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Working memories are thought to be held in attractor networks in the brain. These
attractors should keep track of the uncertainty associated with each memory, so as to
weigh it properly against conflicting new evidence. However, conventional attractors do
not represent uncertainty. Here, we show how uncertainty could be incorporated into
an attractor, specifically a ring attractor that encodes head direction. First, we introduce
a rigorous normative framework (the circular Kalman filter) for benchmarking the
performance of a ring attractor under conditions of uncertainty. Next, we show that the
recurrent connections within a conventional ring attractor can be retuned to match
this benchmark. This allows the amplitude of network activity to grow in response
to confirmatory evidence, while shrinking in response to poor-quality or strongly
conflicting evidence. This “Bayesian ring attractor” performs near-optimal angular path
integration and evidence accumulation. Indeed, we show that a Bayesian ring attractor is
consistently more accurate than a conventional ring attractor. Moreover, near-optimal
performance can be achieved without exact tuning of the network connections. Finally,
we use large-scale connectome data to show that the network can achieve near-optimal
performance even after we incorporate biological constraints. Our work demonstrates
how attractors can implement a dynamic Bayesian inference algorithm in a biologically
plausible manner, and it makes testable predictions with direct relevance to the head
direction system as well as any neural system that tracks direction, orientation, or
periodic rhythms.

working memory | ring attractor networks | head direction neurons | Bayesian inference |
Kalman filter

Attractor networks are thought to form the basis of working memory (1, 2) as they can
exhibit persistent, stable activity patterns (attractor states) even after network inputs have
ceased (3). An attractor network can gravitate toward a stable state even if its input is
based on partial (unreliable) information; this is why attractors have been suggested as
a mechanism for pattern completion (4). However, the characteristic stability of any
attractor network also creates a problem: Once the network has settled into its attractor
state, it will no longer be possible to see that its inputs might have been unreliable. In this
situation, the attractor state will simply represent a point estimate (or “best guess”) of the
remembered input, without any associated sense of uncertainty. However, real memories
often include a sense of uncertainty, (e.g., refs. 5–7), and uncertainty has clear behavioral
effects (8–10). This motivates us to ask how an attractor network might conjunctively
encode a memory and its associated uncertainty.

A ring attractor is a special case of an attractor that can encode a circular variable
(11). For example, there is good evidence that the neural networks that encode head
direction (HD) are ring attractors (12–19). In a conventional ring attractor, inputs push
a “bump” of activity around the ring, with only short-lived changes in bump amplitude
or shape (20, 21); the rapid decay to a stereotyped bump shape is by design, and, as a
result, a conventional ring attractor network is unable to track uncertainty. However,
it would be useful to modify these conventional ring attractors so that they can encode
the uncertainty associated with HD estimates. HD estimates are constructed from two
types of observations—angular velocity observations and HD observations (11, 22).
Angular velocity observations arise from multiple sources, including efference copies,
vestibular or proprioceptive signals, as well as optic flow; these observations indicate
the head’s rotational movement and, thus, a change in HD (13, 18, 23, 24). These
angular velocity observations are integrated over time (“remembered”) to update the
system’s internal estimate of HD, in a process termed angular path integration. Ideally,
a ring attractor would track the uncertainty associated with angular path integration
errors. Meanwhile, HD observations arise from visual landmarks or other sensory cues
that provide information about the head’s current orientation (12, 16). These sensory
observations can change the system’s internal HD estimate, and once that change has
occurred, it is generally persistent (remembered). But like any sensory signal, these
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sensory observations are noisy; they are not unambiguous
evidence of HD. Therefore, the way that a ring attractor responds
to each new visual landmark observation should ideally depend
on the uncertainty associated with its current HD estimate. This
type of uncertainty-weighted cue integration is a hallmark of
Bayesian inference (25) and would require a network that is
capable of keeping track of its own uncertainty.

In this study, we address three related questions. First, how
should an ideal observer integrate uncertain evidence over time
to estimate a circular variable? For a linear variable, this is
typically done with a Kalman filter; here, we introduce an
extension of Kalman filtering for circular statistics; we call this
the circular Kalman filter. This algorithm provides a high-level
description of how the brain should integrate evidence over
time to estimate HD, or indeed any other circular or periodic
variable. Second, how could a neural network actually implement
the circular Kalman filter? We show how this algorithm could
be implemented by a neural network whose basic connectivity
pattern resembles that of a conventional ring attractor. With
properly tuned network connections, we show that the bump
amplitude grows in response to confirmatory evidence, whereas it
shrinks in response to strongly conflicting evidence or the absence
of evidence. We call this network a Bayesian ring attractor.
Third, how does the performance of a Bayesian ring attractor
compare to the performance of a conventional ring attractor?
In a conventional ring attractor, bump amplitude is pulled
rapidly back to a stable baseline value, whereas in a Bayesian
ring attractor, bump amplitude is allowed to float up or down
as the system’s certainty fluctuates. As a result, we show that a
Bayesian ring attractor has consistently more accurate internal
estimates (or “working memory”) of the variable it is designed to
encode than a conventional ring attractor.

Together, these results provide a principled theoretical founda-
tion for how ring attractor networks can be tuned to conjointly
encode a memory and its associated uncertainty. Although we
focus on the brain’s HD system as a concrete example, our results
are relevant to any other brain system that encodes a circular or
periodic variable.

Results

Circular Kalman Filtering: A Bayesian Algorithm for Tracking a
Circular Variable. We begin by asking how an ideal observer
should dynamically integrate uncertain evidence to estimate
a circular variable, specifically head direction φt . Additional
information being absent, the ideal observer assumes that
HD follows a random walk or diffusion on a circle: across
small consecutive time steps of size δt, the current HD φt is
assumed to be drawn from a normal distribution, φt |φt−δt ∼
N (φt−δt , δt/κφ) (constrained to a circle) centered on φt−δt
and with variance δt/κφ . This diffusion prior assumes smaller
HD changes for a larger precision (i.e., inverse variance),
κφ , and for smaller time steps, δt. Just like the brain’s HD
system, the ideal observer receives additional HD information
through HD observations zt and angular velocity observations,
vt (Fig. 1A). HD observations provide noisy, and thus unreliable,
measurements of the current HD drawn from a von Mises
distribution, zt |φt ∼ VM (φt , κzδt) (i.e., the equivalent to
a normal distribution on a circle), centered on φt , and with
precision κzδt. A higher precision κz means that individual HD
observations provide more reliable information about the current
HD. Angular velocity observations provide noisy measurement
of the current HD change φt − φt−δt drawn from a normal
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Fig. 1. Tracking HD with the circular Kalman filter. (A) Angular velocity
observations provide noisy information about the true angular velocity �̇t ,
while HD observations provide noisy information about the true HD �t .
(B) At every point in time, the posterior belief p (�t) is approximated by a
von Mises distribution, which is fully characterized by its mean �t (location
of distribution’s peak) and its precision/certainty parameter �t . Interpreted
as the polar coordinates in the 2D plane, these parameters provide a
convenient vector representation of the posterior belief (inset). (C) An angular
velocity observation vt is a vector tangent to the current HD belief vector.
Angular velocity observations continually rotate the current HD estimate;
meanwhile, noise accumulation progressively decreases certainty. (D) Each
HD observation zt is a vector whose length quantifies the observation’s
reliability. Adding this vector to the current HD belief vector produces an
updated HD belief vector. HD observations compatible with the current HD
estimate result in an increased certainty (i.e., a longer belief vector). (E) HD
observations in conflict with the current belief (e.g., opposite direction of the
current estimate) decrease the belief’s certainty. (F ) Multiple HD cues can be
integrated simultaneously via vector addition.

distribution, vt |φt ,φt−δt ∼ N
(
φt−φt−δt

δt , 1
κvδt

)
centered on the

current angular velocity and with precision κvδt. While higher-
precision measurements yield more reliable information, they
only do so about the current HD change rather than the HD
itself.

The aim of the ideal observer is to use Bayesian inference
to maintain a posterior belief over HD, p (φt |z0:t , v0:t) given
all past observations, z0:t and v0:t (25, 26). Assuming a belief
p (φt−δt |z0:t−δt , v0:t−δt) at time t − δt, the observer updates this
belief upon observing vt and zt in two steps. First, it combines
its a priori assumption about how HD diffuses across time
with the current angular velocity observation vt to predict φt
at the next time step t, leading to p (φt |z0:t−δt , v0:t). As both
the diffusion prior and angular velocity observations are noisy,
this prediction will be less certain than the previous belief it is
based on. (SI Appendix for formal expression.) Second, the ideal
observer uses Bayes’ rule to combine this prediction with the
current HD observation zt to form the updated posterior belief
p (φt |z0:t , v0:t). These two steps are iterated across consecutive
time steps to continuously update the HD belief in the light of
new observations.

The two steps are also the ones underlying a standard Kalman
filter (27, 28). However, while a standard Kalman filter assumes
the encoded variable to be linear, we here use a circular variable
which requires a different approach. Because filtering on a circle
is analytically intractable (29), we choose to approximate the
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posterior belief by a von Mises distribution, with mean µt
and precision κt , so that p (φt |z0:t , v0:t) ≈ VM (φt |µt , κt)
(Fig. 1B). Then, the mean µt , which we will call the HD
estimate, determines the peak of the distribution. The precision
κt quantifies the width of the distribution and, therefore, our
certainty in this estimate (larger κt = indicating higher certainty).
This approximation allows us to update the posterior over a
circular variable φt using a technique called projection filtering
(30, 31), resulting in,

µt = µt−δt +
(

κv

κφ + κv
vt +

κz

κt
sin (zt − µt)

)
δt, [1]

κt = κt−δt +
(
−

f (κt)
2 (κφ + κv)

+ κz cos (zt − µt)
)
δt. [2]

Here, f (κt) is a monotonically increasing nonlinear function
that controls the speed of decay in certainty κt (Methods). Eqs. 1
and 2 describe an algorithm that we call the circular Kalman filter
(31) (Methods/SI Appendix for a continuous-time formulation).
This algorithm provides a general solution for estimating the
evolution of a circular variable over time from noisy observations.

To understand the circular Kalman filter intuitively, it is
helpful to think of the observer’s belief as a vector in the 2D
plane (Fig. 1B), whose direction represents the current estimate
µt , and whose length represents the associated certainty κt . The
circular Kalman filter tells us how this vector should change at
each time point, based on new observations of angular velocity
and HD. Here, we outline the intuition behind the circular
Kalman filter, focusing on the HD system as a specific example.

Angular Velocity Observations. We can think of each angular
velocity observation as a vector that points at a tangent to
the current HD belief vector (Fig. 1C ) and rotates this belief
vector (first term in parenthesis on RHS of Eq. 1). Angular
velocity observations are noisy and, together with the diffusion
prior, decrease the belief’s certainty (κt ), meaning that the
observer’s belief vector becomes shorter (Fig. 1C ). Thus, when
angular velocity observations are the only inputs to the HD
network—i.e., when HD observations are absent—the HD
belief’s certainty κt will progressively decay, with a speed of decay
that depends on both κv and κφ (first term in parenthesis on
RHS of Eq. 2).

HD Observations. We can treat each HD observation as a vector
whose length κz quantifies the observation’s reliability (e.g., the
reliability of a visual landmark observation). This HD observation
vector is added to the current HD belief vector to obtain
the updated HD belief vector. The updated direction of the
belief vector depends on the relative lengths of both vectors.
A relatively longer HD observation vector, i.e., a more reliable
observation relative to the current belief’s certainty, results in
a stronger impact on the updated HD belief (Fig. 1D, second
term in parenthesis on RHS of Eqs. 1 and 2). In line with
principles of reliability-weighted Bayesian cue combination (25),
HD observations increase the observer’s certainty if they are
confirmatory (i.e., they indicate that the current estimate is
correct or nearly so, Fig. 1D). Interestingly, however, if HD
observations strongly conflict with the current estimate (e.g.,
if they point in the opposite direction), they actually decrease
certainty (Fig. 1E). This notable result is a consequence of the
circular nature of the inference task (32). It stands in contrast
to the standard (noncircular) Kalman filter, where an analogous
observation would always increase the observer’s certainty (33)

and is thus a key distinction between the standard Kalman filter
and the circular Kalman filter.

To summarize, the circular Kalman filter describes how a
nearly ideal observer should integrate a stream of unreliable
information over time to update a posterior belief of a circular
variable. This algorithm serves as a normative standard to judge
the performance of any network in the brain that tracks a circular
or periodic variable. Specifically, in the HD system, the circular
Kalman filter tells us that angular velocity observations should
rotate the HD estimate while reducing the certainty in that
estimate. Meanwhile, HD observations should update the HD
estimate weighted by their reliability, and they should either
increase certainty (if compatible with the current estimate) or
reduce it (if strongly conflicting with the current estimate). Note
that the circular Kalman filter can integrate HD observations
from multiple sources by simply adding all their vectors to the
current HD belief vector (Fig. 1F ).

Neural Encoding of a Probability Distribution. Thus far, we
have developed a normative algorithmic description of how an
observer should integrate evidence over time to track the posterior
belief over a circular variable. This algorithm requires the observer
to represent their current belief as a probability distribution on
a circle. How could a neural network encode this probability
distribution? Consider a ring attractor network where adjacent
neurons have adjacent tuning preferences so that the population
activity pattern is a spatially localized “bump.” The bump’s center
of mass is generally interpreted as a point estimate (or best guess)
of the encoded circular variable (12, 34). In the HD system, this
would be the best guess of head direction. Meanwhile, we let
the bump amplitude encode certainty so that higher amplitude
corresponds to higher certainty. Of course, there are other ways
to encode certainty—e.g., using bump width rather than bump
amplitude. However, there are two good reasons for focusing on
bump amplitude. First, as we will see below, this implementation
allows the parameters of the encoded probability distribution
to be “read out” in a way that supports the vector operations
underlying the circKF (Fig. 1C–F ). Second, recent data from the
mouse HD system show that the appearance of a visual cue (which
increases certainty) causes bump amplitude to increase; moreover,
when the bump amplitude is high, the network is relatively
insensitive to the appearance of a visual cue that conflicts with
the current HD estimate, again suggesting that bump amplitude
is a proxy for certainty (19, 35).

Formally, then, the activity of a neuron i with preferred HD
φi can be written as follows (Fig. 2A):

r(i)t = κt cos (φi − µt) + other components, [3]

where µt is the encoded HD estimate, κt is the associated
certainty, and the “other components” might include a constant
(representing baseline activity) or minor contributions of higher-
order Fourier components. Note that Eq. 3 does not imply
that the tuning curve must be cosine-shaped. Rather, it implies
that the cosine component of the tuning curve is scaled by
certainty. This is satisfied, for example, by any unimodal bump
profile whose overall gain is governed by certainty. A particularly
interesting case that matches Eq. 3 is a linear probabilistic
population code (36, 37) with von Mises-shaped tuning curves
and independent Poisson neural noise (SI Appendix, Fig. S1).

Importantly, this neural representation would allow down-
stream neurons to read out the parameters of the probability
distribution p (φt |z0:t , v0:t) in a straightforward manner. Specif-
ically, downstream neurons could take a weighted sum of the
population firing rates (i.e., a linear operation; Methods) to
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Fig. 2. A recurrent neural network implementation of the circular Kalman
filter. The HD belief vector (B; Fig. 1B) is the “vector representation” of
the HD belief (C), and the “phasor representation” (obtained from linear
decoding) of sinusoidal population activity (A; neurons sorted by preferred
HD �i ), here shown for HD estimate � = �/4 (shift of activity/density) and
different certainties � (height of activity bump in A/sharpness of distribution
in C). Using this duality between population activity and encoded HD belief,
the circular Kalman filter can be implemented by three network motifs
(D–F ). (D) A cosine-shaped input to the network (strength = observation
reliability �z) provides HD observation input. (E) Rotations of the HD belief
vector are mediated by symmetric recurrent connectivities, whose strength
is modulated by angular velocity observations. (F ) Decay in amplitude,
which implements decreasing HD certainty, arises from leak and global
inhibition. (G) Rotation-symmetric recurrent connectivities (here, neurons are
sorted according to their preferred HD) can be decomposed into constant,
symmetric, asymmetric, and higher-order frequency components (here dots).
(H) The dynamics of the Bayesian ring attractor implement the dynamics of
the ideal observer’s belief, as shown in a simulation of a network with 80
neurons. The network received angular velocity observations (always) and
HD observations (only in “visual cue” periods). (I) The Bayesian ring attractor
network tracks the true HD with the same accuracy (Top; higher = lower
average circular distance to true HD; 1 = perfect, 0 = random; Methods) as
the circular Kalman filter (circKF, Eqs. 1 and 2) if HD observations are reliable
and, therefore, more informative but with slightly lower accuracy once they
become less reliable, and therefore less informative. This drop co-occurs with
an overestimate in the belief’s certainty �t (Bottom). HD observation reliability
is measured here by the amount of Fisher information per unit time. The
accuracies and certainties shown are averages over 5,000 simulation runs
(Methods for details).

recover two parameters, x1 = κt cos (µt) and x2 = κt sin (µt).
This is notable because x1 and x2 represent the von Mises distri-
bution p (φt |z0:t , v0:t) in terms of Cartesian vector coordinates
in the 2D plane, whereas µt and κt are its polar coordinates
(Fig. 1B). Having them accessible as vector coordinates makes it
straightforward to implement the vector operations underlying
the circKF (Fig. 1 C–F ) in neural population dynamics. For
example, as we will see in the next section, the vector sum required
to account for HD observations in the circKF (Fig. 1 D and E)
can be implemented by summing neural population activity (36).
Overall, the vector representation of the HD posterior belief is
related to the phasor representation of neural activity (38), which
also translates bump position and amplitude to polar coordinates

in the 2D plane (Fig. 2B). If the amplitude of the activity bump
scales with certainty, the phasor representation of neural activity
equals the vector representation of the von Mises distribution
(Fig. 2 B and C ).

Neural Network Implementation of the Circular Kalman Filter.
Now that we have specified how our model network represents
the probability distribution p (φt |z0:t , v0:t) over possible head
directions, we can proceed to considering the dynamics of this
network—specifically, how it responds to incoming information
or the lack of information. The circular Kalman filter algorithm
describes the vector operations required to dynamically update
the probability distribution p (φt |z0:t , v0:t) with each new obser-
vation of angular velocity or head direction. In the absence of HD
observations, the circKF’s certainty decays to zero. By Eq. 3, this
implies that neural activity would also decay to zero, such that
a network implementing the circKF would not be an attractor
network. While we consider such a network in Methods, we here
focus on the “Bayesian ring attractor” which approximates the
circKF in an attractor network, thus establishing a stronger link
to previous working memory literature (1, 2). We describe the
features of this network with regard to the HD system, but the
underlying concepts are general ones which could be applied to
any network that encodes a circular or periodic variable. The
dynamics of the Bayesian ring attractor network are given by

drt = −
1
τ
rtdt − g (rt) · rtdt + W (vt) · rtdt + I extt , [4]

where rt denotes a population activity vector, with neurons
ordered by their preferred HD φi, τ is the cell-intrinsic leak time
constant,W (vt) is the matrix of excitatory recurrent connectivity
that is modulated by angular velocity observations vt , I extt is a
vector of HD observations, and g(·) is a nonlinear function that
determines global inhibition and that we discuss in more detail
further below. Let us now consider each of these terms in detail.

First, HD observations enter the network via the input
vector I extt in the form of a cosine-shaped spatial pattern whose
amplitude scales with reliability κz (Fig. 2D). This implements
the vector addition required for the proper integration of these
observations. Specifically, the weight assigned to each HD
observation is determined by the amplitude of I extt , relative to
the amplitude of the activity bump in the HD population.
Thus, observations are weighted by their reliability, relative to
the certainty of the current HD posterior belief, as in the circular
Kalman filter (Fig. 1 D and E). An HD observation that tends
to confirm the current HD estimate will increase the amplitude
of the bump in HD cells and, thus, the posterior certainty.

Second, the matrix of recurrent connectivity W (vt) has
spatially symmetric and asymmetric components (Fig. 2G). The
symmetric component consists of local excitatory connections
that each neuron makes onto adjacent neurons with similar
HD preferences. This holds the bump of activity at its current
location in the absence of any other input. The overall strength
of the symmetric component (wsym) is a free parameter which
we can tune. Meanwhile, the asymmetric component consists
of excitatory connections that each neuron makes onto adjacent
neurons with shifted HD preferences. This component tends
to push the bump of activity around the ring (Fig. 2E).
Angular velocity observations vt modulate the overall strength
of the asymmetric component (wasym(vt)), so that positive and
negative angular velocity observations push the bump in opposite
directions.
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Third, the global inhibition term,−g (rt) ·rt (Fig. 2F ), causes
a temporal decay in HD posterior certainty. Here, the function
g ’s output increases linearly with bump amplitude in the HD
population, resulting in an overall quadratic inhibition (Methods).
Together with the leak, this quadratic inhibition approximates
the nonlinear certainty decay f (κt) / (2(κφ + κv)) in the circular
Kalman filter, Eq. 2, that accounts for both the diffusion prior
“noise” 1/κφ and the noise 1/κv induced by angular velocity
observations, both of which are assumed known and constant.
The approximation becomes precise in the limit of large posterior
certainties κt .

With the appropriate parameter values, the amplitude of
the bump decays slowly as long as new HD observations are
unavailable, because global inhibition and leak work together to
pull the bump amplitude slowly downward (Fig. 2H ). This is by
design: The circular Kalman filter tells us that certainty decays
over time without a continuous stream of new HD observations.
This situation differs from conventional ring attractors, whose
bump amplitudes are commonly designed to rapidly decay to
their stable (attractor) states. In a hypothetical network that
perfectly implemented the circular Kalman filter, the bump
amplitude would decay to zero. However, in our Bayesian ring
attractor, which merely approximates the circular Kalman filter,
the bump amplitude decays to a low but nonzero baseline
amplitude (κ∗).

As an illustrative example, we simulated a network of 80
HD neurons (Methods). We let HD follow a random walk
(diffusion on a circle), and we used noisy observations of the time
derivative of HD (angular velocity) to modulate the asymmetric
component of the connectivity matrix W (vt). As HD changes,
we rotate the cosine-shaped bump in the external input vector
I extt , simulating the effect of a visual cue whose position on the
retina depends on HD. This network exhibits a spatially localized
bump whose position tracks HD, with an accuracy similar to
that of the circular Kalman filter itself (Fig. 2H ). Meanwhile,
the amplitude of the bump accurately tracks the fluctuating HD
posterior certainty in the circular Kalman filter, reflecting how
noisy angular velocity and HD observations interact to modulate
this certainty, Eq. 2. When the visual cue is removed, the bump
amplitude decays toward baseline (Fig. 2H ). In the limit of
infinitely many neurons, this type of network can be tuned
to implement the circular Kalman filter exactly for sufficiently
high HD certainties. What this simulation shows is that network
performance can come close to benchmark performance even
with a relatively small number of neurons (SI Appendix, Fig. S2).

Interestingly, when we vary the reliability of HD observations,
we can observe two operating regimes in the network. When
HD observations have high reliability, bump amplitude is high
and accurately tracks HD certainty (κt ). Thus, in this regime,
the network performs proper Bayesian inference (Fig. 2I ).
Conversely, when HD observations have low reliability, bump
amplitude is low but constant, because it is essentially pegged to
its baseline value (the network’s attractor state). In this regime,
bump amplitude exaggerates the HD posterior certainty, and the
network looks more like a conventional ring attractor. We will
analyze these two regimes further in the next section.

Bayesian vs. Conventional Ring Attractors. Conventional ring
attractors (1, 12, 39) are commonly designed to operate close to
their attractor states, so that bump amplitude is nearly constant.
This is not true of the Bayesian ring attractor described above,
where bump amplitude varies by design. The motivation for
this design choice was the idea that, if bump amplitude varies

with certainty, the network’s HD estimate would better match
the true HD, because evidence integration would be closer to
Bayes-optimal. Here, we show that this idea is correct.

Specifically, we measure the average accuracy of the network’s
HD encoding for different HD observation reliabilities for both
the Bayesian ring attractor and a conventional ring attractor. We
vary the HD observation information rate from highly unreliable,
leading to almost random HD estimates (circKF inference
accuracy close to zero in Fig. 3B), to highly reliable, leading
to almost perfect HD estimates (circKF inference accuracy close
to one), respectively. To model a conventional ring attractor,
we use the same equations as we used for the Bayesian ring
attractor, but we adjust the network connection strengths so
that the bump amplitude decays to its stable baseline value
very quickly (Fig. 3A). Specifically, we strengthen both local
recurrent excitatory connections (wsym) and global inhibition
(g (rt)) while maintaining their balance, because their overall
strengths are what controls the speed (β) of the bump’s return
to its baseline amplitude (κ∗) in the regime near κ∗, assuming
no change in the cell-intrinsic leak time constant τ (Methods).
With stronger overall connections, the bump amplitude decays
to its stable baseline value more quickly. We then adjust the
strength of global inhibition without changing the local excitation
strength to maximize the accuracy of the network’s HD encoding;
note that this changes κ∗ but not β. This yields a conventional
ring attractor where the bump amplitude is almost always fixed
at a stable value (κ∗), with κ∗ optimized for maximal encoding
accuracy. Even after this optimization of the conventional
ring attractor, it does not rival the accuracy of the Bayesian ring
attractor. The Bayesian attractor performs consistently better,
regardless of the amount of information available to the network,
i.e., the level of certainty in the new HD observations (Fig. 3B).

This performance difference arises because the conventional
ring attractor does not keep track of the HD posterior’s certainty.
Ideally, the weight assigned to each HD observation depends
on the current posterior certainty, as well as the reliability of
the observation itself (Fig. 3C ). A conventional ring attractor
will assign more reliable observations a higher weight but does
not take into account the posterior certainty. By contrast,
the Bayesian ring attractor takes all these factors into account
(Fig. 3C ). The Bayesian ring attractor’s performance drops to
that of the conventional ring attractor only once HD observations
become highly unreliable. In that regime, the Bayesian ring
attractor operates close to its attractor state and thus stops
accurately tracking HD certainty, making the attractor–network
approximation to the circKF most apparent. Effectively, it
becomes a conventional attractor network.

To obtain more insight into the effect of bump decay speed
(β) on network performance, we can also simulate many versions
of our network with different values of β, which we generate by
varying the overall strength of balanced local recurrent excitatory
(wsym) and global inhibitory connections (g (rt)). We in turn
vary the overall strength of global inhibition in order to find
the best baseline bump amplitude (κ∗) for each value of β. The
network with the best performance overall had a slow bump decay
speed (low β), as expected (Fig. 3 D and E). While it featured
similar performance to the Bayesian ring attractor, it had slightly
different β and κ∗ parameters. This is because the Bayesian
ring attractor was analytically derived to well approximate
the circKF for sufficiently high certainties, whereas the “best
network” was numerically optimized to perform well on average.
As the bump decay speed β increased further, performance
dropped. However, this could be partially mitigated by increasing
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Fig. 3. Ring attractors with slow dynamics approximate Bayesian inference. (A) The ring attractor network in Eq. 4 can be characterized by fixed point
amplitude �∗ and decay speed �, which depend on the network connectivities. Thus, the network can operate in different regimes: a regime, where the bump
amplitude is nearly constant (“conventional attractor”), a regime where amplitude dynamics are tuned to implement a Bayesian ring attractor, or a regime
with optimal performance (“best network,” determined numerically). (B) HD estimation performance as measured by inference accuracy as a function of the
HD observation information rate (as in Fig. 2I). �∗ for the “conventional” attractor was chosen to numerically maximize average accuracy, weighted by a prior
across HD information rates (Inset/Methods). (C) The weight with which a single observation contributes to the HD posterior belief varies with informativeness
of both the HD observations (Fisher information for 10-ms observation) and the current HD posterior (weight 1 = HD observation replaces HD estimate; 0 = HD
observation leaves HD estimate unchanged). The update weight of the Bayesian attractor is close to optimal, visually indistinguishable from the circKF; not
shown here, but SI Appendix, Fig. S3. Fisher information per 10-ms observation is directly related to the Fisher information rate, and the vertical red bar shows
the equivalent range of information rate shown in panel B. (D) Overall inference performance loss (compared to a particle filter; performance measured by
average inference accuracy, as in B, 0%: same average inference accuracy as a particle filter, 100%: random estimates), averaged across all levels of observation
reliability (Methods) as a function of the bump amplitude parameters �∗ and � (only for �∗ > 0 and � > 0 as infinite network weights arise otherwise). (E)
Simulated example trajectories of HD estimate/bump positions of HD estimate/bump positions (Top) and certainties/bump amplitudes (Bottom). The Bayesian
ring attractor (not shown) is visually indistinguishable from the circKF and best network. (F ) Relative performance (Top; 100% = inference accuracy without
neural noise; performance measured as in panel D) and signal-to-noise ratio (Bottom; average �t divided by �t SD due to neural noise) drop with increasing
neural noise (noise SD for additive noise in the network of 64 neurons). Retuning � and �∗ to maximize performance (purple vs. light blue = optimal parameters
for noise-free network, panel D) reduces the drop in inference accuracy and S/N.

baseline bump amplitude (κ∗) to prevent overweighting of new
observations.

We have seen that a slow bump decay (low β), i.e., the ability
to deviate from the attractor state, is essential for uncertainty-
related evidence weighting. That said, lower values of β are
not always better. In the limit of very slow decay (β → 0),
bump amplitude would grow so large that new HD observations
have little influence rendering the network nearly “blind” to
visual landmarks. Conversely, in the limit of fast dynamics
(β →∞), the network is highly responsive to new observations;
however, it also has almost no ability to weight those new
observations relative to other observations in the recent past. In
essence, β controls the speed of temporal discounting in evidence
integration. Ideally, the bump decay speed β should be matched
to the expected speed at which stored evidence becomes outdated
and thus loses its value, as controlled by κφ and κv.

To summarize, we can frame the distinction between a conven-
tional ring attractor and a Bayesian ring attractor as a difference
in the speed of the bump’s decay to its stable state. In a
conventional ring attractor, the bump decays quickly to its stable
state, whereas in a Bayesian ring attractor, it decays slowly. Slow
decay maximizes the accuracy of HD encoding because it allows
the network to track its own internal certainty. Nonetheless,
reasonable performance can be achieved even if the bump’s decay
is fast because a conventional ring attractor can still assign more
informative observations a higher weight; it simply fails to assign
the current HD estimate its proper weight.

The Impact of Neural Noise on Inference Accuracy. So far, we
have assumed that the only sources of noise in our network are

noisy angular velocity and HD observations. However, biological
networks consist of neurons that are themselves noisy, resulting
in another source of noise (40). What is the impact of that noise
on inference accuracy?

If the network contains a sufficient number of similarly tuned
neurons, their noise can be easily averaged out (37, 41), so that
neural noise does not have a noticeable impact on the accuracy
of inference. That said, for smaller networks, like those of insects
(42), neural noise might significantly decrease inference accuracy.
Indeed, simulating a network of 64 noisy neurons shows that,
once the noise becomes sufficiently large, inference accuracy
drops to below 70% of its noise-free value (Fig. 3F ).

To better understand how neural noise perturbs inference,
we derived its impact on the dynamics of the HD estimate
µt and its certainty κt (SI Appendix). The derivations revealed
that, irrespective of the form of the neural noise (additive,
multiplicative, etc.), this noise has two effects. First, it causes
an unbiased random diffusion of µt and, thus, an increasingly
imprecise memory of the HD estimate. Second, it causes a
positive drift and random diffusion of κt , which, if the drift is not
accounted for, results in an overestimation of one’s certainty and
thus overconfidence in the HD estimate. These results mirror
previous work that has shown a diffusion of µt in ring attractors
close to the attractor state (41). We here show that such a diffusion
persists even if the network operates far away from the attractor
state, as is the case in our Bayesian ring attractor. While it is
impossible to completely suppress the impact of neural noise, the
derivations revealed that we can lessen its impact by retuning
the network’s connectivity strengths. Indeed, doing so reduced
the drop in inference accuracy by about 35% when compared
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to the network tuned to optimize noise-free performance (Fig. 3
D and F ) and also boosted the network’s signal-to-noise ratio
(Fig. 3F ). Lastly, our derivations show that the impact of noise
vanishes once the network’s population size becomes sufficiently
large, in line with previous results (41). For example, increasing
the network size four-fold would halve the effective noise’s SD
(assuming additive noise, SI Appendix). Overall, we have shown
that neural noise causes a drop in performance that can in part
be mitigated by retuning the network’s connectivity strengths or
by increasing its population size.

Tuning a Biological Ring Attractor for Bayesian Performance.
Thus far, we have focused on model ring attractors with
connection weights built from spatial cosine functions (Fig. 2G)
because this makes the mathematical treatment of these networks
more tractable. However, this raises the question of whether
a biological neural network can actually implement an ap-
proximation of the circular Kalman filter, even without these
idealized connection weights. The most well-studied biological
ring attractor network is the HD system of the fruit flyDrosophila
melanogaster (Fig. 4A) (17), and the detailed connections in this
network have recently been mapped using large-scale electron
microscopy connectomics (42). We therefore asked whether the
motifs from this connectomic dataset—and, by extension, motifs
that could be found in any biological ring attractor network—
could potentially implement dynamic Bayesian inference.

To address this issue, we modeled the key cell types in
this network (42–44) (HD cells, angular velocity cells, and
global inhibition cells), using connectome data to establish the
patterns of connectivity between each cell type (Fig. 4 B–F
and SI Appendix, Text). We then analytically tuned the relative
connection strengths between different cell types such that
the dynamics of the bump parameters in the HD population
implement an approximation of the circular Kalman filter. We
also added a nonlinear element in the global inhibition layer
as this is required to approximate the circular Kalman filter.
We found that this network achieves a HD encoding accuracy
which is indistinguishable from that of our idealized Bayesian
ring attractor network (Fig. 4 G and H ). Thus, even when we
use connectome data to incorporate biological constraints on the
network, the network is still able to implement dynamic Bayesian
inference.

Discussion

Uncertainty can affect navigation strategy (45, 46), spatial cue
integration (47, 48), and spatial memory (49). This provides a
motivation for understanding how uncertainty is represented in
the neural networks that encode and store spatial variables for
navigation. There is good reason to think that these networks
are built around attractors. Thus, it is crucial to understand how
attractors in general—and ring attractors in particular—might
track uncertainty in spatial variables like head direction.

In this study, we have shown that a ring attractor can track
uncertainty by operating in a dynamic regime away from its
stable baseline states (its attractor states). In this regime, bump
amplitude can vary because local excitatory and global inhibitory
connections in the ring attractor are relatively weak. By contrast,
stronger overall connections produce a more conventional ring
attractor that operates closer to its attractor states. Because
the “Bayesian” ring attractor has a variable bump amplitude,
bump amplitude grows when recent HD observations have
been more reliable; in this situation, the network automatically
ascribes more weight to its current estimate, relative to new
evidence. Importantly, we have shown that nearly optimal
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Fig. 4. A Drosophila-like network implementing the circular Kalman filter.
(A) Cell types in the Drosophila brain that could contribute to implementing
the circular Kalman filter. (B) Connectivity between EPG, 17, and PEN1
neurons, as recovered from the hemibrain:v1.2.1 database (43). Neurons
were sorted by their spatial position as a proxy for their preferred HD.
The total number of synaptic connections between each cell pair was
taken to indicate the functional connection strength between these cells.
The polarity of 17 → 17 connections is unknown, and therefore, these
connections are omitted. (C) The connectivity profile of a recurrent neural
network (RNN) (Fig. 2D–F ) that implements an approximate circKF is strikingly
similar to the connectivity of neurons in the Drosophila HD system. To avoid
confusion with actual neurons, we refer to the neuronal populations in
this idealized RNN as head direction (HD), angular velocity (AV+ and AV-,
in reference to the two hemispheres), inhibitory (INH), and external input
(EXT) populations. (D) Differential activation of AV populations (left/right:
high/low) across hemispheres as well as shifted feedback connectivity from
AV to HD populations effectively implements the asymmetric (or shifted)
connectivity needed to turn the bump position (here, clockwise shift for
anticlockwise turn). (E) Broad excitation of the INH population by the HD
population, together with a one-to-one multiplicative interaction between
INH and HD population, implements the quadratic decay of the bump
amplitude needed for the reduction in certainty arising from probabilistic
path integration. (F ) External input is mediated by inhibiting HD neurons
with the preferred direction opposite to the location of the HD observation,
effectively implementing a vector sum of belief with HD observation. (G andH)
The inference accuracy of the Drosophila-like network is indistinguishable
from that of the Bayesian ring attractor. Inference accuracy, certainty, and
HD observation information rate are measured as for Fig. 2I.

evidence weighting does not require exact tuning of the network
connections. Indeed, even when we used connectome data
to implement a network with realistic biological connectivity
constraints, the network could still support near-optimal evidence
weighting.

A key element of our approach is that bump amplitude is used
to represent the internal certainty of the system’s Bayesian HD
posterior belief. In our framework, internal certainty determines
the weight ascribed to new evidence, relative to past evidence.
As such, the representation of internal certainty plays a crucial
role in maximizing the accuracy of our Bayesian ring attractor.
This stands in contrast to recent network models of the HD
system that do not encode internal certainty, even though
they weigh HD observations in proportion to their reliabilities
(50, 51). Notably, our network also automatically adjusts its
cue integration weights to perform close-to-optimal Bayesian
inference for HD observations of varying reliability. Recent
work (52) described how observations of a circular variable
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(such as HD) could be integrated across brief time periods,
provided that these observations all have the same reliability;
however, this work considered neither the problem of integrating
observations of differing reliability nor the role of angular velocity
observations. Moreover, the network described in that study
operated below the fixed point of the bump amplitude, and
therefore, it can only correctly weight incoming observations
over a short period before reaching the fixed point.

Another important element of our approach was that we
benchmarked our network model against a rigorous norma-
tive standard, the circular Kalman filter, which was derived
analytically in ref. 31 and described here in terms of intuitive
vector operations. Being able to rely on the circular Kalman
filter was important because it allowed us to analytically derive
the proper parameter values of our network model, so that the
network’s estimate matched the estimate of an ideal observer.
A remarkable property of the circular Kalman filter is that new
HD observations will actually decrease certainty if they conflict
strongly with the current estimate. This is not a property of a
standard (noncircular) Kalman filter or a neural network designed
to emulate it (33). The power of conflicting evidence to decrease
certainty is particular to the circular domain. Our Bayesian ring
attractor network automatically reproduces this important aspect
of the circular Kalman filter. Of course, the circular Kalman filter
has applications beyond neural network benchmarking, as the
accurate estimation of orientation or any other periodic variable
has broad applications in the field of engineering.

When adequately tuned, our network can implement a
persistent working memory of a circular variable, as, for example,
the orientation of a visual stimulus in a visual working memory
task. Recent models for such tasks attribute memory recall
errors to the stochastic emission of a limited number of spikes
(7, 53). As in our network, neural noise can be averaged out
once the network has a sufficiently large number of neurons;
for this reason, memory errors can be attributed only to the
noise of individual neurons in small networks with few neurons.
Significant memory errors in larger Bayesian ring attractors thus
have to result from other sources of noise, such as imperfect
connectivity weights, or correlated input noise from, e.g., shared
inputs, that fundamentally limits the amount of information that
these inputs provide to the network (54).

In the brain’s HD system, the internal estimate of HD is
based on not only HD observations (visual landmarks, etc.) but
also angular velocity observations. The process of integrating
these angular velocity observations over time is called angular
path integration. Angular path integration is inherently noisy,
and therefore, uncertainty will grow progressively when HD
observations are lacking. Our Bayesian ring attractor network is
notable in explicitly treating angular path integration as a problem
of probabilistic inference. Each angular velocity observation has
limited reliability, and this causes the bump amplitude to decay in
our network as long as HD observations are absent, in a manner
that well approximates the certainty decay of an ideal observer.
In this respect, our network differs from previous investigations
of ring attractors having variable bump amplitude (55).

Our work makes several testable predictions. First, we predict
that the HD system should contain the connectivity motifs
required for a Bayesian ring attractor. Our analysis of Drosophila
brain connectome data supports this idea; we expect similar
network motifs to be present in the HD networks of other
animals, such as that of mice (15, 19), monkeys (56), humans
(57), or bats (58). In the future, it will be interesting to determine
whether synaptic inhibition in these networks is nonlinear, as
predicted by our models.

Second, we predict that bump amplitude in the HD system
should vary dynamically, with higher amplitudes in the presence
of reliable external HD cues, such as salient visual landmarks. In
particular, when bump amplitude is high, the bump’s position
should be less sensitive to the appearance of new external HD
cues. Notably, an experimental study from the mouse HD
system provides some initial support for these predictions (19).
This study found that the amplitude of population activity in
HD neurons (what we call bump amplitude) increases in the
presence of a reliable visual HD cue. Bump amplitude also varied
spontaneously when all visual cues were absent (in darkness);
intriguingly, when the bump amplitude was higher in darkness,
the bump position was slower to change in response to the
appearance of a visual cue, suggesting a lower sensitivity to the
cue. In the future, more experiments will be needed to clarify
the relationship between bump amplitude, certainty, and cue
integration. In particular, it is puzzling that multiple studies
(16, 18, 19, 24, 59, 60) have found that bump amplitude
increases with angular velocity, as higher angular velocities should
not increase certainty.

In the future, more investigation will be needed to understand
evidence accumulation on longer timescales. The circular Kalman
filter is a recursive estimator: At each time step, it considers only
the observer’s internal estimate from the previous time step as well
as the current observation of new evidence. However, when the
environment changes, it would be useful to use a longer history
of past observations (and past internal estimates) to readjust the
weight assigned to the changing sources of evidence. Available
data suggest that Hebbian plasticity can progressively strengthen
the influence of the external sensory cues that are most reliably
correlated with HD (17, 49, 61, 62). The interaction of Hebbian
plasticity with attractor dynamics could provide a mechanism for
extending statistical inference to longer timescales (13, 63–69).

In summary, our work shows how ring attractors could
implement dynamic Bayesian inference in the HD system. Our
results have significance beyond the encoding of head direction—
e.g., they are potentially relevant for the grid cell ensemble, which
appears to be organized around ring attractors even though
it encodes linear rather than circular variables. Moreover, our
models could apply equally to any brain system that needs to
compute an internal estimate of a circular or periodic variable,
such as visual object orientation (6, 70) or circadian time. More
generally, our results demonstrate how canonical network motifs,
like those common in ring attractor networks, can work together
to perform close-to-optimal Bayesian inference, a problem with
fundamental significance for neural computation.

Materials and Methods

Ideal Observer Model: The Circular Kalman Filter. Our ideal observer
model—the circular Kalman filter (circKF) (31)—performs dynamic Bayesian
inference for circular variables. It computes the posterior belief of an unobserved
(true) HD φt ∈ [−π ,π ] at each point in time t, conditioned on a continuous
stream of noisy angular velocity observations v0:t = {v0, vdt , . . . vt} with
vτ ∈ R, and HD observations z0:t = {z0, zdt , . . . zt} with zτ ∈ [−π ,π ]. In
contrast to the discrete-time description in Results, we here provide a continuous-
time formulation of the filter. Specifically, we assume that these observations are
generated from the true angular velocity φ̇t and HDφt , corrupted by zero-mean
noise at each point in time, via

vt|φ̇t ∼N

(
φ̇t ,

1
κv dt

)
, [5]

zt|φt ∼ VM (φt , κz dt) . [6]
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Here, N (µ, σ 2) denotes a Gaussian with mean µ and variance σ 2,
VM(µ, κ) denotes a von Mises distribution of a circular random variable
with mean µ and precision κ , and κv and κz quantify reliabilities of angular
velocity and HD observations, respectively. Note that as dt → 0, the precision
values of both angular velocity and HD observations approach 0, in line with the
intuition that reducing a time-step size dt results in more observations per unit
time, which should be accounted for by less precision per observation to avoid
“oversampling” (SI Appendix for a subtlety for how κz scales with time).

To support integrating information over time, the model assumes that current
HDφt depends on past HDφt−dt . Specifically, in the absence of further evidence,
the model assumes that HD diffuses on a circle,

φt|φt−dt ∼N

(
φt−dt ,

dt
κφ

)
mod 2π , [7]

with a diffusion coefficient that decreases with κφ .
The circKF in Eqs. 1 and 2 assumes that the HD posterior belief can be

approximated by a von Mises distribution with time-dependent mean µt and
certainty κt , i.e. p(φt|v0:t , z0:t) ≈ VM(φt;µt , κt). Such an approximation
is justified if the posterior is sufficiently unimodal and can, for instance, be
compared to a similar approximation employed by extended Kalman filters for
noncircular variables.

An alternative parametrization of the von Mises distribution to its mean
µt and precision κt is its natural parameters, xt = (κt cosµt , κt sinµt)

T .
Geometrically, the natural parameters can be interpreted as the Cartesian
coordinates of a “HD belief vector” and (µt , κt) as its polar coordinates (Fig. 1B).
As we show in SI, the natural parameter parametrization makes including HD
observations in the circKF straightforward. In fact, it becomes a vector addition. In
contrast, including angular velocity observations is mathematically intractable,
such that the circKF relies on an approximation method called projection filtering
(30) to find closed-form dynamic expressions for posterior mean and certainty
(see ref. 31 for technical details and SI Appendix for a more accessible description
of the circKF).

Taken together, the circKF for the model specified by Eqs. 5–7 reads

dµt =
κv

κφ + κv
vt dt +

κz
κt

sin(zt − µt)dt, [8]

dκt = −
f(κt)

2(κφ + κv)
κtdt + κz cos(zt − µt)dt, [9]

which is the continuous-time equivalent to Eqs. 1 and 2 in Results and where
f(κ) is a monotonically increasing nonlinear function,

f(κ) =
A(κ)

κt − A(κ)− κA(κ)2
, with A(κ) =

I1(κ)
I0(κ)

, [10]

and I0(·) and I1(·) denote the modified Bessel functions of the first kind of
order 0 and 1, respectively.

For a sufficiently large κ (i.e., high certainty), the nonlinearity f(κ) ap-
proaches the linear function, f(κ)→ 2κ − 2. In our quadratic approximation,
we thus replace the nonlinearity with a quadratic decay:

dκt = −
1

κφ + κv

(
κ2

t − κt
)

dt + κz sin(zt − µt)dt, [11]

which well approximates the circKF in the high certainty regime.

Network Model. We derived a rate-based network model that implements
(approximations of) the circKF, by encoding the von Mises posterior parameters
in activity rt ∈ RN of a neural population with N neurons. Thereby, we focused
on the simplest kind of network model that supports such an approximation,
which is given by Eq.4. In that equation, τ is the cell-intrinsic leak time constant,
g : RN

→ R+ is a scalar nonlinearity, and the elements of rt are assumed
to be ordered by the respective neuron’s preferred HD, φ1, . . . ,φN (Eq. 3). We
decomposed the recurrent connectivity matrix into W(vt) = wconst 1

N11
T +

wsymWcos + wasym(vt)Wsin, where 11T is a matrix filled with 1’s, and Wcos

and Wsin refer to cosine- and sine-shaped connectivity profiles (Fig. 2G). The
network’s circular symmetry makes the entries of these matrices depend only
on the relative distance in preferred HD, and the entries are given by Wcos

ij =

2
N cos(φi−φj), and Wsin

ij = 2
N sin(φi−φj). The scaling factor 2

N was chosen
to facilitate matching our analytical results from the continuum network to the
network structure outlined here. We further considered a cosine-shaped external
input of the form Iext

t (φi) = It(dt) cos(8t − φi) that is peaked around an
input location 8t . Here, It(dt) denotes the input pattern in the infinitesimal
time bin dt.

As described in Results, we assume the population activity rt to encode the
HD belief parametersµt and κt in the phase and amplitude of the activity’s first
Fourier component. As we show in SI Appendix, the described network dynamics
thus lead to the following dynamics of the cosine-profile parametersµt and κt:

dµt = wasym(vt) dt +
It
κt

sin(8t − µt), [12]

dκt =

(
wsym
−

1
τ

)
κt dt − g(rt)κt dt + It cos(8t − µt). [13]

To derive these dynamics, we make the following three assumptions. First,
we assume the network to be rate based. Second, our analysis assumes a
continuum of neurons, i.e., N → ∞. For numerical simulations, and the
network description below, we used a finite-sized network of size N that
corresponds to a discretization of the continuous network. SI Appendix, Fig. S2
demonstrates only a very weak dependence of our results on the exact number
of neurons in the network. Third, our analysis and simulations focused on the
first Fourier mode of the bump profile and is thus independent of the exact
shape of the profile (as long as Eq. 3 holds).
Network parameters for Bayesian inference. Having identified how the
dynamics of µt and κt encoded by the network, Eqs. 12 and 13 depend
on the network parameters, we now tuned these parameters to match these
dynamics to those of the mean and certainty of the circKF, Eqs. 8 and 9. Here,
we first do so to achieve an exact match to the circKF, without the quadratic
approximation. After that, we describe the quadratic approximation that is used
in the main text and leads to the Bayesian ring attractor network. Specifically,
an exact match to the circKF requires the following network parameters:

• Asymmetric recurrent connectivities are modulated by angular velocity
observations, wasym(vt) = κv

κφ+κv
vt , which shifts the activity profile without

changing its amplitude (12, 13).
• HD observations zt are represented as the peak position 8t of a cosine-

shaped external input whose amplitude is modulated by the reliability of
the observation, i.e., It = κz dt. The inputs might contain additional Fourier
modes (e.g., a constant baseline), but those do not affect the dynamics in
Eqs. 12 and 13.

• The symmetric component of the recurrent excitatory input needs to exactly
balance the internal activity decay, i.e., wsym

−
1
τ = 0.

• The decay nonlinearity is modulated by the reliability of the angular velocity
observations and is given by g(rt) = 1

2(κφ+κv)
f
(
κ(rt)

)
, where f(·) equals

the nonlinearity that governs the certainty decay in the circKF, Eq. 10. This
can be achieved, for example, through interaction with an inhibitory neuron
(or a pool of inhibitory neurons) with activation function f(·) that computes
the activity bump’s amplitude κ(rt).

A network with these parameters is not an attractor network, as its activity decays
to zero in the absence of external inputs.

To arrive at the Bayesian ring attractor, we approximate the decay
nonlinearity by a quadratic approximation that takes the form g(rt)rt →

wquad
(
π
N
∑N

i=1[r
(i)
t ]+

)
· rt , where [·]+ denotes the rectification nonlin-

earity. The resulting recurrent inhibition can be shown to be quadratic in the
amplitude κt and has the further benefit of introducing an attractor state at a
positive bump amplitude (below). In the large population limit, N→∞, this
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leads to the amplitude dynamics (SI Appendix for derivation)

dκt =

(
wsym
−

1
τ

)
κt dt − wquadκ2

t dt + It cos(8t − µt). [14]

The dynamics of the phase µt does not depend on the form of g(·) and
thus remains to be given by Eq. 12. If we set the network parameters to
wquad = 1

κφ+κv
and wsym

−
1
τ = 1

κφ+κv
, while sensory input, i.e., angular

velocity vt and HD observations zt , enters in the same way as before, the network
implements the quadratic approximation to the circKF, Eqs. 8 and 11.
General ring-attractor networks with fixed point �∗ and decay speed �. In
the absence of HD observations (It = 0), the amplitude dynamics in Eq.14has a
stable fixed point at κ∗ = wsym

−1/τ
wquad and no preferred phase, making it a ring-

attractor network. Linearizing theκt dynamics around this fixed point reveals that
it is approached with decay speed β = wsym

−
1
τ . Therefore, we can tune the

parameters to achieve a particular fixed point κ∗ and decay speed β by setting
wsym = β + 1/τ and wquad = β

κ∗ . A large value of β requires increasing
both wsym and wquad, yields faster dynamics, and thus indicates more rigid
attractor dynamics. In the limit of β → ∞, the attractor becomes completely
rigid in the sense that, upon any perturbation, it immediately moves back to
its attractor state. In the main text, we assume conventional ring attractors to
operate close to this rigid regime. For the Bayesian ring attractor, we findκ∗ = 1
and β = 1

κφ+κv
. Further, in our simulations in Fig. 3, we explored network

dynamics with a range of κ∗ and β values by adjusting network parameters
accordingly.

Assessing the Impact of Neural Noise on Inference Accuracy. In SI
Appendix, we show that neural noise results in an unbiased diffusion of µt
and a diffusion and positive drift of κt . We assessed the impact of this noise on
inference accuracy by simulating a network with N = 64 neurons and κ∗ and
β tuned to maximize noise-free inference accuracy (“Best network model” in
Fig. 3D) and by adding Gaussian zero-mean white noise with variance σ 2

nnδt in
each time step δt to each neuron, for different levels of σnn (Fig. 3F, light blue
lines). We computed the signal-to-noise ratio for each simulation as the average
κt divided by the diffusion noise SDσnn

√
2/N that additive neural noise causes

in κt (SI Appendix for derivation). The impact of this noise can be reduced by
retuning the network’s connectivity strengths. We did so for each neural noise
magnitude separately by a grid search over κ∗ and β (SI Appendix, Fig. S4),
similar to the previous section (Fig. 3F, purple lines).

Drosophila-like multipopulation network. We extended the single pop-
ulation network dynamics, Eq. 4, to encompass five populations: a HD
population, which we designed to track HD estimate and certainty with its
bump parameter dynamics; two angular velocity populations (AV+ and AV-),
which are tuned to HD and are differentially modulated by angular velocity
input; an inhibitory population (INH); and a population that mediates external
input (EXT), corresponding to HD observations. The network parameters were
tuned such that the activity profile in the HD population tracks the dynamics of
the circKF quadratic approximation, in the same way as for the single-population
network, Eq. 4. To limit the degrees of freedom, we further constrained the
connectivity structure between HD and AV+/- and INH populations by the
known connectome of the Drosophila HD system (hemibrain dataset in ref. 42)
and tuned only across-population connectivity weights. For further details on the
network dynamics and with- and across-population connectivity weights, please
consult SI Appendix.

Simulation Details.
Numerical integration. Our simulations in Figs. 2–4 used artificial data that
matched the assumptions underlying our models. In particular, the “true” HD
φt followed a diffusion on the circle, Eq. 7, and observations were drawn at each
point intimefromEqs.5and6. Tosimulatetrajectoriesandobservations,weused
the Euler–Maruyama scheme (71), which supports the numerical integration of
stochastic differential equations. Specifically, for a chosen discretization time
step 1t, this scheme is equivalent to drawing trajectories and observations

from Eqs. 7, 5, and 6 directly while substituting dt → 1t. The same time-
discretization scheme was used to numerically integrate the SDEs of the circKF,
Eqs. 8 and 9 and its quadratic approximation, Eq. 11.
Performance measures. To measure performance, in Figs. 2I, 3 B and D and
4 G and H, we computed the circular average distance (72) of the estimate µT
from the true HD φT at the end of a simulation of length T = 20 from P =

5′000 simulated trajectories by m1 = 1
P
∑P

k=1 exp
(

i
(
µ

(k)
T − φ

(k)
T

))
.

The absolute value of the imaginary-valued circular average, 0 ≤ |m1| ≤ 1,
is unitless and denotes an empirical accuracy (or “inference accuracy”) and thus
measures how well the estimate µT matches the true HD φT . Here, a value
of 1 denotes an exact match. The reported inference accuracy is related to the
circular variance via Varcirc = 1 − |m1|. In SI Appendix, Fig. S5, we provide
histograms with samples µT − φT with different numerical values of |m1|
to provide some intuition for the spread of estimates for a given value of the
performance measure.

We estimated performance through such averages for a range of HD
observation information rates in Figs. 2I, 3B and 4G. This information rate is a
simulation time-step size-independent quantity, which measures the Fisher
information that HD observations provide about true HD per unit time. For
individual HD observations of duration dt, Eq. 6, this Fisher information
approaches Izt (φt) → (κzdt)2 /2 with dt → 0 (31, Theorem 2). Per unit
time, we observe 1/dt independent observations, leading to a total Fisher
information (or information rate) of γz = κ2

z dt/2. As in simulations, γz needs
to remain constant with changing1t to avoid increasing the amount of provided
information, the HD observation reliability κz needs to change with the size of
simulation time-step size 1t. To keep our plots independent of this time-step
size, we thus plot performance as a function of the HD observation information
rate rather thanκz . For the inset of Fig. 3B, and for Figs. 3 D and F, we additionally
performed a grid search over the fixed-point κ∗ (Fig. 3 B, inset) or both the
fixed-point κ∗ and of the decay speed β (Figs. 3 D and F). For each setting
of κ∗ and β , we assessed the performance by computing an average over
this performance for a range of HD observation information rates, weighted by
how likely each observation reliability is assumed to be a priori. The latter was
specified by a log-normal prior, p(γz) = Lognormal(γz|µγz , σ 2

γz ), favoring

intermediate reliability levels. We choseµγz = 0.5 and σ 2
γz = 1 for the prior

parameters, but our results did not strongly depend on this parameter choice.
The performance loss shown in Fig. 3D also relied on such a weighted average
across information rates γz for a particle filter benchmark (PF, SI for details). The
loss itself was then defined as 1− Performance

Performance PF .
Update weights for HD observations. In Fig. 3C, we computed the weight
with which a single HD observation with |zt − µt| = 90◦ changes the HD
estimate. We defined this weight as the change in HD estimate, normalized
by the value of the maximum possible change, w = 1µt

π = 1
π tan−1 κz dt

κt
.

To make units intuitively comparable between the two axes, we chose to scale
the y-axis in units of Fisher information of a single HD observation of duration
1t = 10ms, given by Izt (φt) = γz 1t whereγz = κ2

z 1t/2. Thus, the weight
is plotted as a function of the Fisher information of a single HD observation
(how reliable is the observation?) and the Fisher information of the current
HD posterior belief (how certain is the current estimate?), which is given by

Iµt ,κt (φt) = κt
I1(κt)
I0(κt)

(31).

Simulation parameters. In our network simulations, we set the leak time
constant τ to an arbitrary, but nonzero, value. Effectively, this resulted in
a cosine-shaped activity profile. Note that by setting higher-order recurrent
connectivities accordingly, other profile shapes could be realized, without
affecting the validity of our analysis from the neural activity vector rt , we re-
trieved the natural parametersxt with a decoder matrix A = (cos(�), sin(�))T ,
such that xt = A · rt , and subsequently computed the position of the bump
by φt = arctan 2(x2, x1) and the encoded certainty (length of the population

vector) by κt =
√

x2
1 + x2

2 .
In all our simulations, times are measured in units of inverse diffusion

time constant κφ , where we set κφ = 1s for convenience. We used the
following simulation parameters. For Fig. 2H, we used κv = 2 and information
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rate of HD observations of γz = 10/s (equaling κz ≈ 45; during “Visual
cue” period) and κz = 0 (during “Darkness” period). For Figs. 2I and 3 B
and D we used κv = 1, T = 20, and averaged results over P = 5, 000
simulation runs. For Fig. 3E, we used κv = 1, information rate of γz = 1/s
(equaling κz ≈ 14), T = 10. In the network simulations in Fig. 2 H and I
and Fig. 3 B and D, we translated these parameters into network connectivity
parameters according to our analytical results in SI Appendix, section 3B. Without
loss of generality, we set all connectivity parameters that are not explicitly
mentioned, to zero (including wconst). Please consult SI Appendix for details
on the Drosophila network simulation parameters. We used1t = 0.01 for all
simulations.

Trajectory simulations and general analyses were performed on a MacBook
Pro (Mid 2019) running 2.3 GHz 8-core Intel Core i9. Parameter scans were run
on the Harvard Medical School O2 HPC cluster. For all our simulations, we used
Python 3.9.1 with NumPy 1.19.2.

Data, Materials, and Software Availability. Computer simulations and data
analysis were performed with custom Python code, which has been deposited
in Zenodo, DOI: 10.5281/zenodo.7615975.
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55. S. Carroll, K. Josić, Z. P. Kilpatrick, Encoding certainty in bump attractors. J. Comput. Neurosci. 37,

29–48 (2014).
56. R. G. Robertson, E. T. Rolls, P. Georges-François, S Panzeri, Head direction cells in the primate

pre-subiculum. Hippocampus 9, 206–219 (1999).
57. O. Baumann, J. B. Mattingley, Medial parietal cortex encodes perceived heading direction in

humans. J. Neurosci. 30, 12897–12901 (2010).
58. A. Finkelstein et al., Three-dimensional head-direction coding in the bat brain. Nature 517,

159–164 (2015).
59. M. B. Zugaro, E. Tabuchi, C. Fouquier, A. Berthoz, S. I. Wiener, Active locomotion increases peak

firing rates of anterodorsal thalamic head direction cells. J. Neurophysiol. 86, 692–702 (2001).
60. M. E. Shinder, J. S. Taube, Self-motion improves head direction cell tuning. J. Neurophysiol. 111,

2479–2492 (2014).
61. J. J. Knierim, H. S. Kudrimoti, B. L. McNaughton, Interactions between idiothetic cues and external

landmarks in the control of place cells and head direction cells. J. Neurophysiol. 80, 425–446
(1998).

62. Y. E. Fisher, J. Lu, I. D’Alessandro, R. I. Wilson, Sensorimotor experience remaps visual input to a
heading-direction network. Nature 576, 121–125 (2019).

63. A. T. Keinath, R. A. Epstein, V. Balasubramanian, Environmental deformations dynamically shift the
grid cell spatial metric. eLife 7, e38169 (2018).

64. M. Milford, G. Wyeth, D. Prasser, “RatSLAM: A hippocampal model for simultaneous localization
and mapping” in IEEE International Conference on Robotics and Automation, 2004. Proceedings.
ICRA 2004 (IEEE, New Orleans, LA, USA, 2004), vol. 1, pp. 403–408.

PNAS 2023 Vol. 120 No. 9 e2210622120 https://doi.org/10.1073/pnas.2210622120 11 of 12

https://www.pnas.org/lookup/doi/10.1073/pnas.2210622120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2210622120#supplementary-materials
https://doi.org/10.5281/zenodo.7615975
https://www.pnas.org/lookup/doi/10.1073/pnas.2210622120#supplementary-materials
https://doi.org/10.1088/0954-898X/7/4/004


65. M. Mulas, N. Waniek, J. Conradt, Hebbian plasticity realigns grid cell activity with external sensory
cues in continuous attractor models. Front. Comput. Neurosci. 10 (2016).

66. S. A. Ocko, K. Hardcastle, L. M. Giocomo, S. Ganguli, Emergent elasticity in the neural code for
space. Proc. Natl. Acad. Sci. U.S.A. 115 (2018).

67. H. J. I. Page et al., A theoretical account of cue averaging in the rodent head direction system.
Philosop. Trans. R. Soc. B: Biol. Sci. 369, 20130283 (2014).

68. H. J. I. Page, K. J. Jeffery, Landmark-based updating of the head direction system by retrosplenial
cortex: A computational model. Front. Cell. Neurosci. 12, 191 (2018).

69. A. J. Cope, C. Sabo, E. Vasilaki, A. B. Barron, J. A. R. Marshall, A computational model of the
integration of landmarks and motion in the insect central complex. PLoS One 12, e0172325
(2017).

70. R. J. van Beers, A. C. Sittig, J. J. D. vd. Gon, Integration of proprioceptive and visual position-
information: An experimentally supported model. J. Neurophysiol. 81, 1355–1364 (1999).

71. P. E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations, Applications of
Mathematics (Springer, Berlin, ed. 3, 2010), No. 23.

72. K. V. Mardia, P. E. Jupp, Directional Statistics (John Wiley & Sons, 2000), p. 3.

12 of 12 https://doi.org/10.1073/pnas.2210622120 pnas.org


