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Abstract
In modern clinical decision-support algorithms, heterogeneity in image characteristics due to variations in imaging systems and 
protocols hinders the development of reproducible quantitative measures including for feature extraction pipelines. With the help of 
a reader study, we investigate the ability to provide consistent ground-truth targets by using patient-specific 3D-printed lung 
phantoms. PixelPrint was developed for 3D-printing lifelike computed tomography (CT) lung phantoms by directly translating clinical 
images into printer instructions that control density on a voxel-by-voxel basis. Data sets of three COVID-19 patients served as input 
for 3D-printing lung phantoms. Five radiologists rated patient and phantom images for imaging characteristics and diagnostic 
confidence in a blinded reader study. Effect sizes of evaluating phantom as opposed to patient images were assessed using linear 
mixed models. Finally, PixelPrint’s production reproducibility was evaluated. Images of patients and phantoms had little variation in 
the estimated mean (0.03–0.29, using a 1–5 scale). When comparing phantom images to patient images, effect size analysis revealed 
that the difference was within one-third of the inter- and intrareader variabilities. High correspondence between the four phantoms 
created using the same patient images was demonstrated by PixelPrint’s production repeatability tests, with greater similarity scores 
between high-dose acquisitions of the phantoms than between clinical-dose acquisitions of a single phantom. We demonstrated 
PixelPrint’s ability to produce lifelike CT lung phantoms reliably. These phantoms have the potential to provide ground-truth targets 
for validating the generalizability of inference-based decision-support algorithms between different health centers and imaging 
protocols and for optimizing examination protocols with realistic patient-based phantoms.
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Significance Statement

Diagnostic imaging is often the front-line method for diagnosis and treatment evaluation. Modern radiological workflows increasingly 
rely on analyzing medical images for quantifiable features. The variability associated with device/vendor, acquisition protocol, data 
processing, etc. is undesirable and can have a dramatic effect on quantitative measures, including the radiomics features. A clinically 
realistic evaluation strategy is necessary to understand the effects of such variabilities. Recently, we introduced a method to 3D-print 
lifelike patient-specific CT lung phantoms. The objective of this study is to compare the diagnostic performance in a reader study of 
our phantoms to ground-truth patient data. Our study demonstrates that there is no clinically significant difference, thereby provid
ing the foundation for future standardization in diagnostic imaging.
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Introduction
Quantitative imaging is receiving increased interest and acknow
ledgment from clinicians and healthcare providers as a support
ing tool for data-driven, patient-specific clinical decision-making 
(1–3). However, variability in image acquisition and reconstruc
tion techniques introduce heterogeneity in image characteristics 
and features that are independent of the underlying biology and 
pathophysiology (4). Modern medical imaging modalities, such 
as computed tomography (CT), magnetic resonance imaging, 
and positron emission tomography (PET), allow a wide variety of 
imaging parameters that are, in general, lacking standardization 
between different health centers and different scanner models. 
While these differences typically have little clinical impacts for 
routine radiological interpretation, they introduce biases when 
analyzed numerically to extract meaningful data (4). This ham
pers advancement of reproducible feature extraction pipelines, 
a critical pre-requisite for clinical translation (5). Despite ongoing 
efforts to account for factors originating from the recognized lack 
of imaging standardization, the problem of biases and variability 
persists. Experimental validation of image cohort normalization 
methods, such as ComBat (6–8), is currently limited due to an in
ability to repeat patient scans on multiple scanners or with mul
tiple imaging protocols given logistical and risk-related 
considerations, e.g. the risks of ionizing radiation in CT and PET. 
There is therefore a growing need for realistic patient-based volu
metric phantoms that can accurately mimic human anatomy and 
disease manifestations to provide consistent imaging ground- 
truth targets when comparing postprocessing image cohort nor
malization and feature extraction techniques.

Anthropomorphic phantoms are fundamental tools for devel
oping, optimizing, and evaluating hardware and software advan
ces in medical imaging research and clinical practice. Such 
phantoms are typically manufactured by machining, casting, or 
molding homogenous materials that mimic tissue properties rele
vant for the specific imaging modality, e.g. x-ray attenuation coef
ficients for CT (9). Realistic patient-based phantoms have 
additional advantages for clinical and development tasks, such 
as imaging protocol optimization, and provide ground-truth tar
gets for denoizing or artifact correction artificial intelligence (AI) 
algorithms. Despite a wide range of commercially available phan
toms, there is a lack of patient-based phantoms capable of reliably 
representing the quantitative imaging characteristics and tex
tures found in clinical patient images. The academic and clinical 
radiology communities would greatly benefit from rapid, versa
tile, lifelike, as well as inexpensive phantom manufacturing proc
esses, compared with commercial solutions currently available.

Throughout the last decade, 3D-printing of phantoms that 
represent the X-ray attenuations and textures of various 
tissues, anatomies, and disease has been widely explored. These 
studies focused on several developmental aspects, including 
3D-printing of accurate attenuation profiles (10–13), manufactur
ing anatomically correct organ models (14–18), and generation of 
realistic tissue textures (19–21). Novel 3D-printing techniques, 
mainly using fused deposition modeling (FDM), have been pro
posed to generate variable material densities that mimic the im
aging features observed in clinical CT images. These methods 
(22–24) include utilization of different infill printing patterns 
(25), variable voxel-dependent extrusion rates (12, 13), or inter
lacing two different materials with dual-extrusion printers (26).

Generation of 3D-printed anthropomorphic phantoms from 
clinical CT images typically involves (17, 24, 27–29): (i) automated 
or manual segmentation of specific tissues or organs, e.g. an entire 

lung or identified findings, (ii) conversion of the segmented vol
umes into triangulated surface geometry models, such as stand
ard triangle/tessellation language (STL), and (iii) utilization of 
printer-specific slicing software to generate instructions (e.g. 
G-code) that determine relevant 3D-printing parameters, such 
as extrusion rate, printing speed, infill ratios, etc. While phantoms 
produced this way may approximate clinical imaging characteris
tics, they still have shortcomings. Most importantly, due to seg
mentation of regions followed by conversion to surface models, 
abrupt and unrealistic transitions between homogenous regions 
of different densities are created within the printed products, 
and spatial resolution and textural information are compromised.

In this work, we evaluate a promising alternative called 
PixelPrint that we recently developed to overcome the limitations 
described above. PixelPrint directly translates DICOM image data 
into printer instructions that continuously control the printed 
material density by varying the printer speed on a voxel-by-voxel 
basis, while maintaining a constant filament extrusion rate. 
Previously we reported on quantitative comparisons between a 
clinical CT slice and its corresponding 3D-printed phantom (30). 
Here we report on subjective (blinded) reader studies conducted 
to assess the correspondence of image quality and general im
aging characteristics between images of three 3D-printed volu
metric COVID-19 pneumonia lung phantoms with those of the 
original patient images used to produce these phantoms. The 
main purpose of these studies was to evaluate whether differen
ces between patient and phantom images are of any clinical sig
nificance. We also report quantitative comparisons between 
four 3D-prints of the same patient for production reproducibility 
assessments.

Methods
Three patients were selected from the Hospital of the University of 
Pennsylvania PACS by a thoracic radiologist (L.R., 4 years of ex
perience) under an IRB approved protocol. Patients were selected 
based on the assessed COVID-19 severity level (mild, moderate, 
and severe), patient habitus, and absence of significant metal ar
tifacts. For each patient, clinical DICOM images reconstructed 
with a sharp kernel (Table 1) were converted into 3D-printer in
structions using PixelPrint software. A complete technical back
ground of the PixelPrint algorithm, pipeline, and quantitative 
evaluation is available in our previous publication (30). A primary 
advancement of PixelPrint presented in this study is the 
3D-printing of phantoms based on volumetric patient data (Fig. 1).

All phantoms presented in this work were printed using 
1.75 mm diameter polylactic acid filament (MakeShaper; Keene 
Village Plastics, Cleveland, OH, USA) on a Lulzbot TAZ 6 fused- 
filament 3D-printer (Fargo Additive Manufacturing Equipment 
3D, LLC Fargo, ND, USA) with a 0.25 mm brass nozzle. Phantoms 
were printed with a constant extrusion rate of 0.6 mm3/s and a 
layer height of 0.2 mm. Printing speeds varied from 3 to 30 mm/s, 
with acceleration and jerk (threshold velocity for applying accel
eration) settings of 500 mm/s (2) and 8 mm/s, respectively, produ
cing line widths from 0.1 to 1.0 mm.

Each phantom was scanned on the same scanner using the 
same acquisition and reconstruction settings as the input patient 
scan (Table 1). The phantoms were placed within the 20 cm bore 
of a 300 × 400 mm2 phantom (Gammex MECT, Sun Nuclear, 
Melbourne, FL, USA) to mimic attenuation profiles of a medium- 
sized patient. A preprocessing pipeline was developed for prepar
ing images for a reader study using the following steps. First, lung 
segmentations obtained using a pretrained AI (31) from each of 
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the original patient scans were dilated by eight pixels in every dir
ection and manually positioned on the 3D-printed phantom image 
volumes. Next, an image registration algorithm (Simple-ITK (32)) 
was applied to accurately align phantom images with their corre
sponding patient images and a circular binary mask of 18 cm diam
eter was applied to both the segmented phantom and their 
corresponding patient images to hide their surroundings (patient 
anatomy or multi-energy CT phantom [MECT] phantom). Finally, 
images from both the phantoms and the corresponding patient im
ages were randomized separately for each reader evaluation.

The reader study consisted of two parts. In the first part, radi
ologists were asked to review 120 randomized slices from patient 

and phantom scans, reconstructed with either a sharp or smooth 
kernel, and answer four questions regarding whether the pre
sented slice had realistic imaging, contrast, noise, and resolution 
characteristics of a diagnostic quality CT lung scan (see Fig. S1 in 
the Supplemental Material). In the second part, radiologists were 
asked to review 90 randomized slices from patient and phantom 
scans, all reconstructed with a smooth kernel, and for each slice 
rate the severity of COVID-19 consolidations (none, mild, moder
ate, and severe) and whether there are sufficient details (e.g. reso
lution, contrast-to-noise ratios) for a confident COVID-19 
diagnosis (see Fig. S2 in the Supplemental Material). The same 
five radiologists (1 with 8 years of experience, 3 with 4 years of 

Table 1. Patient information together with the scan and reconstruction parameters that were used to generate the original diagnostic CT 
images and the images of the three corresponding 3D-printed phantoms.

COVID-19 severity Mild Moderate Severe

Patient sex Male Female Male
Patient age 71 years 57 years 68 years
CT manufacturer Siemens GE Siemens
CT model Sensation 64 Revolution CT Definition Edge
Tube voltage 120 kVp 100 kVp 120 kVp
Collimation 19.2 mm 80 mm 38.4 mm
Rotation time 0.5 s 0.5 s 0.33 s
Spiral pitch factor 1.5 0.992 1.45
Dose modulation XYZ XYZ XYZ
Exposure (at lungs) 55–64 mAs 75–90 mAs 75–77 mAs
CTDIvol (at lungs) 4.213–4.953 mGy 5.081–6.125 5.112–5.219 mGy
Recon. kernel B31f, B70f CHEST, LUNG Bf37f/3, Br51f/2
Slice thickness 1.0, 1.0 (mm) 0.977, 0.625 (mm) 1.0, 1.0 (mm)
Slice increment 1.0, 1.0 (mm) 1.0, 0.625 (mm) 1.0, 1.0 (mm)
Recon. field of view 425 mm 500 mm 365 mm
Matrix size 512 × 512 512 × 512 512 × 512
Pixel spacing (x/y) 0.83/0.83 mm 0.98/0.98 mm 0.71/0.71 mm

Fig. 1. Comparisons between clinical CT lung images of a mild COVID-19 patient (left) and images of a corresponding 30 mm thick 3D-printed volumetric 
phantom (right), acquired with the same CT scanner and imaging parameters. Presented in two orthogonal views: axial (top), sagittal (bottom). Window 
level/width is −500/1,400 HU.
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experience, and 1 with 2 years of experience) were involved in as
sessing the images in these two parts. To simplify the analysis of 
the reader study, a higher rating indicates a better review score for 
all questions except for the COVID-19 severity question. A dedi
cated user interface was implemented to simplify the review pro
cess and to record the radiologists’ replies. Importantly, the 
participating radiologists were told that they were taking part in 
a “CT lung image evaluation study” and were completely unaware 
of the fact that the reviewed data sets included phantom images, 
which is why this study can be considered a “completely blinded” 
reader study.

Statistical analysis was performed by experts in statistics (K.D. 
and R.T.S.) to assess the mean difference in responses between 
patient and phantom images with the aid of linear mixed models. 
For this, each question was modeled (separately) using the follow
ing equation:

Responseij = β0 + β1Phantomij + φi + εij 

where i denotes the reader and j denotes the image, β0 and β1 de
note the mean response across readers for patient scans and dif
ference in mean response between patient and phantom across 
readers, respectively. The model allows estimation of the mean 
rating difference between phantom and patient images, while 
controlling for potential differences between readers in their re
sponses through φi and εij. φi, which represents reader-level differ

ences in mean response for a given question, and εij, which 

represents the remaining model errors, are assumed to be inde
pendent across scans and readers with equal variance and zero 
mean, as well as normally distributed.

Along with statistical significance, which was assessed through 
standard hypothesis testing, a measure of “clinical significance” is 
important to quantify the estimated difference between the two 
sets of images, i.e. phantom vs. patient, with respect to different 
measures of variance. This is because while differences may be 
“statistically” significant based on the resulting P-values, at the 
same time they may be clinically insignificant in terms of their 
magnitude relative to inter- and intraobserver variabilities. 
Moreover, if sample sizes are large, arbitrarily small differences 
will often be statistically significant (33). Thus, assessments of ef
fect sizes are critical to fully assess the mean difference (34). In the 
two-sample context, Cohen’s d is a commonly used measure of ef
fect size (34). However, in the context of clustered data, where in 
this case, readers are the clusters, a different estimate for the 
pooled standard deviation (SD) is needed. An alternative for this 
context, proposed in Westfall et al., is d = β1/(σ2

ε + σ2
φ)1/2, where σ2

ε 
denotes the variance in the error terms (within-reader variance) 
and σ2

φ denotes the between-reader variance (35). Another similar 
effect size measure is the ratio between the mean difference and 
within-reader variability, given by d′ = |β1|/σε. Both effect size cal
culations were assessed here as part of our analysis, together with 
R2 calculations to measure the proportion of response variation 
that is associated with the scanned object type (patient vs. 
phantom).

Finally, to assess the robustness and reproducibility of 
PixelPrint’s phantom production process, three additional phan
toms were 3D-printed based on the moderate COVID-19 patient 
images. The four theoretically equivalent phantoms were 
scanned on a dual-energy CT scanner (IQon; Philips Healthcare, 
Cleveland, OH, USA) using an axial protocol at 120 kVp and 
0.75 s rotation time, both at clinical-dose exposure levels (6 mGy 
CTDIvol) and at high-dose exposure levels (18 mGy CTDIvol), and 
reconstructed with a smooth kernel and a 250 mm field of view 
at 1.0 mm slice thicknesses. Correspondence between the four 

phantoms was evaluated with the structural similarity index 
measure (36) (SSIM).

Results
To visualize the data, frequency of reader ratings and mean re
sponse values are provided in Figs. 2 and 3. Fig. 2 provides the counts 
of each response score as values between “1” and “5,” where a higher 
rating indicates a better score, across all questions, and separated 
between readers. The figure reveals similar counts between the pa
tient and phantom images, with a response of “4” being most com
mon in both cases for both scan types. Fig. 3 presents calculated 
mean ± 1 SD response values for each reader and question, sepa
rated by the patient COVID-19 severity. Visually, the patient scans 
have a higher mean response across the different severity levels; 
however, these differences are small in all cases (<0.5), and are 
mainly driven by the responses of the first reader.

Fig. 4 presents differences in reader ratings between phantom 
slices that have corresponding (paired) patient slices, i.e. differen
ces in rating between a phantom slice and its matching patient 
slice: same reader, COVID-19 severity, slice location, and convolu
tion kernel (sharp/smooth), together with Gaussian fits to the 
data. In general, the data indicate rating differences that are cen
tered between −0.04 and 0.38, implying that on average differen
ces in reader ratings between phantom and patient images are 
much smaller than a single rating point.

Modeling results for the six questions that compose both parts 
of the reader study are provided in Table 2. Each row in the table 
reports the mean rating (β0), rating difference between patient and 
phantom images (β1), and R2 values that were obtained for each 
question separately. Within a question, for a given parameter 
the estimate, 95% CI, and P-value are provided. Since the rating 
scores are categorical, P-values for this parameter are not in
cluded. In all cases, while the estimated mean differences 
between patient and phantom were statistically significant 
(P < 0.005), these differences were very small in magnitude, ran
ging from 0.03 to 0.29. The magnitude of the difference was also 
evaluated using R2 measures, resulting in low values for all ques
tions, with a maximum of 0.02 maximum, indicating that a low 
proportion of response variation is associated with replacing a pa
tient image with a phantom image.

Assessment of effect sizes with respect to both inter- and intra
reader variabilities are presented in Table 3. The two calculated 
ratios that were used to estimate the clinical significance of the ef
fect of having a phantom in the image, |d′| and |d|, are reported for 
each question separately. For each question, both resulting ratios 
have similar small magnitudes, with a maximal difference of 0.03, 
and none surpassing a maximal value of 0.31.

Results for the reproducibility of PixelPrint’s production pro
cess are presented in Fig. 5 and Table 4. Fig. 5 presents images of 
two phantoms that were 3D-printed separately using the same 
patient input (the moderate severity patient), the difference im
age, and histograms of Hounsfield unit (HU) distribution within 
each image. As can be seen from the figure, differences in HU 
mainly arise from minor misalignments between the phantoms 
rather than offsets in attenuation of geometry (Fig. 5C). This can 
also be observed by the excellent overlap of histograms (Fig. 5D). 
Table 4 summarizes SSIM comparisons between the four 
3D-printed phantoms. Normalized SSIM values, which were cal
culated by dividing SSIM values by the ratio of SSIM between the 
second high-dose acquisition of phantom #1 and the two other 
high-dose acquisitions of the same phantom, were between 
0.928 and 0.979 with an average of 0.965. This value is higher 
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than the normalized SSIM value of the low-dose acquisition for 
phantom #1 (same phantom that was used for normalization).

Discussion
PixelPrint was developed to provide realistic phantoms that could 
serve as ground-truth targets for validating the generalizability of 
inference-based decision-support algorithms between different 
health centers and imaging protocols, e.g. by imaging the same 
phantom on multiple scanners, as well as for optimizing disease- 
targeting imaging protocols. We previously assessed the geomet
rical and attenuation accuracy of our 3D-printed phantoms for CT 
lung imaging (30). Here, we validated the adequacy of our phan
toms for a specific clinical indication, i.e. diagnosis of COVID-19 
consolidations, through a “completely blinded” reader study. As 
far as we know, this is the first time that 3D-printed CT lung 

phantoms were evaluated in a reader study. Statistical analysis 
of image quality ratings, e.g. imaging characteristics, diagnostic 
outcome, and diagnostic confidence, revealed that difference in 
replacing a patient image with a phantom image is, on average, 
smaller than one-third of a single rating point. Importantly, 
when examining the clinical significance of these differences by 
relating them to inter- and intrareader variability with effect sizes 
(Table 3), we conclude that the impact of reading a phantom im
age rather than a patient image is clinically insignificant. 
Additionally, tests of PixelPrint’s production reproducibility re
sulted in very high correspondence between phantoms that 
were 3D-printed using the same patient input. This is based on 
the higher normalized SSIM values that were measured between 
high-dose acquisitions of four different phantoms (0.965 ±  
0.022), compared with those measured between clinical-dose ac
quisitions of a single phantom (0.953 ± 0.000).

Fig. 2. Counts of responses for phantom and patient images by reader (rows) and question (columns): (1a–d) imaging, contrast, noise, and resolution 
characteristics; (2a) COVID-19 severity; and (2b) diagnostic confidence. Except for the COVID-19 severity question, higher ratings indicate better review 
scores. Overall, the count frequencies portray a high correspondence between phantom and patient images.
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Several methods have been put forth over the past decade to cre
ate clinically applicable CT phantoms. 3D prints with different infill 
densities were described by Madamesila et al. for quality control 
purposes in CT (25). A technique to create a patient-based lung 
phantom was introduced by Kairn et al., where a tissue equivalent 
lung phantom is created by segmenting the lung’s CT scans into 
three distinct sections (37). Their method, however, falls short of 
the resolution standards needed to portray the structures in the 
lung parenchyma. For the purpose of evaluating the quality of CT 
images, Hernandez-Giron et al. and Joemai and Geleijns developed 
printed lung phantoms; their prints have vascular systems, how
ever, limited realistic lung textures (17, 38). High-density patient- 
based bone phantoms were produced by Tino et al. using a dual- 
head printer and segmentation to produce STL models (26). An al
ternate method of creating patient-based 3D phantoms was intro
duced by Jahnke et al. by layering radiopaque 2D prints (39, 40). 
Although this technique does not use FDM printing and may 

produce highly detailed head or abdomen phantoms, it is unable 
to support chest phantoms with density volumes inside the lung 
that are less than 200 HU. Okkalidis and Marinakis introduced an 
algorithm that can produce patient-specific skull and chest phan
toms and translate DICOM data into printer instructions (12, 13). 
Their results indicated a trustworthy match in HU; however, specif
ic lung features and textures, for instance, have not been preserved. 
In contrast to their method, PixelPrint uses unique print-speed con
trol mechanism to change the infill ratio while maintaining a con
stant extrusion rate per unit of time. With this technique, subpixel 
linewidth responsiveness is achieved, and hence significantly 
greater resolution structures can be produced, allowing to preserve 
realistic lung textures such as small COVID-19 pathological altera
tions in HU. Notably, PixelPrint also gets rid of the need for morpho
logical and contour detection processes.

With the help of our technique, clinical CT data may be trans
formed into actual ground truth, creating new prospects for 

Fig. 3. Mean ± SD of responses for different COVID-19 severity levels on phantom and patient images by reader (rows) and question (columns): (1a–d) 
imaging, contrast, noise, and resolution characteristics; (2a) COVID-19 severity; and (2b) diagnostic confidence.
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Fig. 4. Rating difference frequencies between corresponding (paired) patient and phantom images that were reviewed by the same radiologist, together 
with Gaussian fits to the distributions (overlaid curves). The analysis reveals average differences that are much smaller than a single rating point for all 
questions and nearly zero points for the COVID-19 severity question (2a).

Table 2. Modeling results for mean ratings and mean differences due to having a phantom in the images, rather than a patient, for each of 
the reader study questions. Results are accompanied by 95% confidence intervals (CIs), P-values, and R2 values.

Question Synopsis Parameter Estimate 95% CI P-value

1a Imaging characteristics Patient mean 3.71 (3.21, 4.21)
Phantom eff. −0.29 (−0.45, −0.13) <0.005
R2 0.02

1b Contrast characteristics Patient mean 3.85 (3.52, 4.19)
Phantom eff. −0.27 (−0.42, −0.11) <0.005
R2 0.02

1c Noise characteristics Patient mean 3.53 (3.03, 4.03)
Phantom eff. −0.20 (−0.35, −0.06) 0.006
R2 0.01

1d Resolution characteristics Patient mean 3.50 (2.95, 4.05)
Phantom eff. −0.22 (−0.39, −0.06) 0.006
R2 0.01

2a COVID-19 severity Patient mean 2.77 (2.49, 3.05)
Phantom eff. −0.03 (−0.20, 0.14) 0.756
R2 0.00

2b Diagnostic confidence Patient mean 3.56 (3.10, 4.02)
Phantom eff. −0.29 (−0.47, −0.12) <0.005
R2 0.02
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clinical and academic study. Our phantom printing approach ena
bles optimizing CT protocols for daily operations with a focus on 
specific clinical objectives. For instance, the ethical challenges of 
scanning patients twice and the limited clinical usefulness of tech
nical phantoms make the clinical introduction of advanced non
linear reconstruction algorithms (41) hard. With the help of our 
phantoms, a sizable parameter space may be assessed to choose 
the best scan and reconstruction parameters in terms of radiation 
exposure and diagnostic image quality. Accelerating clinical evalu
ations using patient-based phantoms could have a favorable im
pact on CT research and development. Early access to accurate 

clinical data can have a considerable positive impact on break
throughs in AI and radiomics that are primarily data-driven (1–3). 
The impact of various CT methods and vendor-to-vendor varia
tions on radiomic characteristics is a major unresolved issue. One 
would be able to properly assess this effect and identify a strong 
and rigorous operating environment for radiomic feature extrac
tion with a representative sample of patient-based phantoms pro
duced with PixelPrint. The same collection of phantoms might also 
be used as a tool to assess and validate harmonization plans (4).

Our study does have limitations. First, while the reader study 
included a large sample size of images (210 per reader), these 

Fig. 5. Comparison between two 3D-printed phantoms (A, B), both based on the moderate COVID-19 patient, scanned separately at a high (non-clinical) 
dose level show high structural similarities and imaging features, implying high reproducibility of the PixelPrint phantom production process. Window 
level/width is −400/1,000 HU. C) Difference image between the two sets of images reveals that most of the differences between the images are mainly due 
to slight misalignments between the two phantoms. Window level/width is 0/200 HU. D) Histograms of CT numbers within the entire phantom volume 
demonstrate excellent reproducibility.

Table 4. Comparisons of structural similarity index measures (SSIM) between four 3D-printed phantoms that are al based on the same 
clinical images. Normalized SSIM values, calculated by dividing SSIM values by the ratio of SSIM between the second high-dose 
acquisition of phantom #1 and the two other high-dose acquisitions of the same phantom were between 0.928 and 0.979, with an average 
of 0.965. This value is higher than the normalized SSIM value of the low-dose acquisition for phantom #1 (same phantom that was used 
for normalization), demonstrating the high production reliability of PixelPrint.

Phantom # mAs Acquisition # SSIM Norm. SSIM Mean ± SD

1 160 1 0.776 0.953 0.953 ± 0.000
2 0.776 0.953
3 0.777 0.953

480 1 0.811 Used for normalization
2 1.000 → Reference acquisition
3 0.819 Used for normalization

2 480 1 0.776 0.953

0.965 ± 0.022

2 0.756 0.928
3 0.757 0.929

3 480 1 0.798 0.979
2 0.797 0.978
3 0.798 0.979

4 480 1 0.797 0.978
2 0.798 0.979
3 0.797 0.978

Table 3. Assessment of effect sizes with respect to both inter- and intrareader variabilities reveals that the effect of having a phantom in 
the image, rather than a patient, is all smaller than one-third of inter/intrareader uncertainty, indicating the clinical insignificance of this 
effect.

Q Synopsis Phantom effect (β1) Inter-reader (σ2
ε ) Intrareader (σ2

φ) |β1 |��
σ2

ε

√ |β1 |������
σ2

ε +σ2
φ

√

1a Imaging characteristics −0.29 0.99 0.31 0.29 0.26
1b Contrast characteristics −0.27 0.96 0.13 0.27 0.25
1c Noise characteristics −0.20 0.83 0.31 0.22 0.19
1d Resolution characteristics −0.22 1.01 0.37 0.22 0.19
2a COVID-19 severity −0.03 0.83 0.09 0.03 0.03
2b Diagnostic confidence −0.29 0.87 0.25 0.31 0.28
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images originated from only three clinical patient scans repre
senting three levels of COVID-19 severity. Second, our study fo
cused on a specific clinical indication, i.e. diagnosis of COVID-19 
pneumonia. Further studies are required to validate the adequacy 
of PixelPrint for other lung imaging indications, e.g. lung nodule 
detection. Nevertheless, results from our study indicate that 
PixelPrint can potentially serve as an accurate tool for optimiza
tion of disease-targeting protocols and for experimental valid
ation of novel inference algorithms, such as radiomics and 
predictive AI.

In conclusion, we have demonstrated PixelPrint’s ability to pro
duce realistic 3D-printed phantoms reliably. As the utilization of 
these phantoms will grow, they will become more beneficial to 
the entire community and enable standardization of tests and 
comparisons of evaluation of advanced medical inference algo
rithms. For this, we offer copies of the phantoms presented in 
this study, as well as phantoms based on specific CT images, for 
the larger medical, academic, and industrial CT community (visit 
https://www.pennmedicine.org/CTresearch/pixelprint).
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