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Tree peony PsMYB44 negatively regulates petal blotch distribution by inhibiting 
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•  Background and Aims  The tree peony (Paeonia suffruticosa Andr.) has been widely cultivated as a field plant, 
and petal blotch is one of its important traits, which not only promotes proliferation but also confers high orna-
mental value. However, the regulatory network controlling blotch formation remains elusive owing to the func-
tional differences and limited conservation of transcriptional regulators in dicots.
•  Methods  We performed phylogenetic analysis to identify MYB44-like transcription factors in P. suffruticosa 
blotched cultivar ‘High noon’ petals. A candidate MYB44-like transcription factor, PsMYB44, was analysed via 
expression pattern analysis, subcellular localization, target gene identification, gene silencing in P. suffruticosa 
petals and heterologous overexpression in tobacco.
•  Key Results  A blotch formation-related MYB44-like transcription factor, PsMYB44, was cloned. The 
C-terminal of the PsMYB44 amino acid sequence had a complete C2 motif that affects anthocyanin biosyn-
thesis, and PsMYB44 was clustered in the MYB44-like transcriptional repressor branch. PsMYB44 was lo-
cated in the nucleus, and its spatial and temporal expression patterns were negatively correlated with blotch 
formation. Furthermore, a yeast one-hybrid assay showed that PsMYB44 could target the promoter of the 
late anthocyanin biosynthesis-related dihydroflavonol-4-reductase (DFR) gene, and a dual-luciferase assay 
demonstrated that PsMYB44 could repress PsDFR promoter activity. On the one hand, overexpression of 
PsMYB44 significantly faded the red colour of tobacco flowers and decreased the anthocyanin content by 
42.3 % by downregulating the expression level of the tobacco NtDFR gene. On the other hand, PsMYB44-
silenced P.  suffruticosa petals had a redder blotch colour, which was attributed to the fact that silencing 
PsMYB44 redirected metabolic flux to the anthocyanin biosynthesis branch, thereby promoting more antho-
cyanin accumulation in the petal base.
•  Conclusion  These results demonstrated that PsMYB44 negatively regulated the biosynthesis of anthocyanin by 
directly binding to the PsDFR promoter and subsequently inhibiting blotch formation, which helped to elucidate 
the molecular regulatory network of anthocyanin-mediated blotch formation in plants.

Key words: anthocyanin biosynthesis, MYB44-like transcription factor, transcriptional repressor, dihydroflavonol-
4-reductase, blotch formation, tree peony.

INTRODUCTION

In ornamental plants, carotenoids, anthocyanins and betaines 
endow plants with vivid colours to differentiate them from green 
(Tanaka et al., 2008; Miller et al., 2011), among which antho-
cyanin is a particularly important component. Anthocyanin is 
a rich secondary metabolite and exists widely in plant organs 
such as leaves, flowers and fruits (Wang et al., 2019b; Li et al., 
2021b, 2021c). Anthocyanin has various biological functions, 
including ultraviolet protection, disease resistance, response 
to abiotic stress and potential benefits to human health (Albert 
et al., 2018; Li et al., 2020, 2022). In addition, anthocyanin 
affects the appearance of ornamental plants, which might in-
crease the number of visits by pollinators such as moths or 

bees and improve reproductive diversity in insect-dependent 
flowering plants (Moeller 2005; Eckhart et al., 2006).

In the past few decades, the anthocyanin biosynthesis 
pathway in plants has been reported comprehensively, and its 
metabolism has been well characterized and considered to be 
relatively conserved, especially in land plants (Glover et al., 
2013; Tohge et al., 2013, 2017). According to previous studies, 
there are two types of genes, early biosynthetic genes (EBGs) 
and late biosynthetic genes (LBGs), which are responsible 
for hierarchical anthocyanin biosynthesis. The EBGs include 
genes encoding chalcone synthase (CHS), chalcone isomerase 
(CHI), flavanone 3-hydroxylase (F3H) and flavonol synthase 
(FLS), which are located upstream of flavonoid metabolism, 
usually provide precursor substrates of dihydrokaempferol 
and dihydroqueretin and are responsible for the biosynthesis 
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of flavonol, anthocyanin and proanthocyanidin (PA) (Rausher 
et al., 1999). In contrast, LBGs, including genes encoding 
dihydroflavonol 4-reductase (DFR), anthocyanidin synthase 
(ANS) and flavonoid O-methyltransferase (FOMT), are spe-
cifically responsible for the biosynthesis and modification of 
anthocyanin (Holton and Cornish, 1995). To date, numerous 
regulatory genes affecting plant anthocyanin biosynthesis and 
their regulatory mechanisms have been revealed in different 
species. For instance, several EBGs in the dicot model plant 
Arabidopsis are generally regulated by R2R3-MYB regulators 
AtMYB11, AtMYB12 and AtMYB111, which help to absorb 
ultraviolet rays (Stracke et al., 2007). A ternary complex rep-
resented by Arabidopsis AtPAP1, AtTT8 and AtTTG1 activates 
anthocyanin metabolic flux by regulating the expression of 
LBGs (Hichri et al., 2011). In the monocot plant Zea mays, 
both EBGs and LBGs are regulated by the MYB-bHLH-WD40 
(MBW) ternary complex (Petroni and Tonelli, 2011). To date, 
this hierarchical regulatory mechanism has been well character-
ized in horticultural plants, including F. × ananassa, Actinidia 
chinensis, Petunia hybrida and Malus domestica (Yamagishi et 
al., 2010; Schaart et al., 2013; An et al., 2019; Wang et al., 
2019a). This network is always under the common transcrip-
tional regulation, with MYB regulators at the core. However, 
regulatory genes in plants always evolve much faster than struc-
tural genes (Rausher et al., 1999; Sheehan et al., 2016; Huang 
et al., 2018), thus their regulatory mechanisms in different spe-
cies are less restricted and need to be further explored.

In addition to MYB activators, the coloration of many 
horticultural plant organs is influenced by feedback mechan-
isms mediated by anthocyanin-related MYB repressors, and 
the spatial and temporal changes in this phenomenon might 
be attributed to the homeostatic balance of plant growth. For 
instance, M. domestica MdMYB306 fine-tunes peel antho-
cyanin accumulation as a result of its inhibition of antho-
cyanin overaccumulation activated by MdDFR gene and 
MdMYB17 activator (Wang et al., 2022). In Prunus persica, 
the typical R2R3-MYB repressor PpMYB18 is a competitor 
of PpMYB10.1 activator, preventing excessive accumulation 
of PAs and anthocyanins during fruit ripening (Hui et al., 
2019). To date, several novel MYB44-like repressors have 
been characterized in Solanum tuberosum and Ipomoea ba-
tatas (Liu et al., 2019; Li et al., 2021a). However, this type 
of regulatory mechanism specialized in a limited pathway of 
different plants, such as Pyrus bretschneideri PbMYB120 for 
PbUFGT1, grape hyacinth MaMYBx for competition with 
MabHLH1, and Narcissus tazetta NtMYB3 for NtFLS (Anwar 
et al., 2019; Song et al., 2020; Zhang et al., 2020a). Overall, 
the balance mechanism of anthocyanins in dicotyledonous 
plants is far more complex than that in monocotyledonous 
plants, given that a large variability has been elucidated among 
different cultivars, such as in Chrysanthemum morifolium, 
M. domestica and Paeonia (Du et al., 2015; Meng et al., 2016; 
Xiang et al., 2019).

The tree peony (Paeonia suffruticosa Andr.) is a traditional 
flower native to China that is famous for its colourful flowers 
and rich oil production. Previous studies have shown that dif-
ferent P. suffruticosa cultivars accumulate abundant flavonoid 
compounds, including anthocyanins that contribute to their red 
colours and anthoxanthins that contribute to their yellow or 
white colour (Li et al., 2009). More deeply, the flower colour 

regulation system in P. suffruticosa has been revealed in different 
cultivars and shown to be relatively conservative compared 
with model plants. Several anthocyanin activators, including 
PsMYB58, PsMYB57, PsMYB114L and PsMYB12L, were 
isolated from P. suffruticosa flowers and shown to have posi-
tive functions in anthocyanin accumulation (Zhang et al., 
2019, 2020b, 2021). Moreover, some more explicit models of 
hierarchical regulation, such as specific spatial and temporal 
regulation models of PsbHLH1 for PsDFR and PsANS or the 
PsMYB12-bHLH-WD40 complex for PsCHS, have also been 
reported in red and blotched P. suffruticosa petals (Gu et al., 
2018; Qi et al., 2020). However, in comparison to other species, 
MYBs are still rarely isolated from P. suffruticosa, which is a 
constraining factor limiting the study of P. suffruticosa flower 
colour, and reports on the anthocyanin repressors are lacking.

In this study, P.  suffruticosa cultivar ‘High noon’, which 
shows a specific blotch rendering pattern, was investigated for 
analysis of anthocyanin accumulation. Next, a MYB regula-
tory gene, PsMYB44, was isolated from P.  suffruticosa, and 
its spatial and temporal expression was revealed in ‘High 
noon’ petals. Furthermore, a yeast one-hybrid (Y1H) assay 
and dual-luciferase assay were applied to find the potential 
target genes of PsMYB44, and its function was validated by 
introducing PsMYB44 into tobacco and P. suffruticosa petals. 
These results lay the foundations for further clarification of 
the underlying mechanism of spatial blotch distribution in 
P. suffruticosa.

MATERIALS AND METHODS

Plant materials and growth conditions

Paeonia suffruticosa cultivar ‘High noon’, which has a red 
blotch at the petal base, Nicotiana tabacum cultivar ‘k326’ and 
Nicotiana benthamiana leaves were used as plant materials 
for the present study. The non-blotch area and blotch area of 
P.  suffruticosa petals at different developmental stages span-
ning April–May (S1, pigmented stage; S2, unfolded-petal 
stage; S3, initial-flowering stage; and S4, full-flowering stage) 
were collected and stored at −80 °C and were prepared for gene 
and promoter cloning and gene expression analysis. Petals at S1 
were used for the virus-induced gene silencing (VIGS) assay. 
N. tabacum and N. benthamiana were grown in a greenhouse 
(25 °C for 16 h light–22 °C for 8 h dark), which were used for 
stable transformation of key genes and transient assays of key 
genes and promoters.

DNA and RNA extraction and complementary DNA synthesis

Genomic DNA and total RNA were extracted from different 
plant samples of P. suffruticosa and tobacco using a NuClean 
Plant Genomic DNA Kit (CWBIO, China) and a MiniBEST 
Plant RNA Extraction Kit (TaKaRa, Japan), referring to 
the respective manufacturer’s instructions. The quality con-
trol of RNA purity and concentration were then assessed by 
NanoDrop1000 spectrophotometry (Thermo Scientific, USA). 
Complementary DNA (cDNA) was synthesized from 1000 ng 
of total RNA with a SMARTer PCR cDNA Synthesis Kit 
(Clontech, USA).
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Gene and promoter cloning, sequence alignment and 
phylogenetic analysis

To isolate candidate anthocyanin-related transcription fac-
tors [PsMYB44 (cluster_20336); PsbHLH1 (cluster_44047); 
PsbHLH2 (cluster_36427); and PsbHLH3 (cluster_24228)], 
PCR amplification of candidate genes was conducted using 
specific primers (Supplementary Data Table S1) designed by 
Primer 5.0 based on the P. suffruticosa ‘High noon’ full-length 
transcriptome database of one mixed petal sample from S1–
S4 (National Center for Biotechnology Information sequence 
read archive accession number: SRP378683; Luan et al., 2022). 
To isolate promoters of P. suffruticosa candidate anthocyanin 
biosynthetic genes, PCR amplification was conducted using 
specific primers (Supplementary Data Table S1) designed by 
Primer 5.0, referring to the P.  suffruticosa genome database 
(Lv et al., 2019). All PCR products with predicted lengths were 
purified and cloned into 5 × TA/Blunt-Zero Cloning Mix vector 
(Vazyme, China) for sequence confirmation. The sequences 
upstream of the ATG start codon were defined as promoters, 
and the PlantCARE database (http://bioinformatics.psb.ugent.
be/webtools/plantcare/html/) was used to find potential MYB-
binding sites.

Multiple alignments of PsMYB44 from P.  suffruticosa and 
six MYB repressors from other plants were conducted by 
DNAMAN 6.0. The conserved domains were highlighted 
with different colours. For phylogenetic analysis, the amino 
acid sequences of PsMYB44 from P.  suffruticosa and 24 
anthocyanin-related MYB transcription factors were aligned 
by the ClustalW, then subjected to MEGA 7.0 to generate a 
neighbour-joining tree.

Quantitative real-time PCR analysis

P. suffruticosa spatial (non-blotch and blotch) and temporal 
(from S1 to S4) petals, treated petals and N.  tabacum petals 
were used to study the gene expression patterns. Total RNA of 
different samples was extracted as above, and HiScript QRT 
SuperMix for qPCR (Vazyme, China) was used for first-strand 
cDNA synthesis. Transcription expression levels were ana-
lysed using NovoStart SYBR qPCR Super Mix (Novoprotein, 
China) by a BIO-RAD CFX Connect Optics Module (Bio-Rad, 
USA). The details of the PCR parameters were described in a 
previous study (Zhao et al., 2020). Transcript abundance data 
were normalized using P.  suffruticosa β-Tubulin (EF608942) 
and N.  tabacum Actin (AB158612) internal controls, respect-
ively. The relative expression levels of the candidate genes were 
calculated according to the 2−ΔΔCt method. All primers used are 
listed in Supplementary Data Table S2.

Subcellular localization

For subcellular localization, the coding sequence (CDS) 
of PsMYB44 was amplified by PCR technology with  
specific primers (forward, 5ʹ-CGGGGATCCTCTAGAGTC
GACATGTCAATTTCGAGGAAAGATATGAA-3ʹ; reverse, 
5ʹ-CACCATGGTACTAGTGTCGACCTCAGCCTTGCTAAT
TGCCATA-3ʹ) and fused into the p35S:GFP vector encoding 
a green fluorescent protein (GFP) (Supplementary Data Fig. 

S1). Subsequently, the fusion construct (p35S:PsMYB44-GFP 
vector), empty p35S:GFP vector and mCherry protein directed 
to the nucleus localization signal (NLS) were transformed into 
Agrobacterium tumefaciens strain GV3101 by a freeze–thaw 
method (Shaner et al., 2004). Approximately 4- to 5-week-old 
N.  benthamiana leaves were used as receptor materials, and 
the GFP and red fluorescent protein (RFP) signals were ob-
served at 488 and 561 nm by confocal laser microscopy (Nikon 
C2-ER, Japan) to determine the subcellular localization of 
PsMYB44.

Yeast one-hybrid and yeast two-hybrid assays

For the Y1H assay, the CDS of PsMYB44 was amplified with 
specific primers and cloned upstream of the GAL4-activation 
domain of the pGADT7 vector as prey plasmids. The putative 
promoters of PsCHS (1764  bp), PsCHI1 (716  bp), PsF3H1 
(1716 bp), PsDFR (2052 bp) and PsANS (1256 bp) genes were 
cloned into the pAbAi vector as a promoter of the aureobasidin 
A resistance (AurR) gene as bait plasmids (Supplementary Data 
Fig. S2). Selection of the minimal inhibitory concentration of 
these promoters was performed as previously described (Luan 
et al., 2022). Subsequently, the pGADT7-PsMYB44 vector was 
introduced for interaction analysis on SD/-Leu medium with 
Aureobasidin A (AbA), and the interaction relationships were 
determined by the growth conditions of yeast cells.

For the yeast two-hybrid (Y2H) assay, the CDSs of 
PsbHLH1-3 were amplified with specific primers and cloned 
upstream of the GAL4-binding domain of pGBKT7 vector as 
bait plasmids, and the above fusion pGADT7-PsMYB44 vector 
was used as the prey plasmid (Supplementary Data Fig. S3). 
The different combinations containing bait and prey plasmids 
were cotransformed in Y2H Gold strain yeasts (Clontech, 
USA). Subsequently, the positive yeast cells were selected on 
SD double-dropout (DDO) medium, SD triple-dropout (TDO) 
medium and SD quadruple-dropout (QDO) medium with AbA. 
After 3–5 days of cultivation at 30 °C, the presence of inter-
action relationships between PsMYB44 and PsbHLH1-3 was 
determined by the growth conditions of the yeast cells. All pri-
mers used are listed in Supplementary Data Tables S3 and S4.

Dual-luciferase assay

Dual-luciferase assays were performed in N. benthamiana 
leaves as previously reported (Hellens et al., 2005). The pro-
moter of the PsDFR gene was cloned into pGreenII 0800 
5-LUC vector as a reporter plasmid, and the CDS of PsMYB44 
was cloned into pGreenII 0029 62-SK vector as an effector 
plasmid. The fusion constructs and empty effector were trans-
formed individually into A. tumefaciens strain GV3101 as 
above. Agrobacterium cultures containing PsMYB44 and 
empty SK vector were mixed with PsDFR promoter at a ratio 
of 10:1 to infiltrate 4- to 5-week-old N. benthamiana leaves. 
After 2 days of weak light cultivation, firefly luciferase (LUC) 
and Renilla luciferase (REN) activities were measured with a 
Dual-Luciferase Reporter Assay Kit (Vazyme, China), and the 
LUC/REN ratio was used to determine the regulatory effect of 
PsMYB44 on PsDFR promoter. All primers used are listed in 
Supplementary Data Table S5.

http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac155#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac155#supplementary-data
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac155#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac155#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac155#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac155#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac155#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac155#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac155#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac155#supplementary-data
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Stable transformation in tobacco

The CDS of PsMYB44 was cloned into pCAMBIA1301 
vector as overexpression plasmids (Supplementary Data Fig. 
S4). Then, PsMYB44 was stably overexpressed in tobacco 
‘k326’ using the leaf disc method (Sunilkumar et al., 1999). 
The T2 transgenic plants were first validated by PCR and qRT-
PCR, and the changes in flower phenotype were observed be-
tween wild-type (WT) and transgenic lines at the full-flowering 
stage. Furthermore, determination of the colour index and 
measurement of anthocyanin accumulation and detection of 
the anthocyanin biosynthetic gene expression level were per-
formed to investigate the underlying reason for changes in 
flower colour. All primers used are listed in Supplementary 
Data Tables S2 and S6.

Virus-induced gene silencing assay

Virus-induced PsMYB44 silencing was performed based on 
a tobacco rattle virus (TRV)-based VIGS system generating 
pTRV1 and pTRV2 (Supplementary Data Fig. S5) (Liu et 
al., 2002). The fusion constructs (TRV2-PsMYB44 vector), 
empty TRV2 vector and TRV1 vector were individually 
transformed into A. tumefaciens strain GV3101 as above. 
Agrobacterium cultures containing PsMYB44, TRV2 and 
TRV1 were mixed at a ratio of 1:1 to infiltrate P. suffruticosa 
petals at S1. After washing twice with sterile water, petals 
were cultured on the ½ Murashige and Skoog (MS) me-
dium. Phenotypic observation, determination of the colour 
index, measurement of flavonoid accumulation and detection 
of the anthocyanin biosynthetic gene expression level were 
performed on WT and PsMYB44-silenced petals at 7 days.  
All primers used are listed in Supplementary Data Tables S2 
and S7.

Measurement of anthocyanins and anthoxanthins

Total anthocyanins and anthoxanthins were determined 
in both P.  suffruticosa and N.  tabacum petals using high-
performance liquid chromatography (HPLC) as previously 
described (Zhao et al., 2015). Briefly, 0.2  g of fresh flower 
powders were soaked in 1.2 mL of methanol solution (con-
taining 0.1  % HCl) and shaken at 4  °C overnight in the 
dark. Then, the extract was used for qualitative and quanti-
tative analysis of flavonoids using an LCQ Deca XP MAX 
liquid chromatography–mass spectrometry (HPLC-ESI-MSn) 
Agilent 1200-6460 HPLC system (Agilent Technologies, 
Santa Clara, CA, USA). The contents of anthocyanin and 
anthoxanthin components were assessed semi-quantitatively 
against cyanidin-3-O-glucoside and rutin standards, respect-
ively. The specific details can be found in the study by Luan 
et al. (2022).

Statistical analysis

The variance of the results was analysed with the SAS/
STAT statistical analysis package (v.6.12, SAS Institute, Cary, 
NC, USA). Means were considered statistically significant at 
P < 0.05.

RESULTS

Isolation and characterization of PsMYB44

Plant MYB44-like transcription factors have been validated 
as flavonoid-related transcriptional repressors in many plants 
(Gao et al., 2011; Liu et al., 2019; Meng et al., 2022). Initially, 
basic local alignment search tool (BLAST) was used to search 
for PsMYB44-like transcription factors in P. suffruticosa tran-
scriptome data. Subsequently, one sequence was found and ini-
tially named PsMYB44 for further functional determination. 
PsMYB44, comprising a 987 bp coding sequence, encoded 328 
amino acid residues. PsMYB44 protein was in alignment with 
typical R2R3-MYB repressors, including Arabidopsis thaliana 
AtMYB4 protein, F. × ananassa FaMYB1 protein and other 
known MYB44-like proteins in other plants. As shown in Fig. 
1A, PsMYB44 possessed a typical complete R2R3 domain, ran-
ging from 12 to 109, for binding to DNA sequences. Moreover, 
only AtMYB4 contained a C1 motif in the C-terminal, whereas 
other sequences seemed to gap this feature. In addition to the 
C1 motif, another repressor-characterized C2 motif was found 
in all of these sequences, including PsMYB44, which might be 
the key motif for their repressive functions.

To define the affinity of PsMYB44, a phylogenetic analysis 
of 25 plant R2R3-MYB proteins associated with various func-
tions in flavonoid biosynthesis was performed. It was found 
that PsMYB44 belonged to the MYB44-like repressor class 
independent of anthocyanin-related activators and repressors, 
and 79  % homology was detected between PsMYB44 and 
S.  tuberosum StMYB44-1 (Liu et al., 2019), which indicated 
that PsMYB44 might be involved in anthocyanin biosynthesis 
(Fig. 1B).

PsMYB44 is negatively correlated with blotch formation

In our previous study, we found that anthocyanin accumula-
tion levels increased with petal development, peaked at S2 in 
blotch areas, then decreased at S3 and S4, while no anthocyanin 
accumulated in non-blotch areas (Luan et al., 2022). To explore 
the relationship between PsMYB44 expression levels and the 
blotch formation and distribution in P. suffruticosa petals, qRT-
PCR analysis was performed and showed that PsMYB44 expres-
sion levels in non-blotch areas were always higher than those 
in blotch areas, which was generally opposite to the spatial dis-
tribution of blotch. Notably, the expression levels of PsMYB44 
increased gradually with petal development (Fig. 2). These 
results suggested that PsMYB44 might play a negative role in 
anthocyanin biosynthesis in P. suffruticosa. For further study of 
PsMYB44 functions, the PsMYB44 GFP fusion construct was 
used to detect the subcellular localization of PsMYB44, and 
PsMYB44 GFP fusion protein signals were fully fused with 
NLS-RFP signals in the N. benthamiana leaves, indicating that 
PsMYB44 was located in the nucleus (Fig. 3).

PsMYB44 is an anthocyanin repressor that inhibits PsDFR 
expression

To test the effects of PsMYB44 on the transcription levels 
of anthocyanin biosynthetic genes, the promoters of five 

http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac155#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac155#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac155#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac155#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac155#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcac155#supplementary-data
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anthocyanin biosynthesis-related candidate structural genes 
from P. suffruticosa were obtained, and these sequences were 
predicted to contain three, three, two, four and two MYB-
binding sites. Next, these promoters were applied to the 
Y1H assay for detection of interactions. As shown in Fig. 
4A, PsMYB44 could bind to the promoter of PsDFR, be-
cause the transgenic yeast cells could grow normally on the 
AbA-containing medium, which meant that PsMYB44 might 
influence the transcription level of PsDFR. To confirm the 
capability of PsMYB44 to inhibit PsDFR transcription levels, 
the P.  suffruticosa PsDFR promoter was fused upstream of 

the LUC reporter gene. As shown in Fig. 4B, infiltration of 
PsMYB44 greatly reduced the LUC/REN value by 60.0  % 
when compared with the empty vector, which suggested that 
PsMYB44 was a negative regulator of anthocyanin biosyn-
thesis in P. suffruticosa petals.

PsMYB44 is a PsbHLH1-3 independent repressor

According to a previous study in other plants, negative 
R2R3-MYB anthocyanin regulators either compete with bHLH 
cofactors or form inhibitory complexes to inhibit anthocyanin 
biosynthesis (Wang et al., 2019a, 2022; Ni et al., 2021). In 
the present study, Y2H assays were performed to investigate 
whether the inhibitory function of PsMYB44 was dependent 
on PsbHLH cofactors. The pGBKT7-PsMYB44 and pGADT7-
PsbHLH1-3 recombination vectors were constructed and 
transformed into Y2H Gold strain yeasts. The transgenic yeast 
cells were screened on auxotrophic mediums. As shown in 
Supplementary Data Fig. S6, PsMYB44 did not interact with 
PsbHLH1-3.

PsMYB44 negatively regulates anthocyanin accumulation in 
transgenic tobacco

The function of PsMYB44 was confirmed via stable trans-
formation in tobacco. After introducing the pCAMBIA1301-
PsMYB44 overexpression construct into tobacco, positive 
tobacco plants were obtained, and T2 plants were used for 
subsequent experiments. The flower colour of three PsMYB44 
transgenic lines at the full-flowering stage was much lighter 
than that of WT (Fig. 5A). PCR and qRT-PCR were used to 
analyse the presence and expression level of PsMYB44, and 
PsMYB44 was strongly expressed in three transgenic plants, 
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with an average of 834.4-fold of WT (Fig. 5B). Furthermore, 
PsMYB44 transgenic flowers were subjected to measurement of 
colour indices, HPLC analysis and tobacco DFR gene expres-
sion analysis. As shown in Fig. 5C–E, the a* value representing 
red colour was significantly lower in PsMYB44 transgenic 
flowers compared with WT, and the anthocyanin accumula-
tion also decreased by an average of 42.3 %. In addition, the 
tobacco DFR gene expression was repressed under exogenous 
overexpression of PsMYB44. Overall, these results demon-
strated that PsMYB44 could negatively regulate anthocyanin 
biosynthesis by affecting DFR gene expression in plants.

Silencing PsMYB44 suppresses blotch formation in P. suffruticosa

Given that the genetic transformation system has not been 
established in P.  suffruticosa, a TRV-based VIGS transient 
transformation assay was performed, and a TRV2-PsMYB44 
silencing vector was applied specifically to silence the mRNA 
level of PsMYB44 in ‘High noon’. After 7 days, PCR showed 
the successful transformation of PsMYB44 in P.  suffruticosa 
petals, and qRT-PCR was used to analyse the expression level 
of PsMYB44, which indicated that the PsMYB44 transcrip-
tion level was strongly silenced in PsMYB44-silenced petals, 
with a decrease of 88.9 % compared with WT (Supplementary 
Data Fig. S7). As shown in Fig. 6A, PsMYB44-silenced petals 
demonstrated darker blotch colour, and the red colour repre-
senting the a* value was higher than that in WT, whereas the 

yellow colour representing the b* value was much lower than 
that in WT (Fig. 6B). To investigate the reason for this, HPLC 
analysis was performed, and the red colour, representing total  
anthocyanin contents, and yellow colour, representing  
total anthoxanthin contents, were measured. We found that the 
total anthocyanin content increased by 16.1  % in PsMYB44-
silenced petals, and the main anthocyanin component 
cyanidin-3,5-di-O-glucoside (Cy3G5G) made the main con-
tribution, which increased by 29.1 % (Fig. 6C, D). Regarding 
anthoxanthins, the total anthoxanthin content of PsMYB44-
silenced petals decreased by 12.3  % (Fig. 6E). Furthermore, 
the expression level of PsDFR was activated and increased 4.9-
fold in PsMYB44-silenced petals compared with WT (Fig. 6F). 
Taken together, these results suggested that silencing PsMYB44 
activated PsDFR expression and redirected metabolic flux to 
anthocyanin biosynthesis, which promoted more anthocyanin 
accumulation in P. suffruticosa blotch areas.

DISCUSSION

The anthocyanin biosynthesis pathway and its related MYB 
regulators have been characterized widely in model woody and 
herbaceous plants and showed subtle variations among them 
(Stracke et al., 2007; Yamagishi et al., 2010; An et al., 2019). 
To date, literature reports on transcriptional regulation of antho-
cyanin biosynthesis focus mainly on MBW positive regulators 
or MYB repressors represented by Arabidopsis AtMYB4 and 
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Fragaria × ananassa FaMYB1 (Aharoni et al., 2001; Wang et 
al., 2020; Chen et al., 2022). Meanwhile, some atypical repres-
sors have recently been identified in plants (An et al., 2019; 
Wang et al., 2022), and MYB44-like transcription factors are 
one of them. The MYB44-like transcription factors have been 
verified to participate in abiotic stress or the ABA response 
(Persak et al., 2014; Kim et al., 2017). To date, anthocyanin 
biosynthesis-related MYB44-like transcription factors have 
been identified in S. tuberosum, I. batatas and Malus crabapple 
(Liu et al., 2019; Wei et al., 2020; Li et al., 2021a; Meng et 
al., 2022), but the reports are still insufficient, and further in-
vestigation is required, especially regarding the regulation of 
flower colour and petal blotch formation. To study the potential 
regulatory mechanism of MYB44-like transcription factors on 
blotch formation in P. suffruticosa, in this study we searched 
for MYB44-like transcription factors based on P. suffruticosa 
transcriptome data. Eventually, one MYB44-like transcription 
factor, tentatively named PsMYB44, was found. Similar to other 
MYB44-like transcription factors in plants, PsMYB44 had a 
complete canonical repressive motif in its C-terminal, which 
has been verified as the embodiment of the repressor character-
istic. In S. tuberosum, the repressive ability of StMYB44-2 was 
much lower than that of StMYB44-1 owing to one amino acid 

variation in the C2 motif, indicating that the sequence is crucial 
for its repressive ability (Liu et al., 2019). In terms of phylo-
genetic relationships, PsMYB44 and MYB44-like transcrip-
tion factors were clustered into a branch, and other members, 
such as M. domestica MdMYB6, S. tuberosum StMYB44-1 and 
StMYB44-2, have been reported to inhibit the biosynthesis of 
anthocyanin (Liu et al., 2019; Xu et al., 2020). Among these 
members, PsMYB44 shared 79 % homology with StMYB44-
1, which reduced anthocyanin accumulation in S. tuberosum 
under high temperature stress (Liu et al., 2019).

The spatial and temporal expression patterns of PsMYB44 
in ‘High noon’ petals at different developmental stages were 
revealed by qRT-PCR. The PsMYB44 expression in the non-
blotch areas was always higher than that in the blotch areas 
and reached the highest level in non-blotch areas at S4. It is 
worth noting that PsMYB44 expression level increased grad-
ually with blotch colour fading. These results indicated that 
PsMYB44 was negatively correlated with blotch formation, 
both temporally and spatially. Petal blotches caused by spa-
tially differential expression of transcription factors have been 
identified in Clarkia gracilis and Mimulus (Yuan et al., 2014; 
Lin and Rausher, 2020). Three positive R2R3-MYB tran-
scription factors (CgsMYB12, CgsMYB6 and CgsMYB11) 
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in C. gracilis and two positive R2R3-MYB transcription fac-
tors (MlPELAN and MlNEGAN) in Mimulus were differen-
tially expressed in the different regions of the petals (Yuan et 
al., 2014; Lin and Rausher, 2020), whereas negative R2R3-
MYB transcription factors were rarely identified. Regarding 
MYB44-like transcription factors, I. batatas IbMYB44.1-3 was 
highly expressed in the roots of orange or white sweetpotato 
cultivars but not red (Li et al., 2021a). In Malus crabapple, 
MrMYB44-like1–3 all showed opposite expression patterns to 
leaf anthocyanin content (Meng et al., 2022). This meant that 
MYB44s might share a common negative regulatory function 
with them.

Given that PsMYB44 is always negatively correlated with 
blotch formation and that multiple lines of evidence have shown 
that MYB proteins have impacts on anthocyanin-related target 
genes at the transcriptional level, the promoters of five struc-
tural genes were obtained and used in Y1H and dual-luciferase 
assays. The results showed that PsMYB44 could directly bind 
to the promoter of PsDFR in the yeast system and strongly 
suppress PsDFR promoter activity in N. benthamiana leaves. 
In Freesia hybrida, MYB repressors, such as FhMYB27 and 
FhMYBx, have been shown to participate in the anthocyanin 
feedback regulatory loop. The R2R3-MYB member FhMYB27 
transformed the activated MBW complex to a repressive com-
plex by interacting with FhTT8L, whereas R3-MYB member 

FhMYBx decreased anthocyanin accumulation by competing 
for the binding of FhPAP1 to FhTT8L (Li et al., 2020). In 
P. persica, both the R3 domain located in the bHLH-binding site 
and the C1/2 motif in the C-terminal of PpMYB18 conferred 
repressive activity (Hui et al., 2019). In our study, the bHLH-
interacting motif was not found in the amino acid sequence 
of PsMYB44, and the Y2H assay also showed that PsMYB44 
could not interact with PsbHLH1-3 proteins, indicating that 
PsMYB functioned as an anthocyanin repressor independent 
of the bHLH cofactors. In S. tuberosum, StMYB44-1 inhibited 
anthocyanin biosynthesis by suppressing expression level of 
StDFR (Liu et al., 2019), and the same results were obtained 
here in P. suffruticosa. In Arabidopsis, the MYB SG22 family 
comprises AtMYB44, AtMYB70, AtMYB73 and AtMYB77, 
which are related to ethylene perception, signalling and re-
sponse to abiotic stress (Liu et al., 2011; Shim et al., 2013; 
Bian et al., 2020). To our knowledge, this is the first time that an 
MYB44-like member has been isolated in P. suffruticosa, and it 
was identified as a negative anthocyanin biosynthesis regulator 
in petals.

When tobacco heterologous transformation was introduced 
to study the function of PsMYB44, the PsMYB44 transgenic 
tobacco flowers were significantly whitened, the total antho-
cyanin content was reduced by an average of 42.3 %, and the 
PsDFR homologous gene NtDFR in tobacco was also strongly 
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inhibited. Overexpression of Malus crabapple MrMYB44-
like1–3 in apples results in discoloured red peel, and similar 
results were obtained in red-skinned pears (Meng et al., 2022). 
Furthermore, ‘High noon’ was used to verify the function of 
PsMYB44, and much redder blotch colours were observed in 
PsMYB44-silenced petals. Meanwhile, the total anthocyanin 
content accumulated more in blotch areas with a reduction in 
anthoxanthins, and this might be attributed to the activation 
of PsDFR in PsMYB44-silenced petals redirecting the meta-
bolic flux of flavonoids to anthocyanin biosynthesis. Silencing 
Malus crabapple MrMYB44-like genes in transgenic leaf discs 
activated expression of MrPAL, MrCHS, MrCHI, MrDFR 
and MrANS to accumulate more anthocyanins (Meng et al., 
2022). Overall, few studies have focused on the role of MYB44 
in anthocyanin biosynthesis, and the specific mechanism of 
PsMYB44 needs to be investigated further.

In this study, we demonstrated that the R2R3-MYB tran-
scription factor PsMYB44 targeted the promoter of PsDFR and 
inhibited its expression in P. suffruticosa petals, which was a 
key factor in catalysing the conversion of dihydroqueretin to 
leucocyanidin. These findings not only revealed the regulatory 
effect of MYB44-like transcription factor on blotch formation 
but also laid a theoretical foundation for the study of the feed-
back regulation mechanism of anthocyanin biosynthesis in 
P. suffruticosa.

CONCLUSIONS

In conclusion, this work successfully isolated a new blotch 
formation-related transcription factor, PsMYB44, from 
P. suffruticosa petals. PsMYB44 belonged to the MYB SG22 
family and have two typical repressive motifs. PsMYB44 
was localized in the nucleus and showed significantly high 
expression in non-blotch areas, which was opposite to the 
spatial distribution of blotches. PsMYB44 negatively regu-
lates blotch formation by targeting PsDFR promoter and in-
hibits its promoter activity, with an inhibition ratio of 60.0 %. 
Moreover, overexpression of PsMYB44 reduced anthocyanin 
biosynthesis in tobacco flowers by 42.3  %, whereas silen-
cing PsMYB44 resulted in a darker blotch in P. suffruticosa 
petals. This study has revealed the molecular mechanism 
of the MYB44-like transcription factor in regulating petal 
blotch formation in P. suffruticosa, which provides a refer-
ence for the molecular breeding of blotched cultivars in the 
future.
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