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There are several hundred million protein sequences, but the relationships among
them are not fully available from existing homolog detection methods. There is an
essential need for an improved method to push homolog detection to lower levels
of sequence identity. The method used here relies on a language model to represent
proteins numerically in a matrix (an embedding) and uses discrete cosine transforms
to compress the data to extract the most essential part, significantly reducing the data
size. This PRotein Ortholog Search Tool (PROST) is significantly faster with linear
runtimes, and most importantly, computes the distances between pairs of protein
sequences to yield homologs at significantly lower levels of sequence identity than
previously. The extent of allosteric effects in proteins points out the importance of
global aspects of structure and sequence. PROST excels at global homology detection
but not at detecting local homologs. Results are validated by strong similarities between
the corresponding pairs of structures. The number of remote homologs detected
increased significantly and pushes the effective sequence matches more deeply into
the twilight zone. Human protein sequences presently having no assigned function
now find significant numbers of putative homologs for 93% of cases and structurally
verified assigned functions for 76.4% of these cases. The data compression enables
massive searches for homologs with short search times while yielding significant gains
in the numbers of remote homologs detected. The method is sufficiently efficient to
permit whole-genome/proteome comparisons. The PROST web server is accessible at
mesihk.github.io/prost.
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The revolution in genome sequencing has rapidly increased the volume of gene/protein
sequences. However, the relationships among sequences are incomplete but critical
to understanding function, evolution, and synthetic biology. Extracting meaningful
relationships from the vast amount of sequence data is an important challenge. Here,
significant progress is made with a method that relates protein sequences to one another
for large numbers of cases previously unknown. Finding similar sequences is usually
needed to understand any new sequence, and such homolog detection is one of the
most important and most frequently used kinds of computations throughout biology, as
evidenced by the heavy use of BLAST and its large number of citations.

Sequence Matching Is the Most Common Way Homologs Are Identified. Sequence
similarity searches usually begin with scoring pairs of sequences. These algorithms utilize
substitution scoring matrices to score all of the amino acid substitutions, usually based
on the similarity of each pair of matched amino acids in the alignment. There are two
types of sequence alignments: global alignments typified by the Needleman–Wunsch (1)
and local alignment (2). However, exact searches can be computationally expensive to
perform on a large scale because of their O(n2) time complexity. To speed up the search
times, successful heuristic methods were developed such as BLAST (3) and FASTA (4).
When sequence similarities between query and homolog proteins are high (>30%), these
methods usually perform in a completely satisfactory way. However, for so-called twilight
zone proteins having lower sequence identities in the range of 25 to 30%, these methods
can often fail to identify homologs (5–7). To remedy this, several variants of BLAST
have been proposed. Profile alignment methods use multiple sequence alignments to
generate a probabilistic model for the query protein. These profiles can then be used to
perform a search on the target database. These methods also can iteratively increase the
quality of the search by including into the query profile the hits that were newly found
and by repeating the search. Some examples of such methods are PSI-BLAST (8) and
CS-BLAST (9) tools. Another popular direction of research uses hidden Markov models
(HMM). These methods can also yield a probabilistic representation of protein families
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and perform alignments based on hidden Markov model (HMM)
representations. Tools such as PHMMER (10) or HHSEARCH
(11) are based on these HMM representations. Our recent
progress in sequence matching has explicitly incorporated generic
structural information to improve the sequence matching for
improved agreement between the sequence and structure matches
(12). But, none of these methods are able to consistently identify
remote homologs in the 20 to 25% sequence identity range.

Structures Are More Conserved than Sequences. Despite the
heavy use of sequence matching by biologists, protein homolog
detection is far from being solved. The fact that protein structures
are more conserved than sequences makes this a difficult problem.
An ancestral reconstruction showed that structures have been
preserved for over 4 billion years (13), but those sequences over
such a long time are highly variable. Accordingly, sequence
matching alone may not be the best approach for homolog
detection. Moreover, heuristics utilized in BLAST are known
to yield inconsistencies in homolog detection when different
e-values are used (14–16). Importantly, in a recent paper,
Weisman et al. (17) showed that most genes previously believed
to be lineage specific are instead cases of homolog detection
failures. In their framework, it was shown that sequence similarity
tools cannot distinguish between rapidly evolving genes and
fully random matches, resulting in frequent homolog detection
failures. This shows the limit for pairwise sequence similarity
searches and how these failures can drastically affect evolutionary
connections.

Numerical Representations of Sequences. In the meantime,
machine learning methods have developed efficient ways to
represent large-scale data; unsupervised learning has allowed
researchers to utilize the vast volume of protein sequence data
to train neural networks to generate context-aware numerical
representations (embeddings) of the input amino acid sequences.
These representations retain biochemical, biophysical, and evo-
lutionary information about the input sequences. Embeddings
encode remote homology, protein family information, secondary
structures, tertiary contacts, and mutational effects. When
compared with current predictive bioinformatics tools, neural
network-generated embeddings usually can either outperform
state-of-the-art methods or reach a similar level of success (18).

Linguistic Embedding and Data Compression. The present work
is based on the powerful neural network embeddings of protein
sequences from Rives et al. (18) and Raimondi et al. (19) that
utilize inverse direct cosine transform (iDCT) quantizations and
dynamic time wrappings (DTW) to find protein similarities.
Quantization is a term for the method of reduction from high-
dimensional data to a low dimension representation. Here,
we develop a method named PROST that applies iDCT to
the embeddings from the ESM (Evolutionary Scale Modeling)
protein language model (18). Quantization has some important
advantages over a larger dense layer. First, quantization does
not need further training. Accordingly, we can use the whole
benchmark for testing instead of splitting it into subsets for
testing, training, and validation. Second, classification after
quantization is significantly faster than even with the simplest
neural layer. Finally, the results with our quantization already
produce important large gains in performance. Quantization with
iDCT results in a significantly more concise representation of
sequences. Having smaller representations allows us to perform
significantly more efficient searches without any heuristics. With

a single-core AMD EPYC 7543 CPU, our PROST can perform
a search against the SwissProt database within a second. PROST
finds putative remote homologs for proteins that previously
had no known related sequences. These same proteins had no
remote homologs identified by traditional sequence matching
tools because of their low sequence identities. Our method is
not only faster but also more accurate in application to the
benchmarks (20) from Pfam (21), SUPERFAMILY (SCOPe
2.08) (22, 23), and CATH Gene3D (24, 25) datasets. PROST is
an alignment-free method that simply compares the embedding
vectors for a high level of efficiency.

Method

The first step is obtaining the protein representation with
the ESM1b protein language model, which is a transformer-
based neural network model inspired by the recent successes
of transformers in the natural language processing field. The
ESM1b model is trained by masking some of the residues
from the input sequence and training the model to predict the
masked residues. Hence, the model must learn the relationships
among the residues. It is trained on the UniParc database
from UniProt (26) with 250 million sequences. The model can
distinguish amino acid types by their biochemical properties.
Although no evolutionary information is input, the model learns
the family information from the sequences. The model can
predict biophysical properties such as secondary structures and
contacts between residues. Moreover, a variant of it can predict
mutational effects (27). These results provide strong evidence that
embeddings with the ESM1b protein language model can also
be applied for homology detection. However, the embeddings
contain extraneous information for homolog detection since
these same embeddings can also be used to predict multiple
properties. Results are improved by quantizing the embeddings
to compress the data and retain the most essential information
for homolog detection. When no quantization is applied and raw
embeddings from ESM1b are used in homolog detection with the
help of the dynamic time-wrapping technique (28), we find that
the accuracy by the AUC metric is 7.4% worse compared to the
compressed version, supporting evidence that the uncompressed
embeddings have more information than is required.

Highly Efficient Global Representations of Proteins. Direct
cosine transform (DCT) is widely used for lossy compression
resembling those used in the JPEG format. It has been used in
protein–protein interaction prediction (30), secondary structure
prediction (31), and protein folding (32). Similarly, the Fourier
transform was used in the representation of the torsional
energies of the amino acid bonds (33). The iDCT quantization
method was introduced recently (19), and it has properties
that are particularly useful for sequence representation. First,
it preserves the sequential nature of the embeddings. Second,
after quantization, it retains most of the input information. 2D-
iDCT is similar to image compression in reducing both input
dimensions of a given matrix. For a protein with N residues, the
ESM1b embedding will be in a 3D matrix having dimensions
34 × N × 1,280, where 1,280 is the embedding length of a
residue and 34 is the number of output layers of the language
model. Each layer of ESM1b consists of 20 attention heads.
Every attention head learns a different relevance of the input
sequence. It was shown that natural language models based on
transformers learn to attend to direct linguistic features such
as objects of verbs, qualifiers of nouns, and more. Moreover,
they showed that attention heads in the same layer perform
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Fig. 1. The PROST architecture and parameter optimization. (A) The PROST architecture. A protein sequence is fed into the ESM1b language model to obtain
embeddings that are reduced to maximize accuracy for remote homolog detection. Accordingly, two representations are carried through, with every protein
being represented by two different matrices for two different compression levels, chosen during optimization (SI Appendix). (B) An example—a PROST search
for HPO30 protein (having no previously known human homolog) against the SwissProt database. The PROST distance distribution is similar to a normal
distribution for nonhomologs. Putative homologous proteins are outliers in this distribution. Robust z-scores with Bonferroni corrections are used to calculate
the expectation values of randomly finding such a homolog. The CLRN3 protein was found as a putative homolog for HPO30. (C) Sequence alignment and
structures of HPO30 and CLRN3, showing validation by similarity in structures. Global alignment with the ProtSub matrix (12) yields a 21.5% sequence identity.
Helixes are colored red; beta sheets are colored blue. Structures are from AlphaFold2 predictions (29), with HPO30 on the right and CLRN3 on the left.
(D) Visualizations of PROST representations for HPO30, CLRN3, and the differences between them. The sum of all elements in the difference matrices gives the
PROST distance, in this case, 3975 as shown in part b.

similar jobs (34). For example, an attention head in a protein
language model may look for disulfide bonds between cysteine
residues. However, what every attention head learns is unknown
beforehand and a special dataset, training, and testing are needed
to figure this out. So, we perform an optimization to find out
which layer, along with the compression ratio, result in the best
homolog detection performance. We select an individual layer
and apply 2D-iDCT to reduce it. These dimensionality reduction
methods are analogous to principal component analysis and act
to remove noise. The optimization study indicates that layer
26 with 5 × 44 and layer 14 with 3 × 85 have the best
accuracies with the smallest memory footprint. The intuition
behind having two matrix representations for every protein is
to include different levels of quantization with the different
layers to increase the representation capability. Representations
for every query protein and every protein in the database are
all precomputed and generated in advance. To compare two
protein sequences, it is necessary to take only the sum of the
absolute differences between every element in the two sets
of representation matrices. If the two proteins are homologs,
the sum of these will be is small. This reduction significantly
speeds up the search operation. PROST searches have linear
time complexity (SI Appendix, Fig. S2). The algorithm is highly
parallelizable and uses vector operations. A single protein is
represented by just 475 bytes. The detailed architecture of

PROST is shown in Fig. 1A. (SI Appendix for some further details,
particularly for the optimization of the compression parameters).
We note that the compression parameters of PROST are chosen
to minimize the memory requirements and to perform better
than state-of-the-art methods. However, with a larger more
complete representation, it is possible to achieve even better
results. (SI Appendix shows those results as PROST-L). PROST
uses a fixed-length (variable-ratio quantization) representation of
proteins. Combined with simple distance calculations, this allows
the fastest possible searches. However, this feature undermines
the ability to detect local homology. Local fragments are not
usually detected well by PROST.

Statistical Evaluation of Protein Homolog Distances. In a
traditional bioinformatics workflow, a query protein is searched
against a large protein database. For this query protein, PROST
will calculate a distance for each target protein in the database,
resulting in a distribution of distances. This distribution is
usually similar to a normal distribution. Putative homologs to
the target protein will have better scores and be outliers in
such a distribution. An example distribution is shown in Fig.
1B for the distances between the query protein, HPO30, and
its scores against all SwissProt proteins. From the distribution
of these scores, we can then calculate the robust z-scores
and the probability compared to the cumulative distribution
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function to learn whether a protein has a statistically significant
score. The calculated value will be the probability of having a
nonhomologous pair with a given distance score. These are similar
to the expectation values provided by BLAST. Robust z-scores
normalize the distribution by using medians instead of means and
median absolute deviations (MAD) instead of standard deviations
(35) to be more effective for outliers.

In the case of a search with a member of a big protein family,
putative homologs may not be outliers. They might be the
majority of proteins in the database. In such a case, probable
homologs may be first filtered out before e-value calculation. This
can be done using the PROST distance threshold that is found
by maximizing the F1 score at the max50 dataset. Distance values
smaller than this threshold will not be used in the calculation of
mean and SD. This way, the normality of distance distribution
of nonhomologs will be preserved even with the high number
of putative homologs. Lastly, e-values can be calculated for the
whole database using the mean and SD found for nonhomologs.

An Example of a Homolog. HPO30 is used as an example
to demonstrate the PROST pipeline. It is an uncharacterized
protein of C. elegans. NCBI-BLAST and PHMMER do not find
any human homologous sequence for HPO30 in the SwissProt
database. However, it is known that this protein belongs
to the Pfam claudin-like domain (PF07062). When searched
against SwissProt, PROST quickly identifies hundreds of putative
homologs to HPO30 that have around 20% sequence identity.
The PROST distance distribution of SwissProt for this protein
is shown in Fig. 1B. Nonhomologs follow a normal distribution
while putative homologs will be outliers to this distribution.
Outliers can be found using z-scores with Bonferroni multiple test
correction. One example of alignment with the putative human
homolog CLRN3 (Q8NCR9) is shown in Fig. 1C . HPO30
and CLRN3 have 21.5% sequence identity; however, they have
the same structure fold. Structures of the two AlphaFold2 (29)
predictions for these proteins are shown in Fig. 1C . Overall,
the core structure alignment has an RSMD of 3.4 Å. Fig. 1D
shows the PROST representation for HPO30, CLRN3, and their
differences.

Dataset and Validation

In the evaluation of our method, we use a benchmark set
(20) which contains three different datasets from Pfam (21),
Gene3d (24), and SUPERFAMILY (22). These datasets contain
proteins with multiple domains. If two proteins have the same
sequential domain order, they are indicated as homologs. If
they do not share any domain in common, then they are
annotated as nonhomologous. The benchmark is divided into
two sets. The first set, which limits the lengths of regions between
domains to 50 residues, we named “max50,” can be seen as
a global homology benchmark. The second set includes the
others without this limitation, which we named “nomax50.”
In the “max50” benchmark, the Pfam dataset contains 5,245
homolog pairs. The Gene3d dataset has 5,047 such pairs.
The SUPERFAMILY contains 5,656 pairs. Each dataset also
contains the same number of nonhomolog pairs as homolog
pairs. The total number of protein pairs that are included in
the max50 benchmark is 31,896, while the nomax50 benchmark
has 180,566 pairs. The benchmark dataset was curated from 16
species using domain databases instead of structural databases to
make sure that pairs of proteins of unknown structures have also
been included. Even though the curation method is different for
each database, they have only a 0.1% disagreement regarding

whether a protein pair is a homolog or not. This demonstrates
the unequivocal agreement within the parts of the benchmark
dataset (20). We compare the PROST accuracy with the same
metrics used in the benchmarking paper (20). Specifically, the
area under the ROC curve calculated on the first 1,000 false
positives (AUC1000) is used here as the metric for performance.

Results

The evaluation of the PROST tool has been carried out against
the most commonly used alignment-based homolog detection
tools. The Pfam, Gene3D, and SUPERFAMILY datasets are
used for testing. The AUC1000 score indicating the quality of
the ranking is used to judge performance. We have compared
against CSBLAST (9), PHMMER (10), NCBI-BLAST (3), and
FASTA (4) scores reported in the previous benchmarking paper
(20). Moreover, we also compared PROST with the homology
detection method used in the ESM1b paper (18). In that method,
the mean of the last (34th) layer of ESM1b embedding columns is
used as a fixed-size representation of a protein. Then, the simple
distance between these representations is used as a homology
indicator. This result is shown as ESM1bL34M (SI Appendix).
PROST performs significantly better than other tools. The largest
extent of improvement is a significant 9.8% gain, e.g., NCBI-
BLAST compared with PROST for the SUPERFAMILY dataset.

Table 1 shows the performance of the most commonly used
tools with the benchmarking dataset. It shows that PROST is the
best tool with the AUC1000 (area under the ROC curve for the
first 1,000 false positives) metric. PROST has a 2% higher AUC
score and a 4.8% higher AUC1000 score, in comparison with
the closest tool, CS-BLAST. Compared to the commonly used
NCBI-BLAST tool, PROST has 3.1% higher AUC and 6.3%
higher AUC1000 scores. When benchmarking is performed with
the Gene3D database, PROST outperforms CS-BLAST with
a 2.6% higher AUC score and 4.7% higher AUC1000 score.
Lastly, in the SUPERFAMILY dataset, PROST is the best tool
with a 2% higher AUC score than CS-BLAST, and in terms
of AUC1000, a 5.2% higher score compared with PHMMER
(PHMMER has a higher AUC1000 score than CS-BLAST).
SI Appendix, Table S2 shows the AUC and AUC1000 metrics
for all selected commonly used tools. Fig. 2 shows the ROC curves
for the methods we benchmarked in the max50 dataset. These
results strongly suggest that PROST is an accurate homology
detection tool collectively outperforming these commonly used
alignment-based homolog detection tools for the Pfam, Gene3D,
and SUPERFAMILY datasets with a compressed minimal opti-
mized data representation. These consistently permit identifying
important putative homologs at lower levels of sequence
identity.

Table 2 shows the confusion matrix for PROST in the max50
benchmarking dataset. Moreover, SI Appendix, Fig. S3 shows the

Table 1. Comparison of homolog detection methods in
the max50 dataset

Pfam Gene3D SUPERFAMILY
Method AUC AUC1000 AUC AUC1000 AUC AUC1000

PROST 99.0 97.2 98.9 95.7 98.5 95.5
CSBLAST 97.0 92.4 96.3 91.0 96.1 90.0
PHMMER 96.4 92.3 96.2 90.4 95.9 90.4
NCBI-BLAST 95.9 90.9 94.4 87.9 93.7 85.7
ESM1bL34M 96.0 89.8 91.9 80.1 92.0 81.1
FASTA 94.6 88.8 93.2 85.2 91.9 83.4
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Fig. 2. ROC plots for max50 benchmarking dataset. This dataset contains
proteins with a limitation of 50 undefined amino acids in between the defined
regions, constraining the homology test to global homology detection. The
plots show the overall performance of tested methods as true-positive and
false-positive rates. We ranked each curve based on their performance on
the first 1,000 false positives measured by the AUC1000 metric. ROC plots
for each database, Pfam (A), Gene3d (B), and Superfamily (C) are shown
separately. Overall, PROST is the best tool in this dataset producing the
highest AUC1000 scores. This clearly demonstrates the importance of the
optimization that has been developed here by comparing the ESM1b results
against the optimized PROST results.

Table 2. Confusion matrix for PROST in the max50
benchmarking dataset

Prediction
Total: 31896 Positive Negative

Actual
Positive 14916 207
Negative 1032 15741

distribution of the homology predictions based on protein pair
size differences. Overall, PROST has 1,239 incorrect predictions
out of 31,896 pairs, which is a remarkably high level for correct
predictions. The number of false negatives is 207, while the
number of false positives is 1,032. Having lower false negatives
and higher false positives may be desirable to a certain extent
since a second step could reevaluate the false positives as follows:
For example, a search with the SwissProt database requires
over half a million comparisons. PROST can be used first to
reduce the search space from millions to hundreds, and then,
computationally intensive structure predictions and structural
comparisons could be used to reduce some of the false positives
if their structures do not match well.

SI Appendix, Table S3 shows the results for the nomax50
benchmarking dataset. SI Appendix, Fig. S4 shows the ROC
curves for the methods we tested in the nomax50 dataset. We
found that PROST performs mediocre for this benchmark,
which signifies the global alignment nature of PROST. How-
ever, PROST-L, the version with less reduction in embedding
information, has a good performance comparable to state of
the art methods. PHHMER performs best on the nomax50
benchmark. It is followed by CSBLAST and PROST-L. PROST
is similar to BLAST in performance, and the method that uses
the mean of only the last layer (ESM1bL34M) performs the
worst. To exemplify the global alignment nature of PROST, we
have searched human zinc finger protein 268 (Q14587) with
PROST and BLAST on the SwissProt database. BLAST found
1605 putative homologs, while PROST found only 560 putative
homologs. This signifies the global alignment nature of PROST.
The results are presented in SI Appendix, Dataset S1.

Runtime Requirements

Every PROST search begins with the embedding process and
quantizing the input sequences, i.e., the preprocessing. PROST
can create a database of 100 sequences randomly sampled from
SwissProt within 13.15 s ± 60 ms and 1,000 sequences within
71.89 s ± 347.8 ms using one GPU. PROST needs to create
a database only once, and then, the database can be used over
and over. Searching a database of 100 sequences against itself
takes 519 ms ± 6.3 ms, and 1,000 sequences against itself takes
976 ms ± 10.6 ms. The nonlinear time difference is caused by
differing startup overheads and disk accession delays. Embedding
and searching a sequence in the preprocessed SwissProt PROST
database takes only 1.02 s± 7.3 ms. These tests have been carried
out ten times to obtain the error estimates. These were a Nvidia
A100 40GB GPU and a single-core AMD EPYC 7543 processor.
Database creation runs faster on GPUs. However, it can also
run on a CPUS. Search operations use only one core CPU.

Discussion

The method of homolog detection in PROST is extremely differ-
ent from traditional sequence or PSSM-based profile alignment
tools. We have investigated the effects of this difference for its
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ability to identify homologs as well as on the performance by using
different metrics. In a recently published paper (17), it was shown
that as the rate of protein evolution increases, the probability
of remote homolog detection decreases for the usual sequence
similarity search tools. This happens because the sequences
ultimately are so diverged that existing tools cannot distinguish
them from random matches. Importantly, the framework from
Weisman et al. (17) can predict for a gene whether the rate
of evolution is too high for remote homolog detection with
traditional sequence alignment-based tools. In their study, they
found that most genes with no detected homologs outside of the
specific lineage are wrongly attributed to biological novelty. They
concluded that the majority of genes identified as being lineage
specific are instead a result of homolog detection failures.

Intrigued by this, we performed PROST searches on lineage-
specific S. cerevisiae genes, where there are a total of 325 lineage-
specific genes, 155 of them with at least three homologs in the
lineage so that the evolutionary rate can be calculated (17). Of
these, 126 are predicted to evolve rapidly and, consequently,
might not be detectable in out-of-phylum species. We performed
PROST search on 7 out-of-phylum species, E. gossypii, K. lactis,
N. castelli, L. waltii, Y. lipolytica, and A. nidulans, S. pombe, 4 of
which, E. gossypii, K. lactis, N. castelli, and L. waltii, had synteny
information on the Yeast Gene Order Browser (36) database.
PROST found significant hits for 73% or 92 out of the 126
genes, while a synteny-based BLAST search found homologs for
only 8.7%, or 11 genes, with agreement between the PROST
and BLAST synteny results for 72.7% or 8 genes. Synteny-
based searches are more sensitive because only the gene in the
ortholog’s chromosomal locus is tested for homology instead of
the whole proteome, removing the burden of multiple testing
corrections, and this provides increased sensitivity. Even though
the PROST search was done for the 7 genomes with Bonferroni
correction, it found significant hits for three times more genes
with the same e-value 0.001. For the remaining 29 genes in
yeast, the lineage specificity cannot be explained by the rate
of evolution, PROST does find putative homologs for 72.4%
or 21 genes, whereas the synteny-based BLAST search found
homologs only for 41.4% or 12 genes, and agreement between
the two was seen for 66.6% or 8 genes. These results indicate that
PROST can find putative homologs for lineage-specific genes
that are evolving too fast to be detectable with usual search
methods; it is significantly more sensitive than synteny-based
searches with traditional tools. The larger numbers of hits found
suggest that this method may have some potential for overcoming
well-known errors in the annotations, since larger numbers of
putative homologs that are found to have the same function
should increase the reliability of these functions identified from
sequence matches. Results are presented in an interactive website
mesihk.github.io/prostyeast.

Motivated by this, we investigated all human proteins that
are in SwissProt and as of March 2022 had no GO functional
annotations assigned. We found 864 such proteins. BLAST and
PROST are used with an e-value of 0.05 to find homologous
proteins to these sequences. FATCAT, a tool that aligns protein
structures with twists and rotations, is used to obtain the
structural similarity significance (37). We find PROST results
to be more informative. PROST had statistically significant
structural hits for 73.8%, 628 human proteins, but BLAST
found only 58%, or 494 human proteins. We investigated
some of the cases where PROST had significantly more hits
than BLAST. Fig. 3 A–D shows four human proteins that
presently have no assigned GO annotations. The hits found by

PROST for these proteins are all structurally similar. All of these
sequence and structural alignments are given at mesihk.github.io/
prosthuman.

In the breakdown of the most significant hits for unknown
human proteins, PROST and BLAST together found the best
putative homologs for 40.2% of human proteins, while 26.3%
were found only by PROST and 9.9% found only by BLAST.
The remaining 23.6% had not identified structurally verified
homologs. All in all, 76.4% of human proteins had putative
homologs with significant structural alignments, of which 9%
had uncharacterized functions.

This large number of predictions is also useful for learning the
false-positive rate of PROST. Of 864 human proteins, 14 did
not have any AlphaFold predictions. The remaining 850 proteins
had a total of 44,444 hits found by PROST. However, 6,645 hits
did not have AlphaFold predictions. The rest of the 37,799 hits
were structurally aligned using the FATCAT tool (37). This tool
applies twists and rotations to match given structures and reports
a statistical significance as a p-score. Out of 37,799 PROST hits
that are found for a 0.05 PROST e-value cutoff, only 31.5% did
not have a significant structural alignment. When the PROST
e-value cutoff is more stringent, at 0.001, among 20,672 hits, the
ones having no significant structural alignment are reduced to
22.2%. These are rough false-positive estimates for PROST. But
as showcased in Fig. 4A, a PROST hit may have a similar function
even though they do not have any clear structural similarity.
One can expect 1/3 of hits to have no structure similarities
when using an e-value threshold of 0.05; similarly, nonstructural
hits are 1/5 for an e-value cutoff of 0.001. The same analysis
has been applied to BLAST. When the BLAST e-value cutoff
is 0.05, the hits producing no significant structural alignments
were 15.6%, and for a BLAST e-value cutoff of 0.001, this ratio
falls to 13.4%

A protein with PROST hits was the human chromosome 20
open reading frame 204 (C20orf204). For this protein, BLAST
and PHMMER fail to identify homologous sequences other
than the mouse C20orf204 variant, while PROST identifies
731 such sequences. It was recently shown that C20orf204
is associated with hepatocellular carcinoma (HCC) (40). This
protein interacts with nucleolin and ribosomal RNA and results
in increased protein synthesis in the cell. C20orf204 is specifically
expressed in HCC and associated with tumor development.
The protein is mainly detected in the nucleus. HeLa cells
overexpressing this protein grow twofold faster. C20orf204 is
thought to play a role in nucleolin stabilization, resulting in
increased rRNA transcription (40). Putative homologs found by
PROST are mostly interleukin variants and growth hormones.
Fig. 3A shows the structural alignment of C20orf204 and soma-
totropin (growth hormone) of Protopterus annectens, and Fig. 3E
shows the sequence alignment. It is known that somatotropin
increases the number of ribosomes (41). It also increases the
protein content of muscle which makes it widely used in animal
farming. C20orf204 has a similar structure to somatotropin
but a vastly different sequence. However, these two proteins
likely function similarly. This similarity poses an important
experimental challenge of whether overexpressed somatotropin
has the same effect on HeLa cells as C20orf204. There will
certainly be many similar such discoveries in applications of
this method.

Of note, 51% of the whole human proteome is considered to
be intrinsically disordered proteins or proteins with disordered
regions (42). Accordingly, most of the unannotated human
proteins we studied with PROST are in this category. Disordered
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Fig. 3. Examples of putative homolog prediction by PROST, validated by structural similarity. Several cases of human proteins that presently have no current
GO annotations (Top structure in each box) together with hits found by PROST (Bottom). Structures are AlphaFold2 (29) predictions unless otherwise noted.
Structural alignments were done with the TM-Align tool. A TM-Score ≥ 0.5 indicates the same structural fold (38). Sequence alignments are done using the
ProtSub substitution matrix (12) with a gap opening penalty of 5 and extension penalty of 1. Identical residues are shown in bold. Helixes are colored red; beta
sheets are colored blue. (A) Human EOLA2 and Zymomonasmobilis subsp. ASCH domain-containing ribonuclease (PDB ID: 5GUQ). (B) Human C14orf28 and Pongo
abelii Ubl carboxyl-terminal hydrolase 18. (C) Human methyltransferase-like 26 and Cereibacter sphaeroides phosphatidyl ethanolamine N-methyltransferase.
(D) Human chromosome 20 open reading frame 204 (C20orf204) and Protopterus annectens Somatotropin. (E) Alignment of Human EOLA2 and Zymomonasmobilis
subsp. ASCH domain-containing ribonuclease proteins. Sequence identity is 20.5%. (F ) Alignment of Human C14orf28 and Pongo abelii Ubl carboxyl-terminal
hydrolase 18 proteins. Sequence identity is 21.7%. (G) Alignment of human methyltransferase-like 26 Cereibacter sphaeroides phosphatidylethanolamine
N-methyltransferase proteins. Sequence identity is 23.7%. (H) Alignment of human C20orf204 and somatotropin. Sequence identity is 22.3%.

regions do not have clear structures. PROST hits found for this
type of protein often do not have clear structural agreements. One
human IDP we studied with PROST, human chromosome 11
open reading frame 53 (C11orf53), did not have any annotation
as of March 2022, but later, it was studied experimentally
and assigned a function (39) creating a case for PROST
homolog verification. C11orf53 was found to be a transcriptional
coactivator of POU2F3 and critical for Tuft cell lineage (39).
Remarkably, the PROST hit for this protein was POU2AF1.

There is no clear structural agreement either with tools TM-
Align (38) or FATCAT (37) since both proteins lack structured
regions. Structural comparison is shown in Fig. 4A. Moreover,
the sequence identity is just 22.2% as shown in Fig. 4B. However,
POU2AF1 is also a transcriptional coactivator that associates with
POU2F1 and POU2F2 verifying homology relationship. This
shows that PROST has the potential to find putative homologs
for intrinsically disordered proteins that share similar functions
even without significant structural similarity.
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Fig. 4. Two example case with no clear structural similarity (A) and a case with low sequence identity (B). Human chromosome 11 open reading frame 53
(C11orf53) was an uncharacterized protein in March 2022. A recent paper (39) experimentally showed that it is a transcriptional coactivator of POU2F3 and plays
a role in the generation of Tuft cell lineage. The putative homolog found by PROST is POU2AF1, which is a transcriptional coactivator that associates POU2F1
and POU2F2. C11orf53 has a similar function with the POU2AF1 found by PROST, validating the homology relationship. PROST identifies a putative homolog for
human MKRN2 opposite strand protein (H3BPM6) with a 16.4% sequence identity. (A) Structures predicted by AlphaFold2 (29) for C11orf53 (Left) and POU2AF1
(Right) show no clear similarity. (B) Structures predicted by AlphaFold2 (29) for H3BPM6 (Left) and Q8BVA2 (Right). The alignment of these structures has a
FATCAT p-value of 2.91e-03 and a 0.47 TM-Score. (C) Sequence alignments of C11orf53 and its putative homolog POU2AF1 have 22.2% sequence identity. (D)
Sequence alignments of human MKRN2 opposite strand protein (H3BPM6) and Q8BVA2 have 16.4% sequence identity.

PROST can identify hits with very low sequence identity,
and this represents major progress in putative homolog de-
tection. An example case with only 16.4% sequence iden-
tity is shown in Fig. 4D. Similarly, structures are shown
in Fig. 4B. These structures are significantly similar with
a FATCAT P-value of 2.91e-03 but have a TM-Score
of 0.47.

Conclusions

Here, we have presented PROST, an exact search-based, ex-
tremely fast and accurate homolog detection tool that utilizes
a protein language model. It is a significantly different method
from other search methods in its alignment-free and sequence
similarity-free approach that relies upon reduced protein rep-
resentations, enabling it to perform huge numbers of compar-
isons within a short time. PROST outperforms all commonly

used traditional alignment-based tools on benchmarks taken
from three databases—Pfam, Gene3d, and SUPERFAMILY.
PROST efficiently uses memory and can keep hundreds of
millions of protein representations in the memory of a server-
grade computer. PROST is not limited to the usual limits
of sequence similarity-based tools. It can find putative remote
homologs for proteins that have a high evolution rate that makes
them completely indistinguishable from noise with traditional
alignment-based tools, and these results push sequence alignment
well below the usual twilight zone. This is exemplified by
human proteins that presently do not have any annotations.
PROST finds hits with highly similar structures at lower levels of
sequence identity, which act to validate the sequence homologies.
The recent advances in structure predictions (29, 43, 44)
allow us to find support for the predicted homologs for cases
where there are no experimental structures. The remarkable
speed gains by PROST will facilitate rapid whole-proteome or
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whole-genome-scale analyses which will aid in generating more
accurate phylogenies and can be important in improving our
understanding of evolution and disease mutations. Also, the
greater sensitivity of PROST suggests that it might be better
at distinguishing the effects of mutations.

Data, Materials, and Software Availability. The software and data are
available in GitHub repository: https://github.com/MesihK/prost.
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