge. For example, 

ComBat (Fortin et al., 2017) is a linear mixed model that removes confounding site effects 

while preserving biological-relevant information in the data. Alternatively, models trained 

on a single-study can be adapted to unseen datasets with several strategies. The adversarial-

robustness approach, for example, utilizes the discriminator from GAN to enforce the 

feature extractor to learn representations that are indistinguishable from the source study 

(model trained on) and the target study (unseen site). Similar to ComBat, GANs have 

also been used to explicitly “harmonize ” scans across sites at image level (Dewey et 

al., 2020; Zuo et al., 2021). In particular, unpaired image-to-image translation methods 

have demonstrated promise in mapping scans across sites while preserving anatomical and 

predictive signals (Bashyam et al., 2021; Modanwal et al., 2020; Gao et al., 2019).

Biological relevance.

GAN-based methods must generate biologicallyrelevant outputs for them to be useful. 

Current evaluation metrics (Heusel et al., 2017; Tolstikhin et al., 2016) for GAN-based 

models primarily focus on measuring distances between real and generated images without 

verifying the preservation of basic underlying biological information. Specific metrics 

or evaluation procedures should be designed and utilized when we apply GAN-based 

models for synthesizing biomedical images. For example, one can compare the ability 

of both real and generated images to predict a variety of significant biological and 

clinical characteristics, including age, sex, cognitive performances, etc. Beyond post-hoc 

evaluation analyses, leveraging multi-modal data besides neuroimaging data during the 

training procedure has a better chance of generating biologically meaningful brain images. 

Given the growing evidence linking genetic variants and brain phenotypes (Wen et al., 

2022a, 2022b; Zhao et al., 2021), it will be interesting to incorporate genetic data into model 

frameworks in order to generate imaging patterns or estimate disease effects underpinned by 

genetic differences or other biological mechanisms.

Disease heterogeneity.

Neurological and neuropsychiatric diseases are often heterogeneous in neuroimaging and 

clinical phenotypes. GAN-based methods (Yang et al., 2021; Gu et al., 2022; Yang et 

al., 2022) have been applied to estimate various disease effects on neuroimaging features, 

and distill them into low-dimensional representations, which explain cognitive and clinical 

differences as well as possess dis-criminant and prognostic signals. However, the majority of 

these approaches cluster imaging data into discrete subtypes with variations contributed 

by both disease heterogeneity and severity. It is still challenging to efficiently model 

continuous disease progression processes and to parse disease severity and heterogeneity 

Wang et al. Page 27

Neuroimage. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from imaging data independently (Yang et al., 2022). Moreover, most of the recent methods 

only handle regional volume features derived from neuroimaging data. The GAN model 

can be potentially applied to voxel-wise data and learn heterogeneity from subtle imaging 

features. Lastly, existing methods were primarily trained with neuroimaging data only, 

while post hoc analyses were performed to further discover potentially associated genetic 

and clinical characteristics. A direct derivation of genetically driven disease subtypes or 

imaging signatures might provide more biological insights into disease heterogeneity and 

offer promise in precision medicine, targeted clinical trial recruitment, and drug discovery.

Model interpretability.

The interpretability of machine learning methods is critical in explaining how pathological 

processes affect the structures of human brains (Li et al., 2021). However, nonlinear 

activation functions complicate the interpretation of deep learning-based models. Many 

algorithms have been proposed for addressing this problem, including saliency map 

(Simonyan et al., 2013), class activation map (Zhou et al., 2016), etc. GAN-based methods 

offer another potential approach for model interpretation via data generation. For instance, 

in the context of modeling heterogeneous disease processes, GAN-based generative methods 

could explicitly synthesize a variety of patients’ imaging data from healthy controls’ data 

based on latent variables (Yang et al., 2021; Xia et al., 2021; Gu et al., 2022; Yang et al., 

2022). Comparisons of generated patient’s data with input control’s data, both visually and 

quantitatively, help in interpreting imaging patterns represented by the latent variables and 

dissect various neuroanatomical changes influenced by distinct underlying disease effects.

Fairness-aware learning.

Unbalanced representation of demographics in the training data is another challenge when 

performing supervised/unsupervised learning using generative models. These models can 

amplify the bias in data and lead to undesirable performances towards underrepresented 

groups, such as females and African Americans (Larrazabal et al., 2020; Seyyed-Kalantari et 

al., 2021; Wang et al., 2022 b). This leads to concerns of health care equity and algorithmic 

fairness of ML-based diagnostic systems. Recently, several fairness-aware algorithms have 

been developed to tackle this challenge by using accessible demographic information or 

reweighting schemes for underrepresented samples. For example, FairGAN (Xu et al., 2018) 

utilizes a conditional GAN to generate balanced samples across demographic attributes and 

disease categories. Similarly, causal FairGAN (Xu et al., 2019) embeds a causal mechanism 

into the generator of a GAN to simulate complex data generating processes with multiple 

confounders.

Multi-view learning.

Multi-modal MR images help in boosting the model prediction performance, but the 

incompleteness of the inputs, which is very common in practice, might be detrimental to 

the algorithm. Models should be robust to the situation when there are several absences of 

MR sequences from the patients to reduce the scanning expense.
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3D volume v.s. 2D image synthesis.

During the GAN design process, one important decision is whether to model the brain 

imaging data as a 3D volume or a sequence of 2D images or slices. The methodologies 

reviewed in this paper have used both 2D (Xia et al., 2021; Rachmadi et al., 2020) as well 

as 3D (Yu et al., 2021; Peng et al., 2021) designs. The advantage of using 3D designs is 

that the GAN learns to synthesize whole brain volumes, thereby capturing 3-dimensional 

spatial features that can aid the disease classification or progression analysis. On the other 

hand, 2D designs are limited to capturing slice-level features that might not be sufficient 

for certain applications. For example, tumor growth modeling involves modeling volumetric 

changes of the tumor over time, hence a 3D design was adapted for this problem (Elazab 

et al., 2020). However, 3D GANs require large training data since the number of training 

parameters of the model explodes due to high dimensionality of the dataset. Moreover, 

computational and memory expenses increase significantly as the new dimension comes in. 

This might limit the adoption of 3D designs for certain applications where sufficient training 

data is not available. Another direct consequence of using 3D models is that they can be 

computationally expensive as they require optimization of larger neural networks (Singh et 

al., 2020).

Clinical deployment.

Translating machine learning models from the research stage to clinical practice for assisting 

decision making, is a critical step. However, these models, which are often developed 

under ideal conditions, face several challenges. Firstly, unlike research-oriented data that 

have passed quality check, clinical data are noisy and often incomplete, in terms of 

available sequences or modalities. Similar to other machine learning models, GAN-based 

methods should be robust to noisy input and be able to handle missing values. Secondly, 

distribution mismatch commonly happens between training (model development) and testing 

(model inference) data. We have discussed this challenge and potential solutions in the 

“cross-study robustness” section. Thirdly, deep learning models are usually developed 

with GPUs, which are not available in hospitals in general, to speed up the training and 

inference process. To achieve efficient model inference, cloud-based services, which have 

well-established machine learning infrastructure, are potential choices for hospitals to fill the 

gap of computing hardware and programming expertise. Finally, the results produced by the 

GAN-based models should be easily interpretable for the doctors and practitioners.

We have briefly discussed this concern in the “model interpretability” section.

Complexity and reproducibility.

Both model and computational complexities of GAN-based methods are significantly greater 

than the traditional machine learning algorithms. For example, it can take from a few 

hours to a few days in GPU hours to train GANs as shown in Tables 4 and 5. The 

high computational cost of GANs brings us the high-dimensional and realistic-looking 

synthesized images which are not possible by using traditional generative models. Although 

deep learning algorithms suffer from poor interpretability issues due to the non-linear 

mapping in general, GAN-based methods help in providing explainable visualizations on 

the model predictions where we discuss more in the “Model interpretability” section. 
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Reproducibility is another important factor in evaluating the research work and their 

potential clinical use. Unfortunately, as shown in Tables 4 and 5, only a few publications 

have shared their code and only one of them released the pre-trained model. The research 

community of machine learning in medical imaging should take the responsibility to release 

code and pre-trained parameters in order to encourage replicable research and accelerate the 

transition from research stage to clinical practice.

6. Conclusions

In this review, we present the wide and successful adoption of a deep learning technique, 

namely generative adversarial networks, in neuroimaging and clinical neuroscience 

applications by briefly introducing the mechanism of GANs and showcasing their 

promises in several clinically meaningful tasks, including disease diagnosis, anomaly 

and tumor detection, brain development modeling, Alzheimer’s progression estimation, 

lesion dynamics prediction, and tumor growth prediction. Based on the model architecture 

and experimental setup designs of each study covered in this review, we analyze the 

advantages and pitfalls of these algorithms from both technical soundness and clinical 

practice perspectives. In addition, given the gap between the current status of methodology 

development and clinical needs, we provide several timely future promising directions, such 

as algorithm reproducibility, interpretability, and fairness, which are critical in potential 

deployment of machine learning models.
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Fig. 1. 
Semantics of the original GAN and its extensions. (A) Original GAN architecture where z, 
x and y denote random noise, generated image, and real image. G and D represent generator 

and discriminator separately. Wasserstein GAN, deep convolutional GAN, and self-attention 

GAN share the same structure of the original GAN but use a different loss function, 

convolutional block and self-attention module, respectively. (B) Progressive growing GAN 

architecture. The resolution of each generated image x1,x2,. .., xn and real image y1, y2,. .., 
yn is increasing from left to right. The number of layers within each generator G1, G2,. .., 
Gn and discriminator D1, D2,. .., Dn is also growing accordingly. (C) Conditional GAN 

architecture where z, y, x, x′ denote random noise, extra label/information, real data, and 

generated data, respectively. Concatenation of random noise z and label y are input to the 

generator and concatenation of label y and generated/real data are input to the discriminator. 

(D) Cycle-GAN structure where x1, y2 denote umpired data from two different modalities, 

and x2′ , y1′  denote generated data for the corresponding modality. G1 transform data from 

modality X to Y, and G2 transforms inversely. Generated data y1′  is reconstructed back to 

input x1 through G2 and same for generated data x2′ . (E) Info-GAN structure, where z, c, 

x, x′ denote random noise, informative part of latent variable, real data, and generated data. 

Concatenation of z and c are input to the generator. Informative latent c are reconstructed 

through an encoder E from generated data x′ = G(z, c). (F) MUNIT GAN structure where 

x1, y2, x2′ , y1′  denote unpaired data and generated data from two different modalities, X and 

Y. cx1, cy2, sx1, sy2 denote content and style variables derived from data from two modalities, 

respectively. Data x1 is firstly decoded into content cx1 and style variable sx1 respectively. 

Then, the content variable cx1 is concatenated with a style variable from the Y modality to 

generate data y1′  through the generator G1. Concatenation of cx1 and sx1 are used as input 

for reconstruct x1 through G2. Same process also applies to the reverse direction. Images are 

taken and adapted from Goodfellow et al. (2014), Karras et al. (2018), Chen et al. (2016), 

Mirza and Osindero (2014), Zhu et al. (2017), Huang et al. (2018).
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Fig. 2. 
GAN applications in disease classification with single- and multi-modal imaging. 

(A) Schematic of THS-GAN for Alzheimer’s disease and mild cognitive impairment 

classifications. (B) Comparison of synthesized brain MR images from THS-GAN and real 

T1-weighted scans with coronal, sagittal, and axial views for different training epochs. 

(C) Deviation between real image and synthetic images generated by Rev-GAN. In the 

deviation image, the yellow color represents large differences, and the dark colors denote 

small deviations. Images are taken and adapted from Lin et al. (2021), Yu et al. (2021).
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Fig. 3. 
GAN applications in neuroimaging-based anomaly detection. (A) Schema of AnoGAN. 

Training is performed on health subjects to learn z, a latent space representing the data 

distribution. Inference is performed by sampling from z to generate image x′, such that the 

difference between x′ and the anomalous image xa is minimized. (B) Illustration of the latent 

space distribution produced by AnoGAN. Images are taken and adapted from Schlegl et al. 

(2017).
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Fig. 4. 
GAN applications in modeling healthy brain aging. (A) Schematic of the conditional GAN 

model for modeling the brain aging process across the whole lifespan. xi : generator input; 

ℎ0 : target age vector; ad : age difference between current age ai and target age a0; x0: 

generator output; v1, v2, v′1, v′2: latent embedding. Generator synthesizes brain image of 

target age and health state, and judge network gives a discrimination score of whether the 

image given to the discriminator is real or fake. LID, Lrec, LGAN refer to identity loss, 

reconstruction loss and adversarial loss, respectively. (B) Examples of healthy brain aging 

modeling using the GAN described in (A). Bottom panel shows the images synthesized at 

different target ages a0, and the top panel shows the absolute difference between input image 

xi and synthesized image x0. (C) Schematic of the perceptual adversarial network (PGAN). 

(D) Multi-modal perceptual adversarial network (MPGAN) architecture. x, xT1, xT2: input 

3D MR volume; G(x), GT1 (xT1, xT2), GT2 (xT1, xT2): generated output; y, yT1, yT2: real 3D 

MR volume; D, DT1, DT2: discriminator networks; ϕ: feature extraction network; LVR, LP, 

Ladv refer to voxel-wise reconstruction loss, perceptual loss, and adversarial loss. Images are 

taken and adapted from Xia et al. (2021), Peng et al. (2021).
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Fig. 5. 
GAN applications in generating disease progression scans from a single time point. (A) 

Schematic of DANI net. The input to DANI net is a T1 MR image from subject p at age 

θ with diagnosis d. The output of the decoder is a set of longitudinal scans. Several loss 

functions (reconstruction loss Lrec, biological constraints Lbio, discriminator losses LDz and 

LDb) are combined together to train DANI net using a single time point of subject p. (B) 

Longitudinal MRIs synthesized using 4D-DANI-Net for a 69 years old cognitive normal 

subject from three orientations. The blue box indicates the input MRI and other images are 

synthesized MR scans from the model. Two magnified regions are illustrated at the bottom 

panel. Images are taken and adapted from Ravi et al. (2019).
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Fig. 6. 
GAN applications in disease subtypes discovery (four-dimensional coordinate system 

developed by SMILE-GAN). (A) Voxel-wise statistical comparison (onesided t-test) 

between cognitive normal subjects and subjects that predominantly belong to each of the 

four Alzheimer’s disease neuroanatomical patterns. (B) Visualization of subjects that belong 

to the four subtype clusters in a diamond plot. Images are taken and adapted from Yang et al. 

(2021).
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Fig. 7. 
GAN applications in brain lesion (white matter hyperintensities and multiple sclerosis) 

evolution prediction. (A) Schematic of the GAN for white matter hyperintensities evolution 

prediction. (B) Disease evolution map examples produced by GAN and the derived 

irregularity map from two time points. (C) Two-stage conditional GAN for [11 C] PIB PET 

images generation from multi-sequence MR images for myelin content in multiple sclerosis 

dynamic prediction. (D) Examples of myelin content changes indicating demyelination (red 

color) and remyelination (blue color) from both GAN outputs and real PET images. Images 

are taken and adapted from Wei et al. (2020), Rachmadi et al. (2020).
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Fig. 8. 
GAN applications in brain tumor growth prediction. (A) GP-GAN architecture for glioma 

growth prediction. xgi : generated image at time point i; Gi : generator at time point i; Di: 

discriminator at time point i. (B) Growth prediction for subjects with low-grade glioma (left) 

and high-grade glioma (right) at different time points via GP-GAN. GT: ground truth; Pre: 

prediction. (C) Schematic of SMIG model. The model is trained to 1) generate an abnormal 

brain based on a healthy brain from ADNI dataset and tumor volume from TCIA; 2) change 

tumor location. xR : image represents a healthy brain or tumor in real location; xV : tumor 

volume provided by TCIA; xG: generated image; G: generator; D: discriminator. (D) SMIG 
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model applications on single patient images from BraTS dataset. Images are taken and 

adapted from Elazab et al. (2020), Kamli et al. (2020).
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