
Domain-Based Protein Docking with Extremely Large 
Conformational Changes

Charles Christoffera, Daisuke Kiharaa,b,c,*

aDepartment of Computer Science, Purdue University, West Lafayette, IN, 47907, USA

bDepartment of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA

cPurdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, 
USA

Abstract

Proteins are key components in many processes in living cells, and physical interactions with 

other proteins and nucleic acids often form key parts of their functions. In many cases, large 

flexibility of proteins as they interact is key to their function. To understand the mechanisms of 

these processes, it is necessary to consider the 3D structures of such protein complexes. When 

such structures are not yet experimentally determined, protein docking has long been present to 

computationally generate useful structure models. However, protein docking has long had the 

limitation that the consideration of flexibility is usually limited to very small movements or very 

small structures. Methods have been developed which handle minor flexibility via normal mode or 

other structure sampling, but new methods are required to model ordered proteins which undergo 

large-scale conformational changes to elucidate their function at the molecular level. Here, we 

present Flex-LZerD, a framework for docking such complexes. Via partial assembly multidomain 

docking and an iterative normal mode analysis admitting curvilinear motions, we demonstrate the 

ability to model the assembly of a variety of protein-protein and protein-nucleic acid complexes.

Keywords

protein-protein docking; protein-nucleic acid docking; nucleic acid docking; flexible docking; 
flexible assembly

INTRODUCTION

Protein-protein interactions are fundamental to many biological processes in living cells. 

To understand in detail the mechanisms of these processes, modeling the 3D structures of 

their associated protein complexes is a critical step. While protein complex structures are 

steadily being determined by experiment and deposited in the Protein Data Bank (PDB) [1], 

experiments are costly both in time and expense. Moreover, structures of protein complexes 
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are often extremely difficult to determine by experiments. Thus, when a protein complex 

structure has not yet been experimentally determined, computational tools can be used to 

construct atomic models [2]. A so-called protein docking program can take component 

proteins, called subunits, as input and assemble them into atomic models of the protein 

complex. Many general protein docking methods and specialized versions thereof have been 

publicly released, such as ZDOCK [3], HADDOCK [4], ClusPro [5], RosettaDock [6], HEX 

[7], SwarmDock [8], and ATTRACT [9]. Even protein structure prediction methods like 

AlphaFold [10] have been tweaked to be able to output multimeric structures [11]. The 

rigid-body docking method LZerD [12–15] in particular has been consistently ranked highly 

in the server category in CAPRI [16, 17], the blind communitywide assessment of protein 

docking methods.

Often confounding to computational complex modeling is the fact that proteins are flexible 

molecules. Even with state-of-the-art conformational sampling techniques, existing docking 

methods struggle to handle substantial conformational changes beyond roughly 2 Å RMSD 

[18–20]. Large scale conformational changes near and above 10 Å RMSD, though well 

above 2 Å RMSD and thus difficult to model, are quite common, and are often related to 

protein function [21–27]. For example, in many cellular processes, calmodulin, ubiquitous 

in eukaryotes, undergoes such a conformational change when it binds to its various target 

proteins, and its flexibility facilitates recognition of a comparatively large number of targets 

in tandem with increases in Ca2+ ion concentration [28]. In the case of the nuclear import 

cycle, a crucial step is the release of the importing-beta-binding domain of importin-alpha 

from importin-beta by GTPase Ran. The binding of GTPase Ran to importin-beta induces a 

large-scale change in the helical conformation of importin-beta, allosterically inducing the 

importin subunits to dissociate [29]. It is then clear that techniques capable of modeling 

such large conformational changes have the potential to elucidate many cellular processes in 

many cellular contexts.

Computational techniques have been developed which quantitatively predict the location, 

nature, or degree of conformational change a given protein might undergo [30–33], 

including as part of complex formation [34]. While existing assembly methods generally 

struggle with a few angstroms root mean squared deviation (RMSD) of conformational 

change [18], experimentalists often observe far more drastic conformational changes 

[21–27]. There are many ways to consider lesser flexibility. The implicitly soft surface 

representation of LZerD [12, 13] can handle side chain flexibility. When the backbone 

must be moved, it can be sampled explicitly e.g. by ClustENM [20, 35] with normal 

modes, by CABS-Dock [36] or RosettaDock [37] with Monte Carlo simulation, or by 

ATTRACT with molecular dynamics [38, 39]. Many explicit sampling methods require 

cross-docking, which necessitates either precise sampling or fast sample docking to prevent 

intractable computation times [40, 41]. At the extreme end of the flexibility spectrum, 

intrinsically disordered proteins and protein regions can currently be docked by IDP-LZerD 

[42–44], even at ligand disordered region sizes of 69 residues. However, IDP-LZerD is 

specific for docking a disordered protein with no structured domains and relies on docking 

and knitting together necessarily small peptide fragments to a receptor protein and is 

thus not suitable for assembling complexes with large, ordered ligand domains. Despite 

substantial advancements, existing protein docking methods cannot generally model large-
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scale conformational changes of ordered ligand proteins. Current methods can handle some 

lesser flexibility [20], but cannot seem to break a barrier at larger RMSDs of conformational 

change. In the regime of conformational change ≥10.0 Å RMSD even with coherent 

domains, current methods are simply not adequate.

In this work, we target this ≥10.0 Å RMSD coherent regime, and describe a new method 

called Flex-LZerD. Flex-LZerD is comprised of a novel method for normal mode-based 

flexible fitting of an initial structure to docked partial structure fragments, here domains, 

and a method for selecting these partial docked structure domains. This restriction of the 

expensive rigid-body docking to the initial stage circumvents the cross-docking problem 

and renders the large-scale flexible docking tractable. Previous work by Karaca and Bonvin 

showed multidomain docking to be a promising route, but did not handle large gaps and 

mainly considered benchmark targets well below the 10.0 Å RMSD regime [45]. The 

novel fitting by iterative projection along residue-level rigid block normal modes to the 

docked domains and geometry minimization, at multiple levels with and without the receptor 

structure, then yields all-atom models in the new putative bound states. Past work in loop 

modeling has developed methods capable of modeling typically up to 12-residue-long gaps 

in a protein structure where both endpoints are known [46]. However, our benchmark in 

this work contains domain pairs with dozens to hundreds of unmodeled residues. These 

gaps are well outside the range of loop modeling but are handled in this context by the 

flexible fitting. We will directly show that the examined flexibility regime is inaccessible 

to rigid-body docking, that deep learning methods like AlphaFold do not currently handle 

such structures which are observed in different conformations, that flexible fitting is capable 

of modeling the conformational differences within the regime, and that Flex-LZerD as a 

whole is capable of flexibly assembling ligand and receptor proteins and nucleic acids into 

complex models. Interactions of both DNA and RNA with proteins are handled in this 

framework. Flex-LZerD yielded acceptable models within the top 10 models for 5 of the 

9 unbound docking cases where the receptor structure used was also unbound, according 

to the CAPRI criteria. On a broader unbound/bound benchmark set where the receptor 

structure was in its bound form, Flex-LZerD likewise yielded acceptable models within 

the top 10 models for 17 of 23 total targets. These successes break down into 9 of 15 

protein-protein complexes and 8 of 8 protein-nucleic acid complexes modeled to acceptable 

quality. The Flex-LZerD flexible fitting code is available from https://github.com/kiharalab/

Flex-LZerD.

RESULTS AND DISCUSSION

Overview of Flex-LZerD

The docking procedure of Flex-LZerD is based on observation that often the assembly 

of complexes involving large-scale conformational change is established by interactions of 

individual almost rigid domains of the ligand protein with the receptor. Flex-LZerD builds 

full-complex models by independently docking domains extracted from a ligand structure, 

and then using an iterative fitting procedure to dock the complete ligand structure. The 

overall steps of this procedure are shown in Figure 1.
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The first step is to extract domains from the input ligand structure. In cases where the ligand 

has clear globular domains connected by loops, the globular domains can be obviously 

split. In many cases, such as the interleukin-1 receptor, a flexible loop appropriate to 

cut can be indicated by a local peak in the flexibility predict by FlexPred [30, 31]. A 

flexible loop that links globular domains typically has a predicted fluctuation of over 3 

Å, which is higher than the remainder of the protein chain. Domains were also selected 

based on biological knowledge, such as EF-hand domains in calmodulin, which are 

exceptionally well-known in the literature [47] or HEAT repeats [48] in importin-beta. 

There is no restricted maximum sequence distance between the domains. Details of the 

domain extraction for each benchmark target are provided in Supplemental Table S1. Once 

the domains were specified, they were subsequently docked separately using LZerD [12, 

49], a shape complementarity-based rigid-body docking which uses a soft representation 

of the molecular surface to achieve tolerance to some small conformational changes. After 

truncating the number of outputs to 50,000 as is usual with LZerD [13], the generated 

domain docking poses were clustered at 4.0 Å RMSD to remove redundancy.

In the next stage, to select domain poses we used a combined scoring function generalized 

from methods used in the scoring of IDP-LZerD [42], which incorporates both statistical 

knowledge-based scoring functions and model consensus features. We incorporated the 

knowledge-based scoring functions used in ranksum [13, 50, 51], which has performed well 

in recent rounds of the Critical Assessment of Prediction of Interactions (CAPRI) [16, 17, 

52–54], a blind communitywide experiment evaluating protein complex modeling methods. 

For each domain, the top 100 docked models were selected by the combined score.

Once the 100 models are selected for each domain, we subsequently considered them 

pairwise and flexibly deformed them to dock against the receptor via iterations of normal 

mode analysis and energy minimization. Thus, we consider 100*100 = 10,000 models. 

Herein lies the core novelty of Flex-LZerD. Prior to normal mode calculation, the ligand 

structure was centered to minimize the RMSD to the domain pose pair, corresponding 

to the superimposition step in Figure 1. This superimposition step serves only to center 

and orient the starting structure to remove the need to consider mathematically degenerate 

normal modes and does not itself deform the structure—even in a protein-protein complex 

where the domains were docked perfectly matching the native structure, the superimposed 

ligand would still have an unchanged RMSD to the native structure, i.e. ≥ 10.0 Å with 

our benchmark set. We calculated modes in a reduced representation via the rotations 

and translations of blocks (RTB) [55] method, detailed in “Rotations and translations of 

blocks” in “Materials and Methods”. RTB allowed us to define blocks, here synonymous 

with residues, which were considered as rigid bodies during normal mode calculation. 

Neglecting the internal flexibility of individual residues discouraged nonphysical distortions 

and reduced the computational cost of each normal mode calculation, which can otherwise 

be problematic with large structures [33]. Using the 20 lowest-frequency nondegenerate 

normal modes, we displaced atom coordinates of the ligand in straight lines in small 

increments of collective motion to update the fitted state. A cutoff of 20 modes is commonly 

used in the context of protein complexes [34, 56] and provides reasonable confidence 

that even especially large ligands will be reasonably well characterized. These normal 

modes only allow displacement in straight lines, even when adding multiple normal modes 
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simultaneously. To accomplish curvilinear motion, modes were restricted to small amplitude 

motion after being weighted by the projection of the displacements that would transform 

the ligand structure to exactly match the docked domains, attenuated by a factor of 0.05, 

corresponding to the projection step in Figure 1. Then, after such a small displacement 

was applied, corresponding to the update step in Figure 1, the ligand was re-centered 

and the normal modes were re-calculated, corresponding biophysically to the fact that the 

intramolecular interactions have now changed somewhat. Naturally, no exact displacement 

can be blindly calculated here for regions of the ligand, such as regions linking the domains, 

which are not modeled in the domain docking. Instead, these displacements were imputed 

from the mode amplitudes obtained from the aforementioned projection considering only the 

regions modeled in domain docking. With this imputation, displacements are obtained for 

all atoms in the input ligand structure. Thus, using many line segments, curvilinear motion 

was accomplished, modeling the transit between states. After each of up to 500 fitting 

iterations, or fewer if a 4-hour time limit is exceeded, the structure was processed using 

the geometry minimization library (in Python, “mmtbx.refinement.geometry_minimization”) 

from the PHENIX package [57] to preserve the physicality of the model. This process 

is detailed in “Minimization of geometric restraints” in “Materials and Methods”. Despite 

the small amplitudes applied, properties like covalent bond lengths, Van der Waals strain, 

and torsion angles can be distorted over many unchecked iterations. Even the peptide bond 

can be distorted by the normal mode displacement, so this step was critical to producing 

protein-like output. Subsequently, to incorporate information from the receptor structure into 

the geometry minimization, both the receptor and ligand structures were included every 10 

iterations after 100 initial microcycles of fitting, corresponding to the 40 macrocycles shown 

in Figure 1 (outer cycle). On other iterations, only the ligand structure was minimized, 

corresponding to the microcycles shown in Figure 1 (inner cycle). The fitted model set was 

scored again by the combined scoring function.

To illustrate the progression of the fitting procedure, a series of frames from a fitting run 

from benchmark target 1ITB are shown in Figure 1b, with a full video of the entire fitting 

available as Supplemental Video S1. Each subpanel of Figure 1b shows a frame labeled by 

the frame number. Frame 0 is the initial input structure superimposed to the docked domain 

poses. At this stage, the unbound ligand structure (cyan) was in essence merely centered 

without yet considering flexibility, with an I-RMSD of 10.3 Å, an L-RMSD of 5.9 Å, and 

an fnat of 0.03. At frame 10, the ligand began to open somewhat, with an I-RMSD of 9.0 

Å. By frame 30, the ligand was almost fully open, with an I-RMSD of 8.4 Å. At frame 50, 

the C-terminal end of the ligand, which is the bottom domain in Figure 1b, was rotating in 

bulk towards the orientation of the docked C-terminal domain, with an I-RMSD of 7.7 Å. At 

frame 80, the rotation was nearly complete, with an I-RMSD of 5.6 Å, an L-RMSD of 4.2 Å, 

and an fnat of 0.29. The rotation was essentially complete at frame 100, with an I-RMSD of 

4.7 Å, but the interface structure does not yet sterically complement the receptor. By frame 

300, the ligand now fit around the receptor, and the fitting has essentially plateaued, with 

an I-RMSD of 3.8 Å. The ligand reaches its final fitted pose accommodating the receptor at 

frame 500, with an I-RMSD of 3.9 Å, an L-RMSD of 4.0 Å, and an fnat of 0.29.
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Overall Docking Results

We benchmarked Flex-LZerD on a nonredundant set of 23 targets. Of these, 15 are protein-

protein interactions and 8 are protein-nucleic acid interactions. Potential targets were found 

by searching PDB for complex structures with corresponding unbound ligands, where the 

bound and unbound ligand structures differed by at least 10.0 Å RMSD for protein receptors 

and 7.0 Å RMSD for nucleic acid receptors. Candidates were then individually screened, 

including to select for targets where the 10.0 Å conformational difference was due to 

large scale changes in the ligand protein and not, for example, due to differently packed 

tails or domain swapping. The construction process is detailed in “Dataset construction” in 

“Materials and Methods”. We note that this dataset is aimed for complexes with a ligand 

protein that undergoes a large conformational change and thus different from a general 

docking benchmark dataset such as the ZDOCK dataset [58]. ZDOCK benchmark 5.5 has 

271 targets, pairs of bound and unbound conformations. The average RMSD between bound 

and unbound an RMSD of 1.7 Å with the minimum and the maximum RMSD values of 0.0 

Å and 32.1 Å, respectively. There are 9 targets in ZDOCK that have over 10 Å difference 

between bound and unbound, which are in the scope of the current work, and indeed all 

of them were either already used in our dataset or redundant with our dataset. Specifically, 

1IRA, 1Y64, 1ZLI, 1H1V are included in our training set, and 5C7X, 6B0S, 5WUX, 4FQI, 

and 1BGX, are all immunoglobulin and redundant with immunoglobulin, 1DCL, in our 

dataset.

To evaluate models, we adopted the CAPRI criteria [17], where models are graded according 

to their interface RMSD (I-RMSD), which considers only interface backbone atoms, their 

ligand RMSD (L-RMSD), which considers the RMSD for one subunit when the other 

subunit is superimposed, and their fraction of native contacts (fnat), which considers the 

number of residue pairs in contact in the native structure that are also in contact in the 

model. Past work done on modeling of disordered proteins, which can be considered as 

the most flexible protein docking context, has considered an I-RMSD threshold of 6.0 Å to 

indicate successful fragment docking, which incorporates a tolerance for interface flexibility 

while still requiring the presence of native interactions at the protein-protein interface [42]. 

However, in the context of multidomain docking [45] and flexible fitting for large scale 

conformational change, the standard CAPRI I-RMSD, L-RMSD, and fnat thresholds of 4.0 

Å, 10.0 Å, and 0.10 still capture the quality of docking results, with models exhibiting 

I-RMSDs between 4.0 Å and 6.0 Å often still satisfying the standard L-RMSD threshold.

The docking results of individual targets are summarized in Table 2. Before examining 

actual modeling results, we first discuss results in the Flex(ible)-fitting-to-native column in 

Table 2, where for each target the unbound ligand was superimposed to the bound ligand 

in its native structure with the receptor and put through the flexible fitting procedure. This 

experiment examines how the proposed flexible fitting protocol performs in the best-case 

scenario where two domains of a target are placed in the correct pose. For all but one case 

(2F23), the Flex-LZerD protocol was able to produce models of CAPRI-acceptable quality. 

For 16 cases (69.6%), the resulting I-RMSD was less than 3.0 Å. In the case of 2F23, 

an acceptable quality model was not yielded mainly due to a narrow binding site of the 

receptor (RNA polymerase), which caused steric clashes during the fitting process and made 
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it difficult to fit the ligand (GreA factor homolog 1) to the correct pose. Overall, the results 

demonstrate that the protocol has ability to construct reasonably accurate models for the 

targets that need to consider the extreme flexibility of ligands.

Turning our attention to the actual modeling results, Flex-LZerD was broadly able to 

model the assembly of the targets in our benchmark set. To include the effects of potential 

flexibility in the receptor in addition to the ligand, we ran Flex-LZerD using unbound 

experimental structures of the receptor proteins when available cataloged in PDB. Of the 

9 benchmark targets where such structures were available (Table 2, the “Unbound best in 

top10” column), 5 were successfully modeled to at least CAPRI-acceptable quality (had 

at least one CAPRI-acceptable model within the top 10 by the final consensus score). Of 

the 4 unsuccessful cases, there was 1 case, 2OK5, where an acceptable model was yielded 

within top 10 when the bound receptor structure was used. In 2 of the successful cases 

in unbound docking, 3ND2 and 1G0Y, the receptors were single-domain globular proteins. 

As discussed later, these can be considered the easiest type of target for Flex-LZerD to 

handle. The remaining successful cases, 2MCG and 1UFK, have two-domain receptors, but 

the individual domains are both nearly rigid. In the case of 2MCG, the unbound receptor 

overall has a conformational difference of 2.6 Å RMSD, while for 1UFK the RMSD was 

9.18 Å. 1 case which failed, target PDB 2OK5, can be clearly attributed to the effect of 

receptor-side differences on the rigid-body domain docking. Here, the unbound receptor 

PDB 2A74 differed by 1.7 Å RMSD in the modeled regions. However, a small domain of 

the receptor, which contains part of the interface with the C-terminal domain of the ligand, 

is not modeled in the unbound receptor structure. While the best C-terminal domain pose 

selected had an I-RMSD of only 3.7 Å I-RMSD to the modeled regions, the missing domain 

interfered with the quality of the shape complementarity achieved, resulting in an L-RMSD 

of 17.4 Å. This, combined with the shape of the interface when considering both ligand 

domains, combined for an unsuccessful final I-RMSD of 6.2 Å and L-RMSD of 14.0 Å. 

Searching all sampled C-terminal domain poses found a pose with an L-RMSD of 14.9 Å, 

but none below 10 Å L-RMSD. Past work has noted that clustering can sequester sampled 

acceptable poses [13], but even exhaustively considering non-representative poses for this 

unbound target did not yield domain poses below 10 Å L-RMSD.

To explore the modeling potential of flexible fitting on a broader range of protein complexes 

mainly considering ligand flexibility, we additionally ran Flex-LZerD using bound-state 

receptor structures. Again in Table 2, we see that 17 of our 23 targets (73.9%) were modeled 

successfully in this context (“Best in top 10” column). Out of 15 protein-protein complexes, 

9 (60.0%) were successful, while for the protein-nucleic acid targets all 8 (100%) were 

successful. These results by Flex-LZerD were clearly better than by ordinary rigid-body 

docking. With the rigid-body docking method, LZerD, no acceptable models were obtained 

within the entire pipeline output of tens of thousands of models for all the targets, despite 

the use of bound receptor structures. Obviously, a rigid-body procedure is insufficient to 

model systems with the magnitude of ligand conformational difference studied in this work. 

The particular nature of this expected failure varies by case, for example inaccessibility or 

elongation of either ligand domain’s interaction site. On our benchmark set of complexes, 

only PDB 1GV2, a nucleic acid-binding protein, came close to an adequate structure via 

rigid-body docking, at 6.1 Å I-RMSD. However, the remainder of the targets ran the gamut 
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from 8.1 Å I-RMSD to 19.4 Å I-RMSD. Our dataset has two entries that overlap with past 

multidomain docking work by Karaca and Bonvin [45], interleukin and importin, for which 

both methods yielded CAPRI-acceptable models. We note that this past work modeled 

importin from a conformational change of 2.9 Å RMSD, while Flex-LZerD modeled from a 

conformational change of 10.1Å.

In terms of the model selection, the combined scoring function was usually able to select 

CAPRI-acceptable models from among the pairwise domain fitting output structures. By 

comparing the results in the two columns, the Top-scored models and Best in all models, we 

see that the average difference of I-RMSD of the top-scored model relative to the Best in 

all model was only 1.28 Å. For 2 cases (8.7%) the score was able to select the best (lowest 

I-RMSD) model from all the generated 10,000 models. These results by the consensus score 

we used in this study are substantially better than the ranksum [13, 14, 51], which we 

use typically in rigid-body docking. With ranksum, we could select CAPRI-acceptable hits 

for only 3 protein-protein targets (20.0%) and failed completely and selected no hits for 

protein-nucleic acid targets (Supplemental Figure S1).

Domain docking quality

The quality of the flexibly-fit models of course depended on the accuracy of the domain 

pose selection. As is shown in Figure 2, clear relationships can be observed between the 

docked domain model quality and the final model quality in terms of each of the component 

measures of the CAPRI criteria. The relationship between domain pose selection quality 

and final model quality is most noticeable with I-RMSD and fnat, where the outlying failed 

cases are clearly visible. The relationship is less clear for L-RMSD. Especially due to 

differences in receptor and ligand size, I-RMSD can be small despite a large L-RMSD 

[13]. Here however, due to the bound nature of the receptor structures, models with small 

L-RMSDs tend to likewise have small I-RMSDs. When the domain poses are modeled with 

high fnat, low I-RMSD, and low L-RMSD, the fitting tends to yield acceptable models. 

For example, of the 19 targets where the worst (by I-RMSD) modeled domain in the first 

CAPRI-acceptable hit (or best I-RMSD model if no hits) was modeled to within 6.0 Å 

I-RMSD (Figure 2a), the fitted model was also modeled to within 6.0 Å I-RMSD for 14 

(73.7%). Similarly, 12 out of 12 targets (100%) by L-RMSD using the CAPRI cutoff of 10.0 

Å and 18 of 18 targets (100%) for fnat using the CAPRI cutoff of 0.1.

As seen in Table 2, all targets with at least one domain without a CAPRI-acceptable model 

failed to produce an acceptable model at the end of the pipeline, with the exception of 

target PDB 5MGU. In that case, domain models with sufficiently high fnat combined in 

the flexible fitting to yield a CAPRI-acceptable model with a barely-acceptable L-RMSD 

of 9.50 Å. While acceptable domain poses were a nearly-necessary condition for final 

modeling success, they were not a sufficient condition. One target, PDB 3OJW, had 3 

combinations of acceptable domain poses available. Indeed, one of the 10,000 fitted models 

generated was of acceptable quality, with an I-RMSD of 7.4 Å, an L-RMSD of 9.3 Å, 

and an fnat of 0.18. However, this model was not present in the top 10 models selected 

by the consensus scoring function. While the interacting regions of a lightly interacting 

domain model, in this case of the N-terminal domain, may have a low I-RMSD in isolation, 
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the combined interacting regions of both domains do not necessarily superimpose as well. 

Thus, one particularly misoriented docked domain can spoil the fitted model in terms of the 

superimposition-based evaluation measures I-RMSD and L-RMSD.

From this result, a broad performance characteristic of Flex-LZerD can be understood. 

Targets where both domains interact with a single-domain globular receptor via broad 

interfaces, such as target 1G0Y as shown in Figure 3b, can be considered “easy”, as they 

are naturally amenable to the rigid-body docking stage on which the flexible fitting depends. 

On the other hand, targets where at least one domain interacts with confounding sparsity, 

such as in target 3OJW as previously discussed, can be considered difficult since the flexible 

fitting cannot fix a misdocked domain. Finally, targets where near-rigid domains cannot 

be extracted, such as the proteins with intrinsically disordered regions analyzed in the 

benchmark of IDP-LZerD [42], is out of scope for this protocol. The approach proven in 

that work for such cases was to divide the ligand protein into many pieces depending on 

the sequence length and perform rigid-body docking on many fragment models. Thus, such 

cases are intractable for Flex-LZerD, the current formulation of which only takes two pieces 

from the ligand.

Protein-nucleic acid targets

Among the protein-nucleic acid targets, we note that all targets produced an acceptable 

model within the top 10. Even the worst-off two of these targets, 3FDS and 5MGU, were 

successful yielding CAPRI-acceptable models. Target 3FDS had only a single acceptable 

pose for each domain to work with, and the final output model had an L-RMSD of 9.4 

Å, although it had a high fnat of 0.32. Target 5MGU was similar, with an L-RMSD of 9.5 

Å, although it had a high fnat of 0.34, despite technically having no acceptable domain 

poses to work with. However, two domain poses with sufficiently high fnat combined in the 

flexible fitting to yield this barely-acceptable full-complex model. This high success rate 

merits discussion of possible explanations. Proteins which bind nucleic acids tent do interact 

with the major or minor groove [59], implying a level of molecular shape complementarity 

regardless of whether the protein is recognizing a specific nucleic acid sequence or nucleic 

acids more generally. In the initial domain docking pose sampling, LZerD was able to find 

acceptable positions via its soft surface representation and complementarity-based scoring 

function. The combined scoring function used for domain and full model scoring in Flex-

LZerD also generalized favorably on account of the consensus-based scoring terms used. 

Unlike in the protein-protein complex case, where many sorts of interfaces and interface 

geometries exist, docking to a nucleic acid generally requires localization at and orientation 

to a groove, and shape complementarity is likely lesser in docked models not oriented 

to a groove. The tendency of the top domain models to be more accurately oriented in 

the nucleic acid targets than the protein targets can be seen through their typically higher 

docked-domain fnat scores as shown in Table 2. While this sort of self-selection may be more 

difficult to take advantage of with less accurate knowledge of the bound structure of the 

nucleic acid, it demonstrates the ability of Flex-LZerD to take advantage when the nucleic 

acid of interest is accurately modeled.

Christoffer and Kihara Page 9

J Mol Biol. Author manuscript; available in PMC 2023 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Comparison with AlphaFold

In addition to the LZerD protein docking tool, we also considered the potential of 

AlphaFold-Multimer in this arena. As other protein docking methods specialized for such 

large conformational changes are not yet developed, this emerging technique may be a 

future primary alternative. Thus, as part of our evaluation, we used AlphaFold-Multimer 

[11] to generate models for each target in the benchmark set. Note that the AlphaFold-

Multimer models here are not blind predictions. The pretrained models distributed with 

AlphaFold-Multimer are trained on the entire PDB up to 2018 April 30, and the entirety 

of the benchmark set was deposited before that date. Thus, the training set of AlphaFold-

Multimer included our benchmark set, and the structures in the benchmark set can largely 

be considered encoded therein. Nonetheless, we consider it a useful forward-looking point of 

comparison and include it in our analysis (Table 2).

Overall, for the 15 protein-protein targets, AlphaFold-Multimer yielded 9 protein-protein 

targets with at least CAPRI-acceptable models, for the same number as with Flex-LZerD 

when the bound receptor was used. Despite the inclusion in its training set of the native 

structures for all the protein-protein benchmark targets, AlphaFold-Multimer yielded no 

additional net CAPRI-acceptable hits over Flex-LZerD. However, the hits yielded by 

AlphaFold-Multimer were usually of overall better quality than the acceptable or better 

models yielded by Flex-LZerD. In fact, all but 2 of the hits were of at least medium CAPRI 

quality. In the case where Flex-LZerD modeled a target which AlphaFold-Multimer could 

not, target PDB 6APX, the receptor was a synthetic monobody. In such a scenario, where 

there is no coevolutionary interface information to be extracted from multiple sequence 

alignments, docking-based approaches can still be applied. Here, AlphaFold-Multimer 

did not even generate any models near the correct interface, and examination of the 

crystal lattice confirmed that the incorrect models also did not correspond to any crystal 

packing contacts. The peer-reviewed monomer version of AlphaFold was also tested on 

our protein-protein benchmark targets by connecting chains with 60-glycine linkers and 

treating them as a single chain. As shown in Table 2, this treatment yielded far worse 

modeling accuracy, with CAPRI-acceptable or better hits for only 5 targets. A noticeable 

limitation of AlphaFold-Multimer were the GPU memory requirements for larger residue 

counts. Two targets did not run due to this requirement. Furthermore, AlphaFold and 

AlphaFold-Multimer were completely unable to handle nucleic acids (the bottom half of 

Table 2).

Modeling examples

Modeling examples of four protein-protein complexes and protein-nucleic acid complexes 

are provided in Figure 3 and Figure 4, respectively. Among the examples highlighted 

in Figure 3 is calmodulin, which characteristically wraps around the binding site on its 

interaction partner [60] to bind via its EF-hand domains and effect a wide variety of 

downstream functions. Figure 3a shows calmodulin bound to receptor for retinol uptake 

STRA6 (PDB 5SY1), which requires a large conformational change of 13.8 Å. Using 

rigid-body docking (right subpanel, cyan), the lowest I-RMSD sampled was 11.4 Å, while 

Flex-LZerD found a CAPRI-acceptable hit (left subpanel, magenta) with an I-RMSD of 

4.5 Å. Rigid body docking could localize calmodulin at the binding site but was naturally 
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incapable of properly orienting both EF-hands and wrapping the binding site. On the other 

hand, Flex-LZerD did exactly that, generating the kink necessary to bend calmodulin in 

half and wrap around the binding site on STRA6. Shown next in Figure 3b is interleukin-1 

receptor type 1 (IL-1R) bound to interleukin-1 beta (IL-1 beta) (PDB 1ITB) [61], which 

requires a conformational change of 18.2 Å. In this target, IL-1R is initially closed relative 

to the bound structure. In fact, the binding site is totally inaccessible, with rigid-body 

docking unable to attain an I-RMSD better than 14.1 Å (right subpanel, cyan). Here, Flex-

LZerD was able to open up IL-1R to admit IL-1 beta, yielding a CAPRI-acceptable hit with 

an I-RMSD of 3.9 Å (left subpanel, magenta). The progression of fitting IL-1R is illustrated 

in Figure 1b and Supplemental Video S1. In the beginning, IL-1R is merely centered on the 

docked domains. IL-1R then quickly opens up in the early iterations. Next, the C-terminal 

end of the ligand rotates, reorienting following the docked C-terminal domain. As IL-1b 

enters the equation, the steric complementarity at the interface emerges. Finally, the model 

described above results as the fitting finishes. This example demonstrated that flexible fitting 

could start from a closed conformation model of a protein, could open the model in a 

way that accepts the protein’s binding partner, and could produce a model close to the 

native structure. Figure 3c shows importin subunit beta-1 binding to GTP-binding nuclear 

protein Ran (PDB 3EA5), a key stage in the nuclear import cycle [48], which requires a 

conformational change of 10.1 Å. From the unbound state of importin, rigid body docking 

was unable to attain an I-RMSD better than 10.0 Å (right subpanel, cyan). Though the 

binding site is not outright blocked, the solenoid in its unbound state is still closed relative 

to the bound. Flex-LZerD was able to open importin to accommodate Ran, yielding a 

CAPRI-acceptable hit with an I-RMSD of 2.9 Å (left subpanel, magenta). The progression 

of fitting importin is illustrated in Supplemental Video S2. In the beginning, importin is 

merely centered on the docked HEAT domains. Then, importin’s twisted shape quickly 

opens up, creating enough steric void to admit Ran. As the structure of Ran is included in 

the fitting, we quickly obtain our final structure. this example demonstrated that even when 

the domains used are not globular, flexible fitting could start from a closed conformation 

model of a protein, could open the model in a way that accepts the protein’s binding 

partner, and could produce a model close to the native structure. Finally, Figure 4d shows 

human complement factor B (CFB) binding complement C3 (PDB 2XWB), a core part of 

amplification in the complement system [26] which requires a conformational change of 

20.2 Å. Here the binding site is not blocked, but still must take on a different conformation 

to actually form an interface. Rigid-body docking was only able to reach an I-RMSD of 

19.4 Å (right subpanel, cyan), but Flex-LZerD was able to fit the interface and generate a 

CAPRI-acceptable hit with an I-RMSD of 5.0 Å (left subpanel, magenta).

Flex-LZerD was also able to model a variety of conformational changes in nucleic acid-

binding targets (Figure 4). Nucleic acids are not generally handled by current state-of-the-art 

deep learning methods for macromolecular structure prediction. Highlighted fin Figure 4a 

is transcription initiation factor IIB (TFIIB), essential for transcription initiation [62] bound 

to DNA. TFIIB must form interactions with both the major and minor groove of the DNA 

to bind. For the blind ligand input, we used a structure of transcription initiation factor IIB 

that was solved in isolation (PDB 5WH1). Domains were cut from the unbound structure 

by separating its two cyclin-like domains, removing their flexible linker [63] from Ala201 
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to Asp210. This binding consequently requires an overall conformational change of 12.2 

Å. The rigid-body docking was only able to reach 8.7 Å I-RMSD (right subpanel, cyan). 

Flex-LZerD on the other hand was able to conform TFIIB to both the major and minor 

grooves with an I-RMSD of 4.1 Å (left subpanel, magenta) using N-terminal and C-terminal 

domain poses modeled to 2.5 Å I-RMSD and 2.6 Å I-RMSD, respectively. The progression 

from the input unbound TFIIB structure to this fitted model is illustrated in Supplemental 

Video S3. Due to the simple TFIIB structure and the absence of bulky receptor structure 

taking up volume around the interface, this fitting was particularly smooth. Both domains 

quickly reorient to match their separately docked counterparts. Steric complementarity with 

the receptor is quickly achieved as well. This example demonstrated that even when the 

receptor is not a protein, flexible fitting could start from a closed conformation model of 

a protein, could close the model in a way that accepts the protein’s binding partner, and 

could produce a model close to the native structure. Other protein-nucleic acid interactions 

can feature flexible interfaces encompassing more of the nucleic acid. Figure 4b shows the 

antiviral innate immune response receptor RIG-I (RIG-I), part of the innate immune system 

in vertebrates [64],bound to dsRNA through a conformational change of 13.2 Å. To properly 

bind the dsRNA, RIG-I must close around the double helix. Rigid body docking was able to 

sample a conformation with 11.2 Å I-RMSD (right subpanel, cyan), which places RIG-I at 

the correct location, but fails to form most of the interface. Flex-LZerD on the other hand 

yielded a model with an I-RMSD of 4.7 Å, which successfully wrapped around the dsRNA.

Computational requirements

Flex-LZerD was tested on a cluster of compute nodes (“Bell” at Purdue University) each 

with two AMD EPYC 7662 64-core CPUs and 256GB of RAM. The running time of the 

pipeline increases with the length of the input flexible ligand protein, in particular the time 

required for the normal mode calculations and the energy minimization. At the low end, 

the running time is dominated by the energy minimization. However, the normal mode 

calculations have a higher growth order and begin to surpass the energy minimization in 

running time roughly in the regime of greater than 500 residues (Figure 5). To manage the 

resources required, we limited the fitting with each individual domain pair to 4 hours each, 

the time limit for the readily available standby scheduling on the Bell cluster. Under typical 

cluster usage conditions where we could use about 10–20 nodes, a single target would finish 

all 10,000 fitting runs in 1 to 2 days. The fastest ligand in the benchmark was PDB 1GV2 

with 159 residues, which took 10,037 CPU core-hours (took us about 1 day on the cluster). 

On the other hand, the slowest ligand was PDB 3ND2, which exceeded the 4-hour time 

limit. Sufficient timing data was generated, however, to calculate that running 3ND2 for all 

500 iterations would have taken a total of 157,490 CPU core-hours (which took us about 

2 days with the time limit on the cluster). The computational time could be shortened with 

tricks such as increasing the RTB block size to span multiple residues, although this would 

require careful tuning.

Discussions

In this work, we have shown that flexible fitting is capable of modeling large scale 

conformational changes in complex assembly, including in protein-nucleic acid docking that 
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is not handled by state-of-the-art deep learning methods. The highly generalizable nature of 

this form of modeling is expected to enable its application to other modeling categories not 

covered by this work, especially in integrative contexts.

This work provides a method for specific docking cases where the ligand protein 

has structured domains that can dock as rigid fashion and expected to have a large 

conformational change upon docking, which was not properly addressed before. In realistic 

application of protein docking, different types of docking methods developed by the 

community would need to be combined in a pipeline. In the most generic case with 

no information beyond initial subunit structures, regular docking methods with as LZerD 

[12] or HADDOCK can be used to model a complex. However, the more information 

is known about the protein complex, the more comprehensive the modeling can be. If 

distance restraints between interacting or non-interacting residue pairs are known from 

experiments such as nuclear magnetic resonance (NMR) or electron paramagnetic resonance 

(EPR), they can be applied in methods such as the LZerD webserver [14, 15], ClusPro 

[5], and HADDOCK [65]. When symmetry information is known, tools such as the LZerD 

webserver, M-ZDOCK [66], and SAM [67, 68] can take advantage. IDP-LZerD [42] can 

be used when one subunit is known to be intrinsically disordered, while for shorter peptide 

chains, MDockPeP [69] can be used. For higher-order heteromers, multiple docking method 

such as Multi-LZerD [70] or RL-MLZerD [71] can be used, which can even predict 

assembly order [72]. Finally, in cases where enough information is available to determine 

domains of flexible proteins, methods such as Flex-LZerD, presented here, can be applied. 

Ligand conformational change can feasibly be ascertained by spectroscopic, fluorescence, 

or other biophysical techniques. In the event of uncertain information, multiple tools can be 

run simultaneously as part of the modeling workflow. However, they are generally developed 

and employed independently from each other.

Protein docking is also indispensable step in modeling atomic structures from cryo-electron 

microscopy density maps [73, 74], where expert microscopists and many modern automated 

methods consider the modeling of domains and fragments to highly-resolved regions [75, 

76]. The flexible fitting in this work can be readily fed such fragments, as in principle 

the size of domains input does not matter. Methods for modeling intrinsically disordered 

proteins also often work with individually modeled fragments [42]. Thus, we anticipate 

future development along these directions.

MATERIALS AND METHODS

Dataset construction

Two datasets were constructed for this work. The testing benchmark set was constructed 

by running a BLAST [77] query of all sequences found in complexes in PDB against all 

sequences found in PDB to find unbound structures. Then, hits with at least 90% sequence 

identity and at least 10.0 Å RMSD of conformational difference were retained. This cutoff 

was relaxed to 7.0 Å for nucleic acid targets. Benchmark examples were then selected 

by expert manual inspection, selecting for examples where the 10.0 Å conformational 

difference was due to large scale changes in the ligand protein and not, for example, 

due to differently packed tails or domain swapping. Duplicate hits were filtered out. The 
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final benchmark set of 23 targets is detailed in Table 1. It includes 15 protein-protein 

complexes and 8 protein-DNA complexes. Among the 15 protein-protein docking cases, 9 

of them have unbound receptor structure. The training set was taken from the benchmark 

set of a ClustENM-HADDOCK work [20, 35] which examined docking at lower scales of 

conformational change. Two examples, PDB 1IRA and PDB 1IBR, were excluded from 

the training set because they were already present in the benchmark set. The 9 training set 

targets are detailed in Supplemental Table S2.

Rigid-body docking of domains

Each ligand protein structure domain was docked with the receptor structure using LZerD 

[12, 49]. LZerD is a shape complementarity-based rigid-body docking which uses a soft 

representation of the molecular surface to achieve tolerance to some small conformational 

change. Using geometric hashing, LZerD rapidly generates many docking poses, which are 

then scored according to their surface shape complementarity. For each target complex, 

domain models were manually generated for the ligand by identifying rigid regions and 

removing the intervening residues. For each input domain, the set of docked models 

generated by LZerD was ordered by the LZerD shape score and truncated to a set of 50,000 

models. Then, each set was clustered with an RMSD cutoff of 4.0 Å.

Domain scoring

For selecting docked domain poses, we constructed a combined scoring function generalized 

from methods used in the scoring of IDP-LZerD[42]. This scoring function uses logistic 

regression to combine the knowledge-based scoring functions GOAP [78], DFIRE [79], and 

ITScorePro [80], which are the three scoring functions combined in the usual ranksum score 

for docking [13, 50, 51], as well as LZerD shape complementarity score, the number of 

docking decoys in the cluster from 4 Å RMSD clustering, binding site consensus terms 

(BSCR,5, BSCL,5. BSCRL,5. BSCR,10, BSCL,10, BSCRL,10) representing residue interaction 

agreement within the docking pool, and order statistic terms (OS(1), OS(2), and OS(3)) 

highlighting extreme values among the other scoring terms for each model.

The LZerD shape complementarity scores and the cluster sizes are taken from the previous 

initial docking stage. The binding site consensus terms BSCx,y quantify the frequency of 

residue-residue interactions observed in docking models generated in the domain docking. 

There are six binding site consensus terms in total, calculated from the combinations of 

two interaction distance cutoffs (5.0 Å and 10.0 Å) and three sets of interface residues 

considered (receptor, ligand, and both). 5.0 Å and 10.0 Å were used as cutoffs following 

the definitions of protein-protein interactions in the CAPRI evaluation criteria. For example, 

BSCR,5 considers interface residues in the Receptor using a 5.0 Å distance cutoff. More 

specifically, they are defined as follows: given a docked model pool P (here typically 10,000 

to 50,000 docking decoys) and an interaction distance cutoff Rmax (here 5.0 Å and 10.0 Å) 

we define a Bx, Rmax m  to be the residues in model m which interact with x, in other words 

the set of residues in model m in a the opponent molecule from residue x that are within 

distance Rmax of x. For example, if x is from the receptor, residues are counted from the 

interacting protein domain. Then, each residue x in the in all subunits (both receptor and 

ligand) is assigned an occupancy score Occ[x] indicating the frequency with which that 
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residue appears as part of a residue-residue contact pair across the interface in the model 

pool P, calculated by simply counting the encountered interactions:

Occ x = ∑
m ∈ P

# Bx, Rmax m (1)

where # counts the number of binding residues (B) with x within the Rmax distance. Then, to 

calculate the binding site consensus score for a docking model, the interface residues being 

considered in the model are counted, weighted by the occupancy that was just calculated. 

Formally, denoting as Q the receptor side, the ligand side, or both sides of the interface 

as determined by Rmax, each model m ∈ P is assigned the binding site consensus score 

BSCQ, Rmax m :

BSCQ, Rmax m = ∑
x ∈ Q

Occ x (2)

The order statics terms are to consider if any score prefers a model with a high significance 

or not even if it is not the consensus among all the scoring terms To prepare, first, each score 

was normalized to a Z-score. A Z-score of a raw score is defined as: (Raw_score – Average)/

Standard_Deviation. The average and the standard deviation are computed from the score 

distribution of decoys of the target. Scoring terms where more positive values should be 

more favorable, i.e. LZerD shape complementarity scores, cluster sizes, and binding site 

consensus scores, were each multiplied by −1 so that lower is more favorable for all 

component scores. Thus, for all the scoring terms a negative large Z-score is favorable. From 

these, order statistic terms were calculated for the Z-scores of the scoring terms. To compute 

the order statistics of OS(1) of a model, we first check the Z-sores of all the scoring terms 

for the model, and select the smallest (the most significant) Z-score. In the same way, OS(2) 
and OS(3) are the second and the third smallest Z-scores among all the Z-scores of all the 

scoring terms. A first-order term of this form, OS(1), was previously used successfully in 

IDP-LZerD [42], and here we expanded it to include OS(2) and OS(3). For example, if a 

model has Z-scores of −1.6, −2.3, and −0.4 for the cluster size, BSCR,5, and ITScorePro, 

respectively, and some arbitrary positive-valued Z-scores (i.e. insiginificant scores) for the 

nine other scoring terms, then OS(1), OS(2), and OS(3) that model will be −2.3, −1.6, and 

−0.4, respectively. In this work, we generalized up to the third order by including OS(1), 

OS(2), and OS(3) in the combined scoring function.

The component scores GOAP, DFIRE, ITScorePro, ranksum, the LZerD shape score, LZerD 

cluster size, BSCR,5, BSCL,5. BSCRL,5. BSCR,10, BSCL,10, BSCRL,10, OS(1) OS(2), and 

OS(3), were then finally combined in a logistic regression model. To optimize the logistic 

regression weights, docked models were generated for each target in the training dataset 

using the same procedure as above. CAPRI statistics were then calculated for each model. 

Each model was labeled positive if it was of acceptable CAPRI quality, and negative if it 

was not. Each model was then weighted to balance the number of positive and negative 

cases within each target. Then, the logistic regression model was trained using all the 

models for all the training targets. The resulting scoring function was used to rescore the 
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docked domain models after the clustering stage. The training set performance is shown in 

Supplemental Table S3.

Anisotropic network model

In Flex-LZerD, we use an elastic network model to deform the ligand structure into 

agreement with the docked domains, in particular the anisotropic network model (ANM) 

[81–83]. In an ANM, atoms are considered as point masses with a simple harmonic potential 

constructed by considering initial distances between atoms. The general idea is that principal 

components of possible large-scale motions can be extracted by coupling the system in this 

way. Here, atoms are connected if they are within 15.0 Å of each other. Thus, for each pair 

of atoms i and j among the total n atoms, we build up a potential U as follows:

Uij =
1
2γ(sij − sij

0)2 i, j connected

0 otherwise
(3)

with the overall potential computed as the sum of the pairs:

U = ∑
i, j ∈ atoms

Uij (4)

where γ is a Hookean spring constant, which is set to 1, sij is the distance between two 

atoms, and sij
0 is the initial distance between two atoms.

To generalize the 1D single-spring case with potential U = γ Δs 2 and restoring force F = 

−γΔs, we generalize the stiffness to the Hessian H of the potential and the 1D displacement 

Δs to the 3D multi-point displacement s⃑:

F⃑ = Hs⃑ (5)

where H is 3n × 3n. We are not interested in particular values of force. Instead, we want to 

extract the normal modes of this system, the directions and relative displacements that will 

set the masses oscillating in simple harmonic motion in phase with each other. This requires 

that each atom be moving along a particular line with forces and displacements parallel. 

Thus, we can formulate the normal mode extraction as an eigendecomposition problem:

Hs⃑ = λs⃑ (6)

The eigendecomposition will give us 3n − 6 normal modes vi (6 eigenvectors are lost 

as degenerate to the bulk translational and rotational degrees of freedom) each with a 

corresponding frequency ωi = λi. By convention, the normal modes are arranged in order of 

nondecreasing frequency. Following common practice, the 20 slowest modes were taken for 

use in the iterative flexible fitting.
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Rotations and translations of blocks

Instead of using the basic ANM, we used the rotations and translations of blocks (RTB) [55] 

method, which is capable of treating individual amino acids rigid bodies, which preserves 

the low-frequency behavior and is less computationally expensive. Instead of the above full 

formulation (Eqs. 3–6), which requires an expensive computation of 3n × 3n Hessian matrix, 

RTB linearizes SE(3) transformations of N blocks (residues). Based on the mass of each 

block and atom and inertia tensor of each block, projection matrices are constructed to 

convert the blocks into rigid bodies engaged in infinitesimal translations and rotations:

P rk = mk

Mb

1 0 0
0 1 0
0 0 1

(7)

P rk = − mk I − 1
2 qk − qb

COM
×

(8)

Where k identifies a particular atom, b identifies a particular block, 3 × 3 matrices P tk and 

P rk correspond to translation and rotation projections for atom k, mk and qk are the mass and 

coordinates of atom k, Mb and qb
COM are the mass and center-of-mass coordinates of block 

b. Stacking these atom-wise projections into block-wise projections row-wise yields 3Nb × 

3 matrices P tb and P rb, where Nb is the number of atoms in b. These block projections are 

assembled into a 3n × 6N block-diagonal matrix as follows:

P =
P t1 P r1

⋱ ⋱
P tn P rn

(9)

This whole-structure projection matrix is then used to project the mass-weighted Hessian 

into the RTB subspace. Thus, the 3n × 3n original Hessian is reduced to a merely 6N × 6N 
substitute. It is subsequently diagonalized to extract normal modes L within the subspace:

H = PTHP = LΛLT #(10)

This enables a faster diagonalization while preserving the large-scale properties of the whole 

elastic network. To recover these modes in the form of all-atom displacements, we simply 

take PL. In this work, calculation of and projection to RTB normal modes using partial 

structures was implemented using the ProDy framework [84].

Iterative fitting to docked domains

As previously stated, normal modes only allow displacement in straight lines. Even adding 

multiple normal modes simultaneously, normal modes alone here do not allow curvilinear 

motion. Extremely large conformational changes, however, require curvilinear motion. To 

accomplish curvilinear motion, modes are restricted to small amplitude motion. Then, after 

such a small displacement, the Hessian is recalculated and re-diagonalized. Thus, using 
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many line segments, curvilinear motion is accomplished. This iterative pipeline is illustrated 

in Figure 1. In the context of Flex-LZerD, mode amplitudes are selected to follow the 

displacements that would bring atom positions in the unbound ligand structure to coincide 

with the docked domains. The twist of course is that no such displacements are defined 

for the atoms which are present in the unbound structure but not in the docked domains. 

To impute displacements for the regions not modeled by domains, the normal modes are 

masked to exclude unmodeled atoms prior to projecting the displacements thereon. Once 

amplitudes have been obtained for the modes in this way, the amplitudes are attenuated by 

a factor of 0.05 and applied to the unmasked modes. An attenuation of 0.05 was chosen to 

produce few violations over 0.1 Å of the typical Cα-Cα distance of 3.8 Å. Thus, guided 

by the information from partial complex assembly by domains, the entire assembly can be 

modeled.

Minimization of geometric restraints

Minimization of molecular geometry violations, such as from bond lengths, van 

der Waals interactions, and torsion angles, during each iteration was accomplished 

within the PHENIX [85] software framework using an L-BFGS minimizer within the 

“mmtbx.refinement.geometry_minimization” library. This minimization was always applied 

to the ligand structure. Additionally, every 10th iteration after the 100th, the receptor 

structure was also included in the minimization. The periodic inclusion of the receptor is 

meant to help the ligand conform to the receptor surface, while the 100-iteration delay is 

meant to accommodate any steric overlap in the initial positioning of the ligand.

Fitted model scoring

Fitted models are scored using the same scoring function as in the docked domain scoring 

stage. Here, instead of the binding site consensus terms being freshly calculated, the values 

from the docked domain scoring stage are used.

LZerD rigid-body docking

For comparison with the flexible docking, each target was docked without considering 

flexibility using LZerD [12, 49], which can be downloaded from https://kiharalab.org/

proteindocking/lzerd.php. LZerD, just as in the rigid-body docking of domains described 

above, is a shape complementarity-based rigid-body docking which uses a soft 

representation of the molecular surface to achieve tolerance to some small conformational 

change. Using geometric hashing, LZerD rapidly generates many docking poses, which are 

then scored according to their surface shape complementarity. For each target, the set of 

docked models generated by LZerD was ordered by the LZerD shape score and truncated 

to a set of 50,000 models. Then, each set was clustered with an RMSD cutoff of 4.0 Å. 

Ordinarily, LZerD models are scored by ranksum[13, 14, 51]. However, to highlight the 

inaccessibility of the benchmark set to rigid-body docking, we instead simply selected the 

model with the lowest I-RMSD (i.e. the best model among generated docking poses). The 

results of these rigid-body docking runs, which had a 100% failure rate as expected, are 

shown in Table 2.
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AlphaFold and AlphaFold-Multimer

AlphaFold [10] and AlphaFold-Multimer [11] models were generated using version 

2.0.1 (https://github.com/deepmind/alphafold/releases/tag/v2.0.1) and version 2.2.2 (https://

github.com/deepmind/alphafold/releases/tag/v2.2.2), respectively, of DeepMind’s released 

AlphaFold software package. For all required databases, the default versions linked to 

by AlphaFold’s install script were used. For all applicable targets, AlphaFold was run 

without the use of templates. When using the original monomeric version of AlphaFold, 

the ligand sequence was concatenated to the receptor sequence with a 60-glycine linker. 

Other configurable parameters were left at their default values. For each applicable target, 

5 models were thus generated and ranked according to AlphaFold-Multimer’s output score. 

CAPRI statistics were then calculated to evaluate model accuracy, and the accuracy of the 

first CAPRI-acceptable model was reported (see Table 2).
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Figure 1. 
(a) Overall flow of the Flex-LZerD method. Green: the initial stage of the pipeline, which 

yields partially assembled complex models. Two domains are extracted from the ligand, 

the domains are docked to the receptor, and domain poses are selected via a consensus 

scoring function. Blue: the microcycle loop of the pipeline, where atom coordinates are 

updated according to normal mode displacements and energy minimization of the ligand. 

The energy minimization using PHENIX takes into account bonds and steric effects, but not 

long-range interactions. Purple: the macrocycle loop of the pipeline, where atom coordinates 

are updated according to an otherwise identical energy minimization of the ligand in the 

presence of the receptor. (b) A selection of frames from a flexible fitting run of target 

Interleukin-1 receptor type 1 (PDB 1ITB). Gray: the receptor structure. Magenta: the docked 

domain models being fitted to. Cyan: the unbound ligand model being deformed. Frame 0 is 

simply the input ligand unbound structure superimposed to the docked domain models. The 

bulk of the conformational change was modeled early on while the domain displacement 

vectors were large. After iteration 100 when the receptor was included in the geometry 

minimization, the fit adjusted to conform to the receptor structure. Frame 500 is the output 
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model for this docked domain model pair, which has an I-RMSD of 3.9 Å, an L-RMSD of 

4.0 Å, and an fnat of 0.29.
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Figure 2. 
Relationship between domain modeling quality and fitted model quality. Each subplot shows 

CAPRI statistics for the worst (by I-RMSD) domain from the highest-ranked model (the 

first hit) of acceptable quality (or from the best I-RMSD model if no models of acceptable 

quality) vs the same fitted model statistics for each target. (a), I-RMSD. (b), L-RMSD. (c), 
fnat, the fraction of native contacts.
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Figure 3. 
Example modeling of protein-protein complexes. Gray: the receptor structure. Brown: the 

potions of the native ligand structure corresponding to the extracted domains used for 

rigid-body domain docking. Yellow: the potions of the native ligand structure which do not 

correspond to extracted domains. Magenta (left): the lowest I-RMSD Flex-LZerD model 

output within the top 10. Cyan (right): the lowest I-RMSD model from entirely rigid-body 

docking. (a) Calmodulin (PDB 5SY1). Flex-LZerD yielded a model with an I-RMSD of 

4.5 Å, an L-RMSD of 7.3 Å, and an fnat of 0.33, while rigid-body docking could at best 
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sample a model with an I-RMSD of 11.4 Å, an L-RMSD of 19.3 Å, and an fnat of 0.14. (b) 
Interleukin-1 receptor type 1 (PDB 1ITB). Flex-LZerD yielded a model with an I-RMSD of 

3.9 Å, an L-RMSD of 4.0 Å, and an fnat of 0.29, while rigid-body docking could at best 

sample a model with an I-RMSD of 14.1 Å, an L-RMSD of 27.9 Å, and an fnat of 0.01. (c) 
Importin subunit beta-1 (PDB 3EA5). Flex-LZerD yielded a model with an I-RMSD of 2.9 

Å, an L-RMSD of 4.3 Å, and an fnat of 0.50, while rigid-body docking could at best sample 

a model with an I-RMSD of 10.0 Å, an L-RMSD of 17.4 Å, and an fnat of 0.11. (d) Human 

complement factor B (PDB 2XWB). Flex-LZerD yielded a model with an I-RMSD of 4.9 Å, 

an L-RMSD of 5.8 Å, and an fnat of 0.35, while rigid-body docking could at best sample a 

model with an I-RMSD of 19.4 Å, an L-RMSD of 26.9 Å, and an fnat of 0.00.
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Figure 4. 
Example modeling of protein-nucleic acid complexes. Gray: the receptor structure. Brown: 

the potions of the native ligand structure corresponding to the extracted domains used for 

rigid-body domain docking. Yellow: the potions of the native ligand structure which do not 

correspond to extracted domains. Magenta (left): the lowest I-RMSD Flex-LZerD model 

output within the top 10. Cyan (right): the lowest I-RMSD model from entirely rigid-body 

docking. (a) Transcription initiation factor IIB (PDB 1C9B). Flex-LZerD yielded a model 

with an I-RMSD of 4.1 Å, an L-RMSD of 9.9 Å, and an fnat of 0.23, while rigid-body 

docking could at best sample a model with an I-RMSD of 8.7 Å, an L-RMSD of 16.5 

Å, and an fnat of 0.03. (b) Antiviral innate immune response receptor RIG-I (PDB 7JL1). 

Flex-LZerD yielded a model with an I-RMSD of 4.7 Å, an L-RMSD of 5.5 Å, and an fnat of 

0.19, while rigid-body docking could at best sample a model with an I-RMSD of 11.2 Å, an 

L-RMSD of 7.4 Å, and an fnat of 0.02.

Christoffer and Kihara Page 29

J Mol Biol. Author manuscript; available in PMC 2023 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
The size of the flexible ligand protein vs the running time of Flex-LZerD across all 

targets, broken down by pipeline stage. Flexible Fitting, Energy Minimization, and Domain 

Docking indicate the total running time for a target spent on normal mode calculation and 

deformation, Phenix energy minimization, and domain docking using LZerD, respectively. 

Running times were linearly extrapolated to the full 500 iterations where necessary. Since 

component running times were stable across all iterations, simple linear extrapolation was 

suitable.
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