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The recent increase in openly available ancient human DNA samples allows for
large-scale meta-analysis applications. Trans-generational past human mobility is one
of the key aspects that ancient genomics can contribute to since changes in genetic
ancestry—unlike cultural changes seen in the archaeological record—necessarily reflect
movements of people. Here, we present an algorithm for spatiotemporal mapping of
genetic profiles, which allow for direct estimates of past human mobility from large
ancient genomic datasets. The key idea of the method is to derive a spatial probability
surface of genetic similarity for each individual in its respective past. This is achieved by
first creating an interpolated ancestry field through space and time based on multivariate
statistics and Gaussian process regression and then using this field to map the ancient
individuals into space according to their genetic profile. We apply this algorithm to a
dataset of 3138 aDNA samples with genome-wide data from Western Eurasia in the
last 10,000 y. Finally, we condense this sample-wise record with a simple summary
statistic into a diachronic measure of mobility for subregions in Western, Central, and
Southern Europe. For regions and periods with sufficient data coverage, our similarity
surfaces and mobility estimates show general concordance with previous results and
provide a meta-perspective of genetic changes and human mobility.
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All human behavior is spatial behavior, and spatial perception and interaction are deeply
rooted in the human mind. Understanding movements in space—mobility—on different
orders of magnitude is therefore a major component for understanding human behavior
throughout history (1), from the Iceman’s quest through the Ötztal Alps, to the Viking
expansion even beyond Medieval Europe, and maybe eventually humankind’s journey
to the stars.

Anthropological theory provides different concepts and categories to classify mobility.
Mobility can be permanent or cyclical, a group property or individual behavior, and finally
motivated by economic, social, or cultural incentives. It has complex implications for
the formation, perception, and interaction of identity (2–4). Migration is an especially
challenging and controversial topic (5, 6) as it is notoriously difficult to prove and to
uncover its causes among the interdependencies of microprocesses and macroprocesses
(7). Narratives of migration are particularly vulnerable to political instrumentalization (8).

The field of archaeogenetics now provides a perspective on mobility, which is at
its very core influenced by population genetics theory. The emergence, change, and
distribution of human ancestry components—mediated by the mobility of their hosts—
are in fact some of its most important research questions (e.g., refs. 9–11), causing fruitful
and corrective friction with the humanities (12–14). While so far much archaeogenetic
research focuses on particular cultural–historical contexts, the recent growth of published
ancient DNA samples from all around the world enables a unique category of quantitative
meta-analysis.

Large, explicitly spatiotemporal datasets have been part of population genetics research
for a long time already (15), sometimes even with a focus on mobility quantification (16–
19). But to our knowledge, only few attempts have been made to systematically derive a
continuous, large-scale and diachronic measure of human mobility with ancient genetic
data. These are most notably a pioneering publication by Loog et al. (20) and another
approach by Racimo et al. (21). Loog et al. measure mobility in prehistoric Europe
by comparing the distance matrix correlation among spatial, temporal, and genetic
distance for aDNA samples in moving 4,000-y windows. As a result, they generate an
unscaled mobility proxy curve that indicates elevated levels of mobility correlating with
the Neolithic expansion, the Steppe migration, and, finally, the European Iron Age.
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Racimo et al., on the other hand, employ admixture analysis to
model the dynamics of specific ancestry components through
time: Mesolithic hunter-gatherers, Neolithic farmers with ances-
try originating in the Near East, and Yamnaya steppe herders,
arriving in Europe during the third millennium BC. They derive
mobility as a wave front speed of surpassed ancestry component
thresholds. To overcome sample sparsity and to correlate the
arrival of certain ancestry components with biogeographic met-
rics, they use Gaussian process regression for the interpolation of
relative ancestry component occurrence—an idea we also took as
a starting point for our proposed mobility estimation method.

In this paper, we present an algorithm to estimate past
human mobility on the individual level. For each individual,
we determine a probability distribution in space, which yields
locations of likely genetic similarity to the sample in question.
We call this the similarity probability surface, which, as we show,
is generally informative on where an individual’s ancestors might
have lived. The distance between the location where an individual
was buried and a point of maximum likelihood in the similarity
surface serves us as a simplified proxy for personal mobility in an
individual’s (or their ancestors’) lifetime. We apply this algorithm
to several thousand previously published ancient genomes from
Western Eurasia dating from between 8000 BC and 2000 AD
(excluding modern genomes) taken from the Allen Ancient DNA
Resource (AADR) (22). And, we show that, while the average
results largely match expectations including known and large-
scale movements at the beginning and end of the Neolithic, these
large-scale patterns are accompanied by considerable individual-
level heterogeneity.

Results

Interpolating Genetic Ancestry Through Space and Time. A key
challenge for understanding shifts of ancestry through space and
time is the inherent sparsity of archaeogenetic data. To address
this, we employed an interpolation technique fitted upon 3138
published samples available in the AADR (22) for Western
Eurasia during the Holocene, filtered according to general
sample quality criteria (Methods). All samples in this public data
collection reference single-nucleotide polymorphisms (SNPs)
from a panel of about 1.24 million known informative positions
(23). Within the derived AADR subset, the data distribution in
time and space is heterogeneous (Fig. 1), with generally few data
points from the European Mesolithic, significantly more from
the Neolithic, then most from the Late Neolithic and Bronze
Age, and again less from the Iron Age and later periods. The
diachronic amount of data from Great Britain, Iberia, Central
Europe, and Southeastern Europe is comparatively high, whereas
other regions are less well covered.

We applied multidimensional scaling (MDS) on these data
to reduce their dimensionality to two summarizing ancestry
components (Fig. 2), that are by construction most informative
about the genetic diversity across the sample set. We use the term
“ancestry component” here strictly to denote orthogonal com-
ponents from MDS instead of a specific admixture component.
Besides MDS, we also explored PCA, PCA with projection on
modern diversity and EMU (24), considering up to 10 output
dimensions for the respective methods (SI Appendix, Text 1).
We decided to use MDS with two dimensions (MDS2) here

30°N

35°N

40°N

45°N

50°N

55°N

60°N

 0° 20°E 40°E

A

−8000

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

1000

2000

Brit
ain

 a
nd

 Ir
ela

nd

Cen
tra

l E
ur

op
e

Sou
th

ea
ste

rn
 E

ur
op

e

W
es

te
rn

 P
on

tic
 S

te
pp

e
Ib

er
ia

Ita
ly

tim
e 

in
 y

ea
rs

 c
al

B
C

/A
D

0
10

0
20

0

# samples

B

−7500
−6500

−5500
−4500

−3500
−2500

−1500 −500 500 1500
Time Region

Britain and Ireland Central Europe Western Pontic Steppe

Iberia Italy Southeastern Europe

Other region

Fig. 1. Spatial and temporal distribution of the aDNA sample selection. (A) Map (EPSG:3035, ETRS89 Lambert Azimuthal Equal-Area, “European grid") with
the research area (dashed). Samples are jittered with up to ±60 km in x and y directions to reduce the effect of overplotting. The sample dots are colored
according to their age, which is given in years calBC/AD (negative values indicate ages calBC). The sample dot shape encodes the attribution to different analysis
regions. (B) Horizontally jittered scatter plot of temporal sample distribution for each analysis region. The stacked histogram on the right shows the sample
count through time for all samples in gray and for the ones within the defined analysis regions in black (bin width = 200 y).
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Fig. 2. Scatter plot of the sample distribution in 2D multidimensional scaling
(MDS) space. Each sample is plotted with the same shape and color as in Fig. 1.
The bigger, black circles are the centroids of region-time groups (bin width
= 1,000 y). To prevent overplotting, the centroids are not printed on their exact
positions, but instead rearranged in a nonoverlapping lattice. SI Appendix,
Text 1 for an explanation of what ∗_mds_u exactly entails, SI Appendix, Fig.
S1 for a larger version where the individuals mentioned in the text are
highlighted, and SI Appendix, Fig. S4 for a comparable PCA5 plot.

and also present Projection-PCA with five dimensions (PCA5)
in SI Appendix. For MDS2, we find the largest internal separation
of samples to be along the tempocultural boundary between the
Mesolithic and the Neolithic, highlighting the strong population
shift the Neolithic introduced into Europe (25–27). Other
patterns seen in the MDS are also consistent with previous
observations and will be discussed among our results below.

We modeled these two MDS-derived ancestry components
individually as the dependent variable in a Gaussian process
regression (GPR) model with three independent input variables
describing the position of each sample in space and time. To
learn the properties of the relevant covariance matrix (“kernel”)
for a model with the best mean postdiction abilities, we explored
multiple methods: variogram analysis, maximum likelihood
estimation, and cross-validation. We eventually settled on an
anisotropic kernel covering multiple hundred kilometers and
years (SI Appendix, Text 2). With the parameterized Gaussian
process regression model, we predicted an average spatiotemporal
genetic ancestry field across Western Eurasia. To illustrate the
result, Fig. 3 shows map plots for time slices of this field—a
visualization not unlike the seminal work by Menozzi et al. (28),
but here leveraging the power of ancient DNA and 1.24 million
informative markers.

The interpolation of ancestry components across time and
space reflects how 10 millennia of human population changes
have shaped genetic ancestry in this area. As already seen in Fig. 2,
both ancestry components C1 and C2 most strongly reflect the
enormous changes that underlay the transitions during the Early
Neolithic, with increasing values (for C1 colored in yellow in
Fig. 3) throughout Central and Western Europe before 5000BC
as a result of people moving north–westward from the Levant and
western Anatolia (25, 26). They also prominently feature further
changes after 3000BC, bringing ancestry previously located in
Eastern Europe and the Eurasian steppes into Western and
Central Europe (9, 29).

With this interpolation, we can attempt the reconstruction
of continuous, local ancestry histories even for places without
consistent data coverage. To illustrate this, we selected arbitrary
spatial positions (corresponding to four capital cities) and used
the GPR model to postdict how the genetic profile in these
locations changed through time (SI Appendix, Fig. S6). The
four “virtual” time-series again generally reflect our knowledge
of the genetic changes in Europe: In the locations of present-
day London and Rome, we observe an ancestry shift with the
arrival of Neolithic and then once more with Steppe ancestry—
with small regional differences. Riga, on the other hand, starts
out with a higher degree of Eastern Hunter-Gatherer ancestry
before skipping the influx of the Anatolian farmer component.
Jerusalem, expectably, fills a markedly different spot on the
genetic map.

Estimating Individual-Wise Genetic Similarity. While the
interpolated ancestry field reflects the average change in ancestry
through space and time, it also forms the basis for our proposed
algorithm to understand individual-based mobility. The key idea
is as follows (SI Appendix, Text 3 for details): Each sample has
a coordinate in the multidimensional MDS space, so one value
for each output dimension. For a given point in the interpolated,
spatiotemporal ancestry field, we can determine the likelihood
that exactly this value emerges at that location. If the likelihood
is high, so if the “similarity” to said field value is high, and the
field point is in the respective past of the sample of interest, then
we can deduce that this field point was a potential point of genetic
ancestral origin for the sample (SI Appendix, Text 4 for a simple
toy simulation supporting this assumption). A key feature of this
approach is that the likelihood will only be high where the field
is sufficiently supported by data (see the standard deviation in
Fig. 3). This mitigates effects of extreme data sparsity, e.g., in the
periphery of the research area for this study—even if the mean of
the interpolated field spuriously aligns to the sample value.

We turn this likelihood of genetic similarity in a given time
slice to a normalized probability distribution using Bayes’ formula
and multiplying the resulting probabilities for the individual
MDS components (SI Appendix, Text 3). We prepared such
similarity probability maps for six samples from different times,
regions, and contexts in Fig. 4. These represent well-understood
individuals considered outliers in their genetic signatures and
which have been used in the past to establish narratives of mobility
and migration. Note the conscious selection of “retrospection”
distances, so the temporal distances between the time of death and
the interpolated time slice for each sample. This is a key parameter
that needs to be tuned to the specific question, as we illustrate
below. The figure also features red dots for the sampling/burial
locations and smaller orange dots for the respective point of
maximum similarity probability in the field.

The individual named Stuttgart, one of the first ancient
genomes sequenced (25), is also one of the earliest Neolithic
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Fig. 3. Gaussian process regression interpolation map matrix based on the multidimensional scaling dimensions (resolution = 50 km). The five maps on the
top show time slices through the interpolated, spatiotemporal 3D space for the derived ancestry component C1, the five in the middle for C2. The maps on the
bottom visualize the standard deviation of the GPR model for C1 (C2 looks nearly identical) and mirror sample sparsity. The samples informing the field from a
time window ±1,000 y around the temporal slicing position are plotted here as red dots. SI Appendix, Fig. S5 for a comparable PCA5 plot.

samples from Central Europe. They display nonlocal genetic
ancestry in the sense that they differ strongly from preceding
Mesolithic samples in the area. In our analysis, we show that
indeed the highest similarity probability for this individual can
be found in western Anatolia, if we look 1,500 y into their
respective past, so to around 6750BC (Fig. 4). This indicates
mobility from there to Central Europe in accordance with well-
established archaeological models (30). SI Appendix, Fig. S7
shows a diachronic sequence of such similarity probability maps
for Stuttgart. At around 7500BC, the highest similarity can
be observed to the Levant, after 7000BC to Anatolia, then
the southern Balkans, and, finally, further North and West. We
observe high similarity also to Italy and later Iberia, where the
Neolithic expansion followed another route (31, 32). At around
5250BC, so the approximate time of death of the individual, the
peak similarity area includes the burial location of the sample
itself, demonstrating that this type of ancestry has indeed arrived
in Central Europe at this time.

Fig. 4 holds more examples: In the late Neolithic, individuals
affiliated with the Corded Ware culture from Central Europe
have been identified as among the earliest with so-called Steppe
ancestry, which was present already before 3000BC in the Pontic
Caspian steppe. Indeed, for a representative sample from that
group RISE434 (29) and a retrospection distance of 300 years,
we find the closest matching ancestry points falling into Eastern
Europe. A third example is an individual from Roman-time
Britain 3DRIF-26 (33), buried in York, but featuring a genetic
ancestry profile from the Near East. This is a clear case where
the original publication concluded that either this individual
themselves or their ancestors came from the Near East but
ended up in Britain. Besides the high similarity to the Levant,
we also observe a peak in the city of Rome, where the field is
dominated at the time by many sampled individuals with Near

Eastern ancestry (34). Then, confirming the analysis by Haber
et al. (35), we find that multiple samples (here SI-40) extracted
from a mass burial near a Crusader castle in Sidon in present-
day Lebanon are linked to Iberian ancestry profiles (before the
Umayyad conquest). Finally, to highlight a case with strongly
differing ancestry profiles from the very same site, we show
results for the samples I8215 and I8341 from the Iron Age Greek
colony of Empúries in northeast Iberia. Empúries presumably
had a multiethnic population, where I8215 represents an ancestry
group similar to Bronze Age individuals from the Aegean, and
I8341 similar to local Iron Age Iberians with some degree of
Northern- and Central European ancestry (36). The similarity
probability landscapes derived by our algorithm are plausible
given these circumstances.

Regional Mobility Patterns During the Last 10,000 y in Western
Eurasia. We argue that our aforementioned algorithm to derive
similarity probability surfaces is a powerful method to visualize
the spatial component of the genetic ancestry history of a
single individual and to thus gain insights into mobility events
happening in their life or the lives of their ancestors. For a
large-scale meta-analysis that combines information from many
individuals into regional statistics, we now require a simplified
summary of the information in the probability surface. We solved
that by spanning a spatial “mobility vector” from the burial
location to the location of maximum similarity probability in
a past time slice. This vector has a length and a direction, which
renders it a simple summary that can be visualized along a time
series. For example, for the individual from Roman-time York
introduced above (3DRIF-26), this means that we infer a vector
pointing from York to the hypothesized region in the Levant,
resulting in a distance of several thousand kilometers and in
south–western direction.
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Fig. 4. Genetic similarity probability maps for six selected individuals (resolution = 30 km). The larger red dots show their sampling/burial location, and the
smaller orange dots the point of maximum probability. The facet labels feature a sample’s identifier, its approximate age, the retrospection distance applied for
the search (in parentheses), a general period or context, and the publication where the sample was first discussed. SI Appendix, Figs. S8 and S9 for a comparable
version of this plot for Projection PCA, which also breaks down the effect of individual output dimensions (C1–C10) for the overall result.

The results of this large-scale application are compiled in Fig. 5,
both with the lengths of individual mobility vectors (shown on
the y-axis) and their direction (shown in color according to
the legend). While, in principle, we can apply our algorithm
to every sample in the dataset, we here focus on a selection of
confined regions with acceptable coverage of samples throughout
the study time period (Fig. 1; SI Appendix, Fig. S10 and Text 5
feature two more regions, Southeastern Europe and the Western
Pontic steppe). We mostly consider patterns emerging from long-
distance signals, observed as individuals with large mobility-
distances (around 1,000 km and further), as these tend to
correspond to events described previously in the literature and
thereby provide a proof-of-concept for our method. However,
beyond these long-distance signals, we highlight a considerable
level of complexity of smaller-scale signals that may harbor
information yet to be explored. Shown along the individual
distances is a moving average curve together with an error band
(in gray shading), which may help putting the largest individual-
based events into perspective. Alternative visualizations of the
time series shown in Fig. 5 are available with SI Appendix,
Figs. S14, S15 and S16, which show these data as a sequence
of windrose plots, relative distance fractions, and a map series
with all individual vectors.

One core parameter for this analysis is the retrospection
distance already introduced for the individual examples. In-
formed by the temporal lengthscale parameter of the GPR kernel
function, we decided to set it to 667 y for the whole dataset
but also explored lower and higher values (SI Appendix, Text. 5
and Figs. S12 and S13). We also ran the entire analysis for

the Projection PCA setup with 5 output dimensions (PCA5)
mentioned above (SI Appendix, Fig. S11).

Beginning with our time series from Great Britain and
Ireland, the largest observed individual signals correspond to
the Early Neolithic in the 4th millennium BC (37–41), the
Bell-Beaker transition after around 2500BC (42, 43), Roman
Britain, and the Viking period (44). Note, for example, the
indicative individuals I2657, I5367 (43), 3DRIF-26 (>3,000
km; already discussed above) (33), and VK546 (44), each of
which represent extremely long distance mobility. Direction-
wise, the respective mobility peaks are consistent with what we
know about the sources for these events, with Southern sources
during the Neolithic, and Eastern sources during the Bell-Beaker
and Viking periods. The Neolithic transition is visible in our
mobility proxy as a clear upward jump, both in the average
and individual mobility distances, contrasting the few sufficiently
well-covered and apparently “local” Mesolithic individuals from
before 4000BC. But this peak only dies down surprisingly slowly
until the first half of the third millennium, attributing almost
every Neolithic individual a foreign ancestral origin. To some
degree, this might be an effect of the smooth, only slowly
recoiling ancestry interpolation model and the peripheral position
of Britain and Ireland, which renders locations on the continent
disproportionately likely. But the tardiness of the recovery also
supports the assumption of a large and stable sphere of interaction
or at least strong genetic similarity across Western Europe during
the Neolithic. We will discuss a corresponding observation below
for Iberia. The following Bronze Age peak, triggered by incoming
ancestry ultimately from Eastern Europe, is remarkably strong
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Fig. 5. Mobility estimation results. Scatter plots for four analysis regions (Fig. 1). The position on the x-axis gives the median ages of the samples in years
calBC/AD. The y-axis and color reflect length and direction of the mean mobility vector of each sample (the vector pointing from the burial location to the point
of maximum genetic similarity). Each dot represents the mean vector for one sample across 25 temporal resampling runs that reflect the age uncertainties of
the input samples. Each observation comes with error bars on the x- and y-axis. On the x-axis, these cover the limits of the 2-sigma range of the age probability
distribution; on the y-axis, they show one standard deviation of the age resampling distribution. The smooth gray curve printed below the samples is a 400-y
moving mean for the spatial distance. It is calculated from the total set of the resampled iterations. The dark gray ribbon accommodating this mean curve is
two times the standard error of the mean based on the mean dots displayed here. It is visualized as infinite if a given 400-y time window has less than two
samples. The barcode plot at the bottom of each subplot documents the diachronic data coverage for each region. Only samples with a median age between
7300BC and 1500AD were considered for this analysis. SI Appendix, Text 3.3 for a more detailed description of the algorithm behind this figure. Alternative
versions are provided in SI Appendix, Figs. S10-S13.

and persists even after the initial Bell-Beaker transition. For
the period after 2000 BC, Olalde et al. suggest a much more
homogeneous gene pool, which does not rule out the possibility
of incoming continental populations with higher proportions
of Neolithic-related ancestry (43), though. These might be one
reason for the mobility vectors pointing to the East and South in
the Middle Bronze Age, also consistent with the narrative recently
established by Patterson et al. (45).

For Central Europe, we observe similar peaks as for Britain
and Ireland. The Neolithic expansion reaches this area in the
late sixth millennium and leads to a first, strong uptick of the
mobility signal from the Southeast (46–49), visible, for example,
in the aforementioned Stuttgart individual (25). These Neolithic
individuals’ maximum similarity points cover a wide corridor
from western Anatolia to the Balkans, with some directed also
toward the southern route of the Neolithic in Italy. The mobility
pulse then dies down in the fifth millennium. An interesting
case in this spatiotemporal context is individual N22 from
modern-day Poland. Fernandes et al. (50) describe them as “the
most recent individual (≈4300 BCE) with a complete genomic
WHG attribution to be found to date in an area occupied by
Danubian Neolithic farmers,” which causes the similarity search
to link them to the remaining hunter-gatherer populations in
the Baltic region, Ireland and elsewhere. In the first half of the
third millennium, Steppe ancestry arrives, as observed in many
Late Neolithic Corded Ware individuals—like aforementioned
RISE434 (29). Their mobility vectors then clearly point into
the far East and Northeast (9, 29, 49, 51, 52). This strong
signal is heterogeneous both in distance and directionality. We

caution that the spread of Steppe ancestry did most likely not
follow a perfect wave-of-advance-like pattern, leaving pockets
of unaffected or only later-affected ancestry behind, which
will inevitably result in more erratic mobility estimates. After
1500BC, the data density for Central Europe decreases, and
general observations become more difficult. Given archaeological
and eventually historical evidence, it is not unreasonable to
assume a high degree of mobility in the Bronze Age and later,
the Iron Age and the Medieval period, connecting Central
Europe to France, Great Britain, Southern Scandinavia, Eastern
Europe, and the Balkans, catalyzed by different cultural processes
(53). Two remarkable individuals with long mobility vectors are
WEZ35, which is representative of the relatively unstructured
population documented from the Tollense Bronze Age battlefield
in northern Germany (54) and AED1108 from Bavaria with
strong skull deformation and about 20% East Asian ancestry (55).

Already the first hunter-gatherer individual available from
Iberia—Chan (56)—has a very large mean mobility vector
pointing to the Iron Gates on the Balkans. This signal is
not reliable, though, given the fact that no local, preceding
reference data exist, which could inform the ancestry field
for the similarity search to appreciable accuracy. Much more
relevant are the observations for Early Neolithic individuals
like CB13 (57). They document the southern route of the
Neolithic expansion (58). From the end of the fifth millennium
to the middle of the third millennium, many individuals from
Iberia are attributed long mobility vectors toward the North
and Northeast, e.g., LugarCanto45 (59), although others have
described this period as a time of relative genetic stability (36).
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This forms a parallel observation to South- and West-facing
mobility vectors described above for Great Britain, Ireland, and
Central Europe between 4000 and 2500BC. We suspect that
this crisscrossing of vectors may be caused by the low levels
of genetic differentiation among different Neolithic populations.
The Neolithic expansion and the following resurgence of hunter-
gatherer ancestry in populations in Iberia, Central Europe, and
Great Britain might have created a large geographic area of very
similar genetic ancestry (Fig. 2). Alternatively—or additionally—
the Atlantic sphere of influence connecting Western European
megalithic cultures (to be taken up later in the Bell Beaker
phenomenon and beyond) could have induced a high degree
of mobility in said region (38, 60, 61). More clearly interpretable
signals emerge later in the third millennium in Iberia with
the arrival of Steppe ancestry—well visible through mobility
vectors pointing to the far Northeast for individuals like I3239
(36). In the Iron Age and later, we observe some nonlocality
from the North, e.g., I8341 (36)—which could potentially be
connected to the spread of Central European, Celtic ancestry and
languages to the region (62)—and from the East, e.g. I8215 (36),
possibly through Greek and Roman influence. We note that the
relative lack of samples from Northern Africa masks potential
mobility that might have taken place between Europe and
Africa (63).

The final focal region studied here, Italy, comprises not only
the Italian Peninsula but also Sicily and Sardinia. These go
through partially independent developments not comprehen-
sively represented in the available data. Samples from the sixth
millennium are limited to Sicily as well as Northern and Central
Italy. They fit well with what we know about the southern route
of the Neolithic Expansion with ancestry arriving from the East
(34). Indeed, the ancestry vectors of Early Neolithic samples
like R2 (34) point directly to western Anatolia. A few 100 y
later, the Neolithic ancestry profile is distributed across large
parts of Europe, and our derived mobility proxy reflects less a
point of origin for the respective Neolithic samples, but rather
their entanglement in the preceding cross-European mobility
phenomenon. We assume this to be the reason for the moderately
strong mobility signal we measure from the fifth to the middle
of the fourth millennium, e.g., LON003 (64), arising despite
almost all our input data are from Sardinia, where others have
observed genetic continuity until the first millennium BC (64).
In the third millennium, Steppe ancestry arrived on the Italian
peninsula, heralding multiple long-distance mobility signals: The
affected Sicilian and mainland individuals show affinity to the
North and East—most notably I11443 (65) from Sicily, which
was reported to have the highest amount of Steppe ancestry in ref.
65. Note the Chalcolithic sample I15940 (65) from Sardinia with
their eastern mobility signal. Fernandes et al. (2020) identified
them as an outlier with “significant affinity to Levantine and
North African Neolithic individuals.” The second millennium
in our Italy time series is almost exclusively covered by samples
from Sardinia and Sicily, with a low mobility proxy signaling
genetic isolation. During the Iron Age, Sardinia and the Italian
mainland become once more part of an exuberant Mediterranean
mobility network, as shown, for example, by VIL011 from
a Carthaginian/Phoenician–Punic context (64) or R850 (34),
which Antonio et al. could model as a “mixture between local
people and an ancient Near Eastern population [...].” We finally
observe the most extreme signals of nonlocality in Italy during
the height of the Roman empire, in the first centuries AD, where
a unique pattern of East–West mobility emerges, consistent with

a strong Near Eastern influx into the city of Rome, visible, e.g.,
with individuals like R67 (34).

Discussion

Our method to estimate human mobility from genetic data is
based on a simple key principle: Changes in genetic profiles are
informative about population movements. This key principle is
not new but, in fact, the core assumption behind archaeoge-
netic studies reconstructing mobility and migration in Western
Eurasia, most notably movements associated with the Neolithic
expansion (e.g., refs. 26, 27, 39, 47, 48, 50, 57, 66 and 67) and
the arrival of Steppe ancestry (e.g., refs. 9, 29, 42, 43, 51, 52, 65
and 68). In our algorithm, we have used this basic principle to
derive mobility at an individual level, by interpreting human
genetic profiles as quantitative proxies for a biogeographic field.
This perspective unlocks a spatiotemporal, probabilistic similarity
search for genetic ancestry, which we consider a valuable tool to
understand an individual’s mobility history. It also forms the
basis to quantify individual-wise mobility on a large scale to
derive diachronic, regional summary statistics.

A first conceptual challenge for this methodology emerges
from the fact that the genetic–spatial mapping changes through
time, due to human movement, the very subject of this study.
There can never be a perfect representation of a biogeographic
ancestry field since genetic ancestry is not tied to geographic
space but to the highly mobile individuals living within it. In
our method, we have tried to approximate past ancestry using
Gaussian process regression, which erects a slowly changing field,
effectively smoothing out the rapid changes brought about by
individual humans’ agency. Beyond said conceptual issue, this
directly links to the practical concern of severe sparsity in the
archaeogenetic record informing the interpolated field. Thanks
to the fully probabilistic nature of our ancestry similarity search,
missingness-induced uncertainty is handed down from the inter-
polation to the similarity probability surfaces. They will generally
show lower values for badly covered areas. This empowers the
algorithm to be used with highly unevenly sampled datasets,
which is inevitably the case for the human archaeogenetic
record.

Of course, though, this does not solve cases of entirely missing
ancestry profiles (e.g., Northern Africa), which simply can not
be accurately represented and considered, as long as key samples
are nonexistent. It also does not accurately capture situations
of multiple coexisting ancestries living in close proximity in
space and time. Interpolation will in such cases create an average
ancestry profile which may not be meaningful and cause the
incorrect assignment of similarity probabilities. We have shown
the example of individual N22, who carries a genetic hunter-
gatherer profile at a point in space and time, when other
individuals in its vicinity feature an Anatolian farmer profile
(A similar case is individual I2534, SI Appendix, Text 5). In
this case, we can assume a cultural admixture barrier, which the
interpolation cannot correctly resolve.

Despite these limitations and the possibility that the condens-
ing of sample-wise similarity probability surfaces into simple vec-
tors could amplify the effect of inconclusive spatial assignment,
our large-scale mobility estimation results generally fit the pub-
lished state of research. The Neolithic demographic expansion,
the Steppe migration, and a number of smaller ancestry relocation
events show clearly visible signals for most of our study regions.
The simulation experiment in SI Appendix, Text 4 also gives us
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some confidence that the similarity search algorithm is capable
of producing accurate results even for small genetic differences as
long as these differences maintain spatial stability for a sufficient
amount of time. This holds true even for donor and receptor
populations in close spatial proximity.

We therefore expect the mobility estimation to perform well
in picking up outlier individuals who moved over a long distance
in a short amount of time. We are reasonably certain that major
turnover events with significant shifts in the MDS or PCA for
a given point in space will be reliably detected. But the smaller
the scope of a mobility event and the longer the duration of
the process, the more diffuse and unclear the respective signal
gets. We also observed a center–periphery effect in the mobility
curves, with generally higher values for geographically peripheral
regions like Britain and Ireland, Iberia or Italy, compared to
more central ones like Central or Southeastern Europe. While
this might be a real signal to some degree, it may also be an
outcome of imprecise assignments of maximum similarity points,
which happen to point to the geographic center rather than the
outskirts.

To improve the results obtained in this paper, several
important directions may be taken. Future research will probably
be in a position to include more data as the sampling gaps in
available ancient DNA data are quickly filled. This will make
large-scale meta-analysis more and more feasible and will allow for
increased postdiction model resolution. Beyond that, developing
more sophisticated spatiotemporal interpolation models will be a
core challenge. We are convinced that Gaussian process regression
is a very powerful method, but other approaches may allow for
more heterogeneous covariance settings dependent on the data
density in space and time or even involve full-scale machine-
learning (69). Concerning the derived mobility estimation
method (consisting in our case of maximum-likelihood mobility
vectors), entirely different algorithms may be conceived to get a
more robust and precise measure compared to the one we present
here. It may also be possible to quantify nongenomic information
and assign priors from artifact refitting (70), isotope analysis
(71), or least-cost-path analysis (72). We see great potential in
codifying linguistic, historical, or archaeological data to derive
alternative, large-scale measures of human mobility (73, 74).
Shifts in local ancestry can, after all, not only be the outcome
of the often-cited deliberate “mass migration” but potentially
also of bottlenecks (75), forced migration (76), or sociocultural
phenomena, which require combining interdisciplinary lines of
evidence.

Materials and Methods

Dataset. SI Appendix, Datasets S1, S2, and S3 summarize the input and output
dataset for this paper, including the mean similarity search output statistics.
SI Appendix, Meta Information for the Datasets S1, S2, and S3 for a description
of the meaning of each variable/column. The raw input data were compiled
from the Allen Ancient DNA Resource (AADR) V50.0 (released on 2021-10-10)
(22) and modified with convertf (77) and software tools from the genotype
data management system Poseidon (https://github.com/poseidon-framework).
SI Appendix, Bibliography: AADR Dataset for a list of papers providing the
individual samples. We included only ancient DNA samples and removed
samples without spatial or temporal position information as well as samples
outside of the defined research area (Fig. 1) and time window (median age
within 8000calBC–2000calAD).

The dataset includes both samples whose DNA libraries have undergone
in-solution enrichment capture as well as samples who have been sequenced
evenly across the entire genome using the so-called shotgun approach. Each

sample covers an individual subset of the 1240K SNP array (23). For quality
filtering, we kept only samples with 25,000 or more recovered autosomal
SNPs on this array, determinable molecular sex and—for male individuals—an
X-chromosome contamination value determined with ANGSD (78) <0.1. We
also excluded samples that were explicitly marked as contaminated by the
respective authors or assessed negatively in the AADR. In a final data-filtering
step, we calculated pairwise distances (1 - proportion of alleles identical by state)
among all samples and kept only the best preserved one from pairs/groups with
distance values<0.245, to remove closely related individuals or samples from
the same individual. SI Appendix, Text 1 for more details on the SNP selection
process.

All radiocarbon dates in the archaeological context data were recalibrated
with the R package Bchron (79) (intercept calibration with IntCal20). Multiple
radiocarbon dates for one sample were merged with sum calibration.

Multidimensional Scaling. Multidimensional scaling is a dimensionality
reduction method that can be applied to genetic data to derive positions in a
genetic–distance space for individual samples. Before running it on our dataset
with plink --mdsplot v.1.9 (80), we removed SNPs in previously
identified regions of high linkage disequilibrium within the 1240K SNP panel
range according to Price et al. and Anderson et al. (81, 82).SI Appendix, Text 1 for
other dimension reduction methods we explored (PCA, Projection PCA, EMU).

Gaussian Process Regression. Gaussian process regression is an interpolation
method for n-dimensional space. The term Gaussian process means that a set of
observations is modeled as the outcome of a multivariate normal distribution.
The method allows making predictions for a dependent variable based on the
position in independent variable space (83). It is a long-established method of
geostatistics, where it is known as kriging (84). Here, we treat the position in
spatial space (coordinates projected to EPSG:3035) and temporal space as three
independent variables that are used to predict the dependent position on each
of two (or more) MDS (or PCA) result dimensions.

A crucial step in the application of Gaussian process regression is the selection
of a sensible covariance function (kernel) that effectively describes the degree
and range of long-distance effect the model assumes for individual observations.
We followed the default choice for an anisotropic Gaussian kernel implemented
in the R package laGP v.1.5-7 (85). laGP provides comparatively fast and accurate
local approximate Gaussian process modeling (86). The default laGP kernel has
the form

Cov(x, x′) = τ 2

exp

− p∑
k=1

(xk − x′k)
2

θk

 + ηδ(x − x′)

 ,

with (xk − x′k) as the distance between all observations x, x′ in the different
dimensions k and the kernel size scaling factor θk for each dimension. η is the
so-called nugget term to account for different observations of the dependent
variable at the same position in independent variable space. The values of
θk (spatial and temporal) and η have to be fixed, which is the second
important decision necessary to define the covariance matrix. We applied
multipleapproaches(variogramanalysis,maximumlikelihoodestimation,cross-
validation) to estimate these parameters. SI Appendix, Text 2 for more details.

Similarity Search and Mobility Estimation Algorithm. Our probabilistic
similarity search algorithm determines the likelihood to observe a sample’s
MDS (or PCA) coordinates at a certain point in space and time and we apply
it to compute the relative spatial distribution of similarity probabilities in a
given timeslice. SI Appendix, Text 3 for a detailed explanation. This works in
principle as demonstrated by the toy simulation in SI Appendix, Text 4. The
algorithm for the large-scale mobility estimation constructed from individual-
wise similarity searches is explained in detail in SI Appendix, Text 3.3. The effect
of alternative multivariate dimension reduction methods and different settings
for the retrospection distance on the mobility estimation is shown inSIAppendix,
Text 5.

8 of 10 https://doi.org/10.1073/pnas.2218375120 pnas.org

https://www.pnas.org/lookup/doi/10.1073/pnas.2218375120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2218375120#supplementary-materials
https://github.com/poseidon-framework
https://www.pnas.org/lookup/doi/10.1073/pnas.2218375120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2218375120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2218375120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2218375120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2218375120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2218375120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2218375120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2218375120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2218375120#supplementary-materials


Data, Materials, and Software Availability. The code for this paper is avail-
able in a repository here: http://dx.doi.org/10.17605/OSF.IO/6UWM5. From
that, we outsourced the main similarity search and mobility estimation workflow
into an R package available here: https://github.com/nevrome/mobest. All data
analysis and plotting was done in R (87) with the following packages: checkmate
(88), cowplot (89), fractional (90), future (91), ggh4x (92), ggnewscale (93),
ggpubr (94), ggrepel (95), ggridges (96), igraph (97), khroma (98), latex2exp
(99), lemon (100), progress (101), rnaturalearth (102), sf (103), smartsnp
(104), viridis (105), and, finally, the tidyverse and the many packages within
it ref. 106. Previously published data were used for this work (Allen Ancient
DNA Resource https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-
downloadable-genotypes-present-day-and-ancient-dna-data, version 50.0).
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