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Significance

The absence of a quantitative 
monitoring method that can 
assess the health status of vocal 
folds increases the potential risk 
of incurring a vocal disorder. 
A closed-loop network system 
that combines a skin-interfaced 
wireless sensor technology and a 
haptic feedback module enables 
continuous monitoring of vocal 
fold activities related to vocal 
fatigue. Data analysis using 
real-time machine learning 
techniques separates and 
quantifies vocal dosimetry 
associated with speaking and 
singing, without confounding 
artifacts from ambient sounds, 
along with a breadth of 
information on cardiac and 
respiratory activities and overall 
physical exertion. This technology 
approach can help to guide 
healthy behaviors in vocal usage 
across a range of affected 
populations, from singers and 
teachers to coaches and 
telemarketers.
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Vocal fatigue is a measurable form of performance fatigue resulting from overuse of the 
voice and is characterized by negative vocal adaptation. Vocal dose refers to cumulative 
exposure of the vocal fold tissue to vibration. Professionals with high vocal demands, 
such as singers and teachers, are especially prone to vocal fatigue. Failure to adjust habits 
can lead to compensatory lapses in vocal technique and an increased risk of vocal fold 
injury. Quantifying and recording vocal dose to inform individuals about potential 
overuse is an important step toward mitigating vocal fatigue. Previous work establishes 
vocal dosimetry methods, that is, processes to quantify vocal fold vibration dose but 
with bulky, wired devices that are not amenable to continuous use during natural daily 
activities; these previously reported systems also provide limited mechanisms for real-
time user feedback. This study introduces a soft, wireless, skin-conformal technology 
that gently mounts on the upper chest to capture vibratory responses associated with 
vocalization in a manner that is immune to ambient noises. Pairing with a separate, 
wirelessly linked device supports haptic feedback to the user based on quantitative 
thresholds in vocal usage. A machine learning-based approach enables precise vocal 
dosimetry from the recorded data, to support personalized, real-time quantitation and 
feedback. These systems have strong potential to guide healthy behaviors in vocal use.

closed-loop network | quantifying vocal fatigue | wearable electronics | haptic feedback |  
real-time machine learning

One in 13 adults experiences a voice problem each year in the United States, at an esti-
mated cost of nearly 13 billion United States dollars and considerable negative effects on 
quality of life and mental well-being (1–3). A common complaint is vocal fatigue, a 
measurable form of performance fatigue resulting from high vocal demands and vocal 
dose (4). Vocal dose refers to cumulative exposure of the vocal fold tissue to vibration (5). 
Professionals such as singers and teachers who have high vocal demands are especially 
prone to heavy vocal loads and voice disorders (6). Singers depend on a high level of 
consistent vocal quality and sustainability for training and performing, while their voices 
are also ingrained in daily communication and social activities. Many are unaware of how 
much or how intensely they are using their voices, putting them at an elevated risk of 
vocal fatigue and injury. Because vocal performance majors in university and college 
programs, young professionals, and avocational singers are not always attuned to their 
daily vocal workload, external monitoring that provides accurate data on their vocal effort 
in quasi-real time can provide a critical tracking mechanism. The ability to view quanti-
tative data and to receive alerts on vocal usage during varied vocal tasks forms the basis 
of establishing connections between behaviors and resulting levels of vocal fatigue, thus 
mitigating the risk of fatigue and vocal fold injury.

Students training to become professional singers in the field of classical music as well as 
contemporary popular music face great challenges in balancing the demands placed on 
their voices. Participants who rate themselves as highly talkative are more likely to experience 
mucosal lesions associated with vibratory trauma (7). Enthusiastic singers may fail to plan 
for days when rehearsals/performances are scheduled one after the other. Failure to modify 
habits on heavily scheduled days can lead to compensatory lapses in vocal technique and 
an increased risk of vocal fold injury, especially if complicated by factors such as upper- 
respiratory illness, allergies, dehydration, premenstrual syndrome, or reflux disease (8).

The absence of a feasible monitoring method that can assess the condition of vocal folds 
quantitatively and can continuously inform the user on the potential for overuse of the 
voice immediately increases the potential risk of incurring a vocal disorder (9). Hence, 
quantifying and monitoring ambulatory vocal dose to alert individuals in real time about 
potential overuse is an essential step toward mitigating vocal fatigue. Previous studies 
establish vocal dosimetry methods, that is, processes to calculate vocal fold vibration dose 
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(10). Such methods in ambulatory voice monitoring and vocal 
dosimetry studies typically utilize devices that are bulky and 
require wired interfaces that are poorly suited to continuous mon-
itoring during daily activities. Also, existing methods for postsignal 
processing often result in delays in notification that limit the user’s 
ability to appropriately modify behaviors (11, 12). A small, light-
weight, wireless monitor capable of quantifying vocal dose in any 
setting and of informing the user of their vocal load status in real 
time would enable singers and others to adjust behaviors and 
mitigate risk.

Previous efforts to quantify vocal effort validate the use of an 
external monitor to measure vocal fold tissue exposure to vibration 
over time. One study concluded that singers who wore an ambu-
latory voice monitor had a heightened awareness of voice use 
during intensive performance situations and were successful in 
maintaining their vocal health (13). Toles et al. reported the use 
of ambulatory voice monitors to obtain data surrounding the vocal 
use of forty-two singers with known phonotrauma (14). Earlier, 
Gaskill, Cowgill, and Many exploited related monitors to gather 
5 d of data from students in their first 2 y of study in vocal per-
formance, music education, and music theater (15). These and 
other devices require external hardware that is both cumbersome 
and susceptible to entanglement, to disruptions in data collection, 
and to artifacts from motion and ambient sounds. In general, these 
systems are also unable to provide rapid, continuous feedback to 
the users on cumulative and instantaneous vocal load.

This paper introduces an autonomous closed-loop device and 
data analytics approach that combines a soft, skin-interfaced wire-
less mechanoacoustic (MA) sensor and a separate haptic feedback 
actuator, paired with a real-time machine learning algorithm that 
operates through a graphical user interface on a smartphone. When 
mounted at a comfortable location on the upper chest, below the 
suprasternal notch (SN) (16), the measured signals correspond to 
broadband accelerations at the surface of the skin, from quasistatic 
to 3.3 kHz, associated with processes that range from body 
motions to cardiopulmonary activity (heart rate and respiratory 
rate) to high-frequency vibrations due to speaking and singing. A 
simple magnetic coupling scheme allows repeated application and 
removal of the devices from a fixed region of the skin without 
irritation over a timeframe of many days. Field data collected from 
professional singers (N = 16) with different vocal ranges serve as 
the basis for training and optimizing a computationally efficient 
machine learning algorithm that can operate in real time on a 
smartphone to classify singing and speaking events with >90% 
accuracy, and to quantify instantaneous and cumulative vocal dose. 
The results appear on a graphical user interface, with additional 
feedback to the user through a separate wireless device that includes 
vibrohaptic actuators.

Results

System Design and Closed-Loop Operation. Fig. 1A schematically 
illustrates the platform and its use in monitoring vocal load in a 
singer. A machine learning algorithm operating on a smartphone 
distinguishes between singing and speaking events from time series 
data collected by an MA device on the upper chest, and then 
quantifies vocal dose, all in real time. A graphical user interface 
presents the results to the user and a wirelessly paired vibrohaptic 
device provides user alerts when the cumulative vocal dose exceeds 
a predetermined personalized threshold (PThVD). In addition to 
metrics of vocal activity (such as intensity, pitch, and cumulative 
dose), the data also include information on cardiac (heart rate) 
and pulmonary (respiratory rate) activities (SI Appendix, Fig. S1). 
Representative data presented as a spectrogram recorded from a 

professional singer (soprano) appear in Fig. 1B. Haptic feedback 
can be activated upon detection not only of vocal dose above a 
threshold but also upon alternative triggering events associated 
with intensity, pitch, or other parameters (Fig. 2A). Fig. 2B shows 
the key components of the MA device including soft encapsulating 
layers and skin adhesives. The electrical components consist of a 
Bluetooth Low Energy system on a chip (SoC), flash memory, 
power-managing units, wireless charging interfaces, a lithium-
polymer battery, and an inertial measurement unit that provides 
accelerometry data along the three axes. A silicone elastomer 
(Silbione 4420) forms the encapsulating structure. The bottom 
layer includes a collection of seven small magnets (neodymium 
magnets; 3 mm diameter, 0.5 mm thickness) that attach to a skin 
adhesive with a matching set of magnets built into a microfabric 
layer (Fig. 2C and SI Appendix, Fig. S2).

Magnetic Mounting Strategy. The most accurate measurements 
follow from calibrated signals recorded from a specific mounting 
location. The magnetic coupling scheme introduced here 
minimizes skin irritation that might otherwise result from repeated 
application and removal of a device from this single location using 
a conventional adhesive. Specifically, magnets in the adhesive pair 
with those integrated into the encapsulating structure of the MA 
sensor to automatically align and mechanically couple the device 
to the body. In this way, the user can remove and apply the device 
to precisely the same location, without disturbing the adhesion 
at the surface of the skin. Fig. 2D demonstrates use of the device 
and magnetic adhesive on the upper chest. Spectrogram analysis 
of data from trials confirms that this scheme yields results with 
similar information content to those collected with a traditional 
skin adhesive approach (SI Appendix, Fig. S3). Descriptions in the 
Methods section provide details.

Haptic Feedback. Information can be presented to the user in 
the form of graphical display and/or haptic feedback, via use of a 
smartphone and/or a vibrohaptic device, respectively. As shown in 
Fig. 2E, the latter consists of a wrist-mounted system that includes 
a Bluetooth 5.1 low-energy SoC for wireless communication 
(CC2640, Texas Instruments), a microcontroller (ATMega328P, 
Microchip Technology) to control each haptic actuator through 
pulse width modulation, and SoCs for wireless near-field 
communication charging. Four brush-type eccentric rotating 
actuators in a linear arrangement with a spacing (42 mm) slightly 
above the two-point discrimination threshold at the wrist (40 mm) 
provide vibrohaptic feedback with a force controlled over 45 levels 
by pulse width modulation and with a response time of less than 
50 ms. The encapsulated device is shown in the upper image in 
Fig. 2F. Each actuator and the main flexible PCB body interface 
through serpentine interconnections to enhance the flexibility 
and stretchability of the system, thereby enhancing wearability 
at the wrist. The haptic feedback occurs in four different patterns 
depending on the vocal and cardiopulmonary status. The LED 
indicators provide a visual indication of these patterns, as shown 
in the images in Fig. 2F. Snap buttons secure the device onto the 
wrist (Fig. 2G).

Convolutional Neural Network Model for Vocal Dose Calculation. 
Fig.  3A illustrates the signal processing flow for vocal usage 
analysis. The algorithm segments the z-axis acceleration data 
into nonoverlapping windows with widths of 1 s and labels a 
window as a voiced frame if the first nonzero-lag peak in the 
normalized autocorrelation exceeds a threshold of 0.6 (12). A 
Convolutional neural network (CNN) model evaluates all voice 
frames and classifies them as either singing or speaking. A median 
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filter smooths noise in the classification results. Across sliding 
windows with widths of 0.1 s, the algorithm computes the energy 
dose (10), fundamental frequency (f0, reciprocal of the time lag 
of the first nonzero-lag peak), the difference between the first and 
second harmonic magnitudes (H1-H2) (12), and cepstral peak 
prominence (CPP) (17) of each 0.1-s window. Visualization of the 
analysis results involves plotting the mean and/or sum of singing/
speaking time and energy dose in bins with durations of 5 min 
and plotting the mean of (H1-H2) and CPP in 1-min bins for 
singing and speaking, respectively.

Fig. 3 B and C show representative time-series data and spec-
trograms of singing and speaking, respectively. Signals associated 
with singing exhibit better periodicity/resonance and more regular 
harmonic features than those with speaking (18, 19). Singing is 
typically more continuous in the time domain and covers a wider 
range of frequencies in the frequency domain than speaking. These 
differences motivate the use of the spectrograms for distinguishing 
singing and speaking. CNN, a widely used classification model 
for two-dimensional image-like features, is a good candidate for 
classifying singing and speaking in this context. The CNN takes 
as input the spectrogram (shape: 168 × 100) determined using a 
short-time Fourier transform and a Hanning window with a width 
of 0.1 s moving in time steps of 0.01 s. The CNN starts with three 
stages of convolutions with a kernel size of 3 × 3, Rectified Linear 

Unit (ReLU) activation and max pooling, followed by two layers 
of fully connected neural networks with ReLU activation and one 
dropout layer (P = 0.5). The final output of the CNN model has 
two neurons with Softmax activation, which correspond to the 
probabilities of the event as singing or speaking (Fig. 3D).

Training of the CNN model uses data collected from 15 profes-
sional classical singers (2 male basses, 4 male baritones, 2 male 
tenors, 4 female sopranos, 3 female mezzo-sopranos), each gener-
ating approximately 2,500 1-s windows of singing and 2,500 1-s 
windows of speaking. A common method to validate the general-
ization performance of a machine learning model relies on a leave-
one-out strategy, where one leaves a subject out of the training set 
(14 subjects for training) and then tests the trained model on this 
subject. Iterations apply this approach to each of the 15 subjects. 
Each training set consists of a random collection of 80% of the 
labeled events from the 14 subjects, thereby leaving the remaining 
20% for validation. The training uses an Adam optimization algo-
rithm. Fig. 3E shows the averaged confusion matrix of 15 leave-
one-out testing cycles. The model achieves accuracies of 0.96 ± 0.02 
for singing and 0.95 ± 0.03 for speaking. Fig. 3F shows the overall 
classification accuracies for each subject using a model trained on 
the other 14 subjects. The results are above 0.90 for all the 15 
subjects. Fig. 3G presents the receiver operating characteristic 
(ROC) curves for each subject. The high area under the curve 

Fig. 1. Wireless, soft, skin-interfaced platform designed for vocal fatigue monitoring with haptic feedback. (A) Simplified illustration of the platform operation. 
A MA sensor mounts on the upper chest, below the SN, for real-time data acquisition of signals related to vocal, cardiac, respiratory, and overall physical activities. 
A wrist band provides haptic feedback. The user interface supports signal analysis by machine learning to monitor vocal fatigue and to generate graphical and 
haptic forms of feedback to the user. (B) Representative data from continuous monitoring: MA signal, spectrogram, cumulative vocal energy dose, vocal intensity.
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(AUC) >0.97 for all subjects indicates that the model achieves a 
good balance between sensitivity and specificity. This CNN-based 
machine learning algorithm is well suited for analyzing data col-
lected during a typical day, where the results guide singers to manage 
vocal fatigue by providing detailed personalized daily vocal usage 
and health analysis reports.

Real-Time Machine Learning for Vocal Fatigue Assessment. Along 
with these daily reports determined using CNN-based machine 
learning, capabilities for real-time vocal fatigue monitoring can be 
valuable. The approach described here uses the k-nearest neighbors 
(KNN)-based image classification machine learning processing 
scheme to reduce the computation load. The result enables real-
time classification of vocal usage and vocal energy dose, along 
with vital signs, using processing capabilities available on mobile 
devices. The process involves dividing each 1-s window of data 
into a voiceless frame and a voiced frame using an autocorrelation 
process. Additional computations yield spectrogram images of 
the voiced frames, for display in real-time. These images can be 
classified into singing and speaking with an accuracy of 91% 
through the KNN-based image machine learning model of the 

Core machine learning tool. Calculating the energy dose for each 
1-s window of data enables real-time monitoring of vocal fatigue. 
Fig. 4A shows the graphical user interface for spectrograms and 
cumulative energy dose for singing and speaking. The respiratory 
rate and heart rate follow from application of a low-pass filter with 
0.9 Hz cutoff frequency and a band-pass filter between 10 Hz 
and 40 Hz followed by application of peak finding algorithms, 
respectively.

Whenever the user feels discomfort in the vocal folds during 
daily monitoring, the cumulative energy dose and energy dose 
intensity data at that time are separately recorded by pressing the 
button on the real-time monitoring graphical user interface app. 
These values serve as personalized thresholds.

The vibrohaptic device provides real-time feedback based on 
vocal monitoring results and these personalized thresholds. As 
shown in Fig. 4 B and C, the cumulative energy dose and vocal 
intensity of singing and speaking activities while monitoring sing-
ers during a 30-min rehearsal period appear in real time. Upon 
exceeding corresponding thresholds, the vibrohaptic device pro-
duces patterns of feedback as shown in Fig. 4D. Specifically, when 
the cumulative energy dose exceeds its threshold, the actuators 

Fig. 2. Functional flowcharts, images, and haptic feedback mechanisms for real-time vocal fatigue detection. (A) Block diagram for signal analysis and haptic 
feedback for energy dose, vocal intensity, vocal pitch, and heart rate. (B) Exploded-view illustration of the MA device. (C) Top/Bottom views of an MA device, skin 
adhesives that support magnetic coupling, and a picture of a device mounted on a subject. (D) Mechanism for mechanical coupling of the device to the body 
via a collection of small magnets embedded in the bottom encapsulation structure of the MA device and the skin adhesive. (E) Exploded-view illustration of the 
haptic device. (F) Bottom views of a haptic device with indicator light-emitting diodes and actuators. (G) Picture of a haptic device on the wrist.
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above and below the wrist sequentially vibrate at intervals of 500 
ms, as shown in the left vibration detection graph and optical 
image in Fig. 4D. In parallel, the system tracks heart rate and 
respiratory rate as shown in Fig. 4 E and F. This information has 
the potential to enhance breath control training for for singers 
who must engage in acting, dancing, or other forms of physical 
exertion during a performance.

Field Study. These studies explore four different data collection 
protocols. The first focuses on training a machine learning 
algorithm to distinguish singing from speaking. The second 
demonstrates the functionality of the real-time interface with 
multiple sensors in a rehearsal setting. The third aims to confirm 
that the calculated vocal dose corresponded with users’ perceived 
effort. The fourth seeks to align sensor data with self-reported 
tasks. Data for distinguishing between singing and speaking 
follow from sixteen singers wearing MA sensors on the upper 

chest while singing six different vocal exercises across their personal 
full vocal range. These exercises include hums, glides, legato scales, 
arpeggios, staccato scales, and monotones with varied dynamics, 
along with singing a song of their choice for 4 min and reading 
from a book for 10 min. These data serve as the basis for training 
the machine learning algorithm (SI Appendix, Supporting text and 
Figs. S9 and S11).

Devices used in a choir rehearsal setting demonstrate the capac-
ity to capture data from an individual singer without influence 
from vocalization by other singers. The studies involve four singers 
(one soprano, one alto, one tenor, and one bass) during a rehearsal, 
with devices paired with smartphones or tablets for real-time 
dosimetry calculations, as shown in Fig. 5 A and C and Movie S1. 
In addition to vocal energy dose, the measurements also capture 
quantitative trends of heart rates (HR) and respiratory rates (RR). 
Collectively, these factors are relevant as indirect assessments of 
lung pressure and of overall body fatigue level. Processing the raw 

Fig. 3. Algorithms for singing and speaking analysis and representative results. (A) Flowchart of the algorithm for singing/speaking classification and computation 
of vocal measures (energy dose, fundamental frequency, H1-H2, CPP). (B) Representative raw data and spectrograms associated with singing. (C) Representative 
raw data and spectrograms associated with speaking. (D) Architecture of the convolutional neural network for singing/speaking classification with the spectrogram 
as the input. (E) Confusion matrix of singing/speaking classification by the CNN model. (F) Overall classification accuracy using a leave-one-out strategy iterated 
through all the 15 singers. (G) ROC curves of the classification performance on all 15 singers and the corresponding AUC values.
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data yields cumulative vocal energy dose and time for each singer, 
including classifications of singing and speaking. Fig. 5 D and G 
summarizes the cumulative singing/speaking energy dose values 
and times, along with the HR and RR for each singer. Unlike 
microphone recordings, these data are not affected by ambient 
sounds from other singers or sources.

Long-Term Monitoring of Vocal Use. These technologies are 
effective for long-term vocal monitoring because they can be used 
almost anytime and anywhere, with minimal burden. Fig. 6 A–C 
shows results of analysis of a representative day of recordings from 

a singer, aligned with a manual log of vocal activity. The algorithm 
accurately discerns singing (e.g., vocalizing and choir rehearsal) 
and speaking (e.g., phone call, chatting) events. Listening to 
the MA data after conversion into audio forms further confirms 
the accuracy and reveals that alternations between singing and 
speaking occur from unlogged, intermittent speaking/singing 
during singing/speaking. This process also identifies laughing 
events, which are not yet incorporated into the model. Fig. 6 B 
and C shows the singing/speaking times color coded by mean 
energy dose and cumulative energy dose for singing and speaking, 
respectively. Fig. 6 D and F summarizes the results of vocal usage 

Fig.  4. Real-time vocal fatigue detection and haptic feedback. (A) The graphical user interface displays spectrograms, energy dose levels for singing and 
speaking, and respiratory rate and heart rate, all in real time. (B) MA data collected during a 30-min singing rehearsal. (C) Cumulative energy dose (upper 
graph) and energy dose intensity (under graph) associated with singing and speaking during a 30-min rehearsal. The blue dashed line of the upper graph is the 
personalized threshold of cumulative energy dose (PThVD). The blue dashed line of the lower graph is the personalized threshold of energy dose intensity (PThi). 
The red shaded region identifies the moment of haptic feedback. (D) Accelerations generated by haptic vibration pattern 1 and pattern 2 activated when the 
cumulative energy dose and energy dose intensity exceed the corresponding personalized thresholds, respectively. The photographs show the haptic vibration 
of the device via red LED indicators. (E) Calculated respiratory rate determined from raw data after band-pass filtering. (F) Calculated heart rate determined 
from raw data after band-pass filtering.
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monitoring for 5 d from four singers. Fig.  6F indicates that, 
compared to singers 1 and 2, singers 3 and 4 exhibit a relatively 
high dose associated with speaking, consistent with the lecturing 
activities of these two singers. These examples illustrate the value 
in continuously tracking the cumulative energy dose values and 
times for both singing and speaking, separately.

Discussion

The closed-loop, body-worn network reported here presents a class 
of skin-interfaced wireless technology that allows quantitative and 
continuous monitoring of vocal fold use with capabilities in both 
graphical and haptic feedback. The system provides information 
that can help guide healthy behaviors in singing and speaking. 
The sensing mechanism relies on vibratory responses digitally 

recorded at a given location on the upper chest with a soft, wireless 
device, to enable accurate voice dosimetry in a comfortable manner 
without confounding artifacts from ambient sounds. The data, 
when analyzed with machine learning approaches, yield detailed 
information on instantaneous and cumulative vocal load, along 
with a breadth of information on cardiac and respiratory activities, 
body orientation, and overall physical exertion. Operation is pos-
sible over extended periods from a single location on the skin 
enabled by a magnetic coupling scheme, with features that address 
practical use considerations, including those associated with 
rehearsal settings and workplace environments. Demonstrations 
in tracking of a vocal usage and cardiac activity of singers for 5 d 
illustrate the potential for persistent vocal management. While 
the current study demonstrates the feasibility of real-time moni-
toring and feedback notification for vocal fatigue status associated 

Fig. 5. Data collected from four singers in an acapella group simultaneously measure vocal energy dose, heart rate, and respiratory rate. (A) Real-time simultaneous 
data acquisition from four singers wearing MA devices. (B) Pictures of the user interface for devices for each of the singers. (C) Representative spectrograms from 
each singer: base (singer 1), countertenor (singers 2 and 3), soprano (Singer 4). Simultaneous measurements of (D) cumulative singing energy dose, cumulative 
singing time, (E) cumulative speaking energy dose, cumulative speaking time, (F) heart rate, and (G) respiratory rate for each singer.
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with singers, these technology platforms can apply also those in 
other professions that rely heavily on the voice, from teachers and 
coaches, to telemarketers and salespeople.

Materials and Methods

Forming Magnetic Coupling Structures in the Device Encapsulation. 
A  laser-cutting process defined a template on a glass slide. Spin coating and 
curing a layer of silicone, placing a thin layer of fabric on top, and spin coating 
and curing an overcoat of silicone yielded a bottom encapsulation structure with 
a collection of relief features in the circular geometries of the magnets. Peeling 

this structure from the glass slide, placing magnets in these features, and then 
executing the other steps in the encapsulation process according to procedures 
described elsewhere, completed the device. SI Appendix, Fig. S4 depicts glass 
substrate with the template, silicone, and magnets.

Comparing Adhesives and Magnetic Coupling Schemes. Tests of peel force 
and skin comfort provided a basis for comparing multiple adhesives shown in 
SI Appendix, Figs. S5 and S6. The adhesive found to be most comfortable out of 
those tested was a combination of a breathable fabric-based kinesiology tape 
(Food and Drug Administration approved and medical grade) for the skin-side 
interface, coupled with a strong adhesive (soft silicone tape) for the device-side 
interface (#2 in SI Appendix, Fig. S5), with magnets embedded in geometries to 

Fig. 6. Tracking of long-term vocal use in the form of daily cumulative singing/speaking energy dose and time. (A) Representative 1-d recording of a singer aligned 
with the singer’s log and singing/speaking classification by the CNN model. (B) Singing time per minute and corresponding cumulative energy dose throughout 
the day. (C) Speaking time per minute and corresponding cumulative energy dose throughout the day. (D) Long-term singing and speaking measurements over 
5 d. Variation of vocal energy dose from the singer while practicing for a rehearsal over a period of 5 d. The first set was measured from 11 a.m. to 11 p.m. on 
the first day. The second set was measured from 10 a.m. to 10 p.m. on the second day. The third set was measured from 10 a.m. to 9 p.m. on the third day. The 
fourth set was measured from 9 a.m. to 7 p.m. on the seventh day, and the fifth set was measured from 11 a.m. to 7 p.m. on the eighth day. The red line shows 
the cumulative vocal energy dose. (E) Daily cumulative singing energy dose monitoring and (F) cumulative speaking energy dose monitoring for 5 d of four singers.

http://www.pnas.org/lookup/doi/10.1073/pnas.2219394120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2219394120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2219394120#supplementary-materials
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match those in the bottom side of the device encapsulation. Tests of devices with 
a magnetic adhesive design and a medical silicone tape enabled comparisons of 
the quality of the corresponding data captured with participants sitting, standing, 
and walking for thirty seconds each. SI Appendix, Fig. S3 shows data from a sitting 
segment of trials with each adhesive. The results indicate comparable information 
content. SI Appendix, Fig. S8 shows 3 min of speaking and 3 min of singing data. 
A CNN-based machine learning algorithm extracted the fundamental frequen-
cies as well as the total singing times and cumulative dose levels. As shown in 
SI Appendix, Fig. S8, the algorithm successfully distinguished between singing 
and speaking using data collected in all cases.

Calibrating the Mechano-Acoustic to Acoustic Power. Calibration of MA 
data to acoustic power enabled quantified measurements of vocal load. Data 
collected for this purpose involved an MA device mounted on the upper chest 
and a phone with a decibel meter app (Decibel X) placed 0.5 m away from the 
mouth. Synchronized recordings used the MA device and the decibel meter dur-
ing repetition of a specific word 10 times at a variety of volumes: soft whispering, 
moderate whispering, loud whispering, soft speaking, moderately soft speaking, 
typical speaking, moderately loud speaking, loud speaking, moderate shouting, 
loud shouting, and extremely loud shouting. Representative data are shown in 
SI Appendix, Fig. S12. From left to right, the data segments correspond to the 
volumes listed above. The vocal dose algorithm used raw data collected from 
these calibration tests.

Convolutional Neural Network. The CNN starts with three stages in the fol-
lowing order: 32-channel 3 × 3 convolution, 2 × 1 Max pooling, 64-channel 
3 × 3 convolution, 2 × 2 Max pooling, 128-channel 3 × 3 convolution, 2 × 2 
Max pooling, global max pooling. The model subsequently consists of a fully 
connected neural network with 64 neurons at the input and a dropout layer 
(P = 0.5). At the final output are two neurons representing the probabilities of the 
two classes. All layers use the ReLU activation. The CNN uses an Adam optimizer 
for training. The training process follows a leave-one-out strategy, where one 
leaves a subject out of the training set (14 remaining subjects for training) and 
then tests the trained model on this subject. Each training set applies a fivefold 
crossvalidation procedure. This approach iterates through each of the 15 subjects. 
Comparisons of singing/speaking classification by the CNN model using the data 
collected at five different locations on the chest appear in SI Appendix, Figs. S13 
and S14. Although the signal amplitude depends on location, the CNN model 
can distinguish singing from speaking with >90% accuracy in all cases, based on 
spectrogram-based classification (SI Appendix, Fig. S14) as shown in SI Appendix, 
Fig. S13 (blue dots: singing, red dots: talking).

Data Analytics. All analyses used Python 3.0 with SciPy and TensorFlow pack-
ages. External call of PRAAT (cite: https://www.fon.hum.uva.nl/praat/) from the 
Python script fulfills the computation of CPP.

Distinguishing Singing from Speech. Sixteen singers, ranging in age from 
20 to 61 y, wore an MA device adhered to the sternum, just below the sternal 
notch. The participants sang six different vocal exercises through their full vocal 
range (hums, glides, legato scales, arpeggios, staccato scales, and monotones 
with varied dynamics) followed by a song of their choice for 4 min. The partici-
pants then read from the first chapter of the book Grit: The Power of Passion and 
Perseverance for 10 min (20). These samples served as the training set for the 
development of machine learning algorithms, capable of distinguishing singing 
from speaking with 91% accuracy.

Validation of Interference by Ambient Noise. Two types of control measure-
ments examined the interference from ambient noise. A qualitative test involved 

an MA device on the upper chest of a subject singing with different ranges of pitch 
in an ambient with loud music (Beethoven Symphony No. 9, 62 to 79 dBA range). 
SI Appendix, Figs. S15 and S17 demonstrate that the influence of ambient music 
is almost negligible. The data collected during (0 to 12 s) with the same ambient 
music showed clear features of cardiac activity and respiratory cycles. During 
singing (14 to 42 s), clear fundamental frequency and harmonic signals can be 
observed as shown in SI Appendix, Fig. S15. Converting the data to audio files 
confirmed the expected nature of the data (Audio S1). Additional experiments in 
SI Appendix, Figs. S16 and S17 allowed for quantitative comparisons. Specifically, 
the signal-to-noise ratios (SNRs) were 34.6 dB or more (51.4 dB, 34.6 dB, and 
35.1 dB at SN, SN–1″, and SN–2″, respectively) for data captured at three different 
locations including the SN, 1 inch below SN, and 2 inches below SN (SI Appendix, 
Fig. S17). The SNR was calculated based on the ratio of the speaking signal (mod-
erate speaking level) and the noise signal (ambient music). Ambient music at an 
amplitude of 60 dBA appears in the MA data as signals with amplitudes less than 
1/1,000th of that associated with whispering.

Known Tasks. To confirm the accuracy of the algorithm for determining vocal 
dose and effort, four singers (soprano, alto, tenor, and baritone) completed a set 
of between 10 and 11 tasks while recording with the MA device, each lasting for 
1 min with 1 min of rest in between. A handy video recorder (Q8, Zoom) for all 
participants simultaneously recorded acoustic audio samples. The tasks included 
normal speaking, speaking over 60 dB of ambient noise, whispered speaking, 
moderately loud singing (low to mid range), moderately loud singing (mid to 
high range), very loud singing (low to mid range), very loud singing (mid to high 
range), singing without vibrato (low to mid range), staccato arpeggios throughout 
the vocal range, and strained speaking. Each participant selected one excerpt to 
use for the low- to mid-range tasks and another piece to use for the mid- to high-
range tasks. For the speaking exercises, participants read from “Practicing Vocal 
Music Efficiently and Effectively: Applying ‘Deliberate Practice to a New Piece of 
Music’” by Ruth Rainero (21). The strained speaking task was completed only by 
the alto participant.

Protocols for Field Study. The studies were approved by the Institutional Review 
Boards of Northwestern University (STU00207900). During data collection, the 
device was mounted on the SN of singers. All singers consented to procedures 
and provided written consent form for images.

Data, Materials, and Software Availability. Data; code data have been 
deposited in [University of Idaho Resource Computing and Data Services Data 
Repository] (https://doi.org/10.11578/1908656; TBD).
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