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Abstract
Hereditary cancer syndromes (HCSs) are arguably the most frequent category of 
Mendelian genetic diseases, as at least 2% of presumably healthy subjects carry 
highly-penetrant tumor-predisposing pathogenic variants (PVs). Hereditary 
breast-ovarian cancer and Lynch syndrome make the highest contribution to 
cancer morbidity; in addition, there are several dozen less frequent types of 
familial tumors. The development of the majority albeit not all hereditary 
malignancies involves two-hit mechanism, i.e. the somatic inactivation of the 
remaining copy of the affected gene. Earlier studies on cancer families suggested 
nearly fatal penetrance for the majority of HCS genes; however, population-based 
investigations and especially large-scale next-generation sequencing data sets 
demonstrate that the presence of some highly-penetrant PVs is often compatible 
with healthy status. Hereditary cancer research initially focused mainly on cancer 
detection and prevention. Recent studies identified multiple HCS-specific drug 
vulnerabilities, which translated into the development of highly efficient thera-
peutic options.
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Core Tip: There are many reviews describing particular types of hereditary cancer syndromes (HCSs) (e.g., 
hereditary breast-ovarian cancer, Lynch syndrome, Li-Fraumeni syndrome, etc.). However, for the last 15-
20 years there were no publications providing a general overview on familial cancers. Our paper describes 
mechanisms underlying genetic cancer predisposition, lists major types of HCSs, and comments on 
therapeutic advances in the management of hereditary tumors.
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INTRODUCTION
Hereditary cancer syndromes (HCSs) are a heterogeneous group of genetic diseases, which are 
associated with significantly increased risk of tumor development. There is a number of severe inborn 
disorders characterized by profound multiorgan failures, where cancer susceptibility constitutes only a 
part of clinical presentation of the disease (e.g., Bloom syndrome, Fanconi anemia, Nijmegen breakage 
syndrome, ataxia-telangiectasia, etc.). Most of these syndromes involve biallelic inactivation of genes 
involved in DNA repair and are characterized by severe immune deficiency[1,2]. Subjects affected by 
“genuine” HCSs usually do not have any detectable phenotypic malfunctions, they differ from truly 
healthy people only by a highly elevated propensity to develop malignant disease in certain organs.

Hereditary cancers apparently represent the most common category of vertically transmitted 
disorders. Indeed, while the occurrence of the best known genetic diseases, e.g., cystic fibrosis or 
phenylketonuria, usually falls below 1:10000, the population frequency of BRCA1/2-associated 
hereditary breast-ovarian cancer (HBOC) or MLH1/MSH2-linked Lynch syndrome is about 25-30 times 
higher and approaches approximately 1:300–1:400[3-6]. Collectively, at least 2% of presumably healthy 
subjects carry germline PVs associated with highly increased and often a nearly-fatal risk of a certain 
cancer type, and these estimates can be significantly higher in populations with pronounced founder 
effect[5,7].

Earlier studies on HCSs usually assumed that almost all carriers of pathogenic alleles are destined to 
develop cancer, i.e. they considered mainly families and genes with almost 100% disease penetrance. 
The development of genetic technologies and the availability of large collections of cancer patients and 
healthy subjects resulted in the discovery of genes, whose alteration is associated with less pronounced 
but still medically relevant (2-3-fold) increase of cancer risk. These moderately penetrant alleles rarely 
cause familial clustering of malignancies and present a challenge for defining disease-preventive 
strategies. Furthermore, unbiased case-control studies revealed that earlier family-based HCS investig-
ations overestimated disease risks for the majority of cancer genes; in fact, seemingly none of the well-
established HCS genes has a complete penetrance, with the most of estimates falling within 40%–80% 
probability of tumor development for germline pathogenic variant (PV) carriers[4-6,8,9].

Virtually all HCSs are more or less organ-specific, i.e. they mainly manifest by cancers arising in 
particular anatomic sites or tissues. However, the development of hereditary cancer registries and large 
data sets led to the understanding that many HCSs are associated with a wider spectrum of cancers than 
was initially suggested, although most of the newly added tumor types are characterized only by a 
marginal increase of their lifetime risk. For example, BRCA1 and BRCA2 were discovered as breast-
ovarian cancer genes. Recent data indicate that carriers of BRCA1/2 PVs may have a borderline elevation 
of the probability of development for almost all major cancer types[10-16].

MECHANISMS OF HEREDITARY CANCER PREDISPOSITION
The acquisition of a single mutation in oncogene or suppressor gene is usually fully tolerable for a 
human cell due to the existence of multiple cancer-protecting biological mechanisms. The process of 
malignant transformation ultimately requires accumulation of several cancer-driving events in the same 
cell clone. Consequently, when a single cancer-associated PV is inherited from the parents, its carrier 
remains phenotypically healthy despite the presence of the pathogenic allele in every cell of the body. 
However, the number of additional events necessary for cancer manifestation decreases by one, 
therefore the probability of tumor development in this subject is manifold higher as compared to 
general population (Figure 1).

The majority of known HCS genes are suppressor genes, which require biallelic inactivation to exert 
their action. When inactivating PV in a single allele is inherited, the remaining copy of the gene retains 
its function and the normal health status is preserved. The process of malignant transformation is 
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Figure 1 Mechanisms of hereditary cancer predisposition. Single cancer-driving mutation is usually fully compensated, therefore carriers of germline 
pathogenic variants may remain healthy during a prolonged period of time. However, since every cell in the target organ already contains one alteration in cancer 
gene, the probability of accumulation of a critical mass of additional oncogenic mutations in any given cell clone is high, and cancer manifestation often occurs at a 
relatively young age.

usually triggered by the “second hit”, i.e. by a somatic inactivation of the remaining allele occurring in 
any cell located within the target organ. This mechanism is highly characteristic for the best known HCS 
genes, e.g., RB1, BRCA1, BRCA2, MLH1, MSH2, etc[4,17-19]. There are examples of mutated suppressor 
genes, which contribute to the development of hereditary cancers without mandatory inactivation of the 
remaining gene copy. It is suggested that the reduced gene dosage, so-called haploinsufficiency, is a 
primary cause of malignant transformation in these situations. Interestingly, some genes, e.g., PALB2 
and CHEK2, may utilize both mechanisms: Indeed, instances of both monoallelic and biallelic 
inactivation of these genes in human tumors have been described in the literature, and there are clear 
biological differences between carcinomas associated with haploinsufficiency vs second-hit loss-of-
function of the above genes[20,21].

A few human cancers are caused by the inheritance of activated oncogene. The best known example 
is the syndrome of multiple endocrine neoplasia (MEN) type 2A and 2B (now sometimes classified as 
MEN2 and MEN3, respectively), which is associated with gain-of-function PVs in RET receptor tyrosine 
kinase[22].

HCSs have a Mendelian mode of inheritance. Most of currently described hereditary cancers are 
transmitted by autosomal-dominant mechanisms. Recessive inheritance of cancer predisposition is more 
difficult to study, especially for common tumor types, therefore only a few examples of biallelic cancer-
predisposing gene defects have been identified so far[23,24]. There are also reports describing instances 
of oligogenic inheritance, i.e. the combination of genetic variants resulting in significant increase of 
cancer risks[25-28].

Hereditary cancers usually have peculiar phenotypic characteristics attributed to their mechanisms of 
development[29]. Most of HCSs arising in adults manifest after the peak of reproductive activity, so 
cancer predisposition is transmitted through generations virtually without negative selection and HCS 
patients often describe multiple instances of the same disease in their relatives. Presence of the first 
cancer-predisposing mutation in every cell of the human organism ensures highly increased risk of 
cancer disease as long as target organs or their parts remain in the body. Consequently, HCSs often 
manifest by multiple primary malignancies[30]. Furthermore, given that the cancer development in PV 
carriers requires less additional somatic events as compared to genetically healthy subjects, hereditary 
cancers commonly demonstrate younger age at onset. The development of HCS usually involves gene-
specific pathways, therefore these cancers are often distinguished by predetermined molecular portrait 
and histological appearance. For example, BRCA1-associated breast carcinomas are usually triple-
negative, chromosomally unstable and carry somatic mutation in the TP53 suppressor gene[31-34]. All 
these features, i.e., family cancer history, presence of multiple primary tumors, young age at onset, and 
especial phenotypic characteristics, represent well-recognized clinical signs of HCSs[29].
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MAJOR TYPES OF HCSs 
Breast and ovarian carcinomas
It is difficult to discuss hereditary breast cancer (BC) and hereditary ovarian cancer (OC) as two separate 
disease entities, because the best known and the most frequent genetic causes for these diseases are 
represented by PVs located within the same genes, BRCA1 and BRCA2 (Figure 2). Nevertheless, there 
are essential differences between BC and OC, which may critically affect genetic investigations of these 
diseases. The lifetime risk for BC in Western countries is around 1:8, therefore about 1 out of 60-70 
mother-daughter or sister-sister pairs would share this disease just by chance[35,36]. OC is significantly 
less common, with population occurrence approaching close to 1:60–1:70; therefore, the probability of 
“random” co-occurrence of OC in two female first-degree relatives is very low, falling within 
1:3500–1:5000[36,37]. Furthermore, while two-thirds of OC cases belong to its major histological entity, 
i.e. high-grade serous ovarian carcinoma, breast carcinomas are characterized by significant biological 
diversity manifested by differences in their receptor status and other essential tumor features[38,39]. It 
appears that hereditary BC research has more confounding factors as compared to the analysis of OC 
familial clustering.

The causes of HBOC syndrome are considerably better understood than the genetic basis of 
hereditary BC alone. There are two major contributors to BC and OC predisposition, BRCA1 and BRCA2 
(Table 1). Both these genes are involved in double-strand DNA repair by homologous recombination. 
BRCA2-associated cancers tend to have older age at onset as compared to BRCA1-driven malignancies. 
PVs in both BRCA1 and BRCA2 genes confer approximately 70% lifetime risk for BC; the cumulative 
risk for OC is estimated to be 44% and 17% for BRCA1 and BRCA2 genes, respectively[40]. Importantly, 
these collective calculations may somehow be misleading, because some PVs located within these genes 
predispose preferentially to BC, while others are associated with more pronounced OC risk; in fact, 
there are so-called BC and OC cluster regions located within these genes[41]. There are multiple genetic 
and non-genetic factors, which modify the risk of cancer disease in BRCA1/2 PV carriers[42]. BRCA1/2 
make significant contribution to cancer morbidity: These PVs are observed in approximately 2%–5% of 
BC patients and up to 25%–30% of women diagnosed with high-grade serous OC[5,6,43-46]. In addition 
to BRCA1 and BRCA2, some RAD51 paralogs, namely RAD51C and RAD51D, predispose both to BC 
and OC[5,47,48]. Recent data also suggest the involvement of RAD51B germline PVs in breast- OC 
susceptibility[49]. The occurrence of PVs in newly described HBOC genes is an order of magnitude 
lower as compared to BRCA1/2[5,47].

PALB2 is the third most important BC-predisposing gene after BRCA1 and BRCA2[50]. Its penetrance 
towards BC is similar to BRCA2, while the data regarding the role of PALB2 PVs in OC predisposition 
are conflicting[47,51]. There are two middle-penetrance genes, ATM and CHEK2, which are associated 
with 2-3-fold elevation of the risk of BC development but are unlikely to contribute to increased OC 
susceptibility[47]. Moderate BC predisposing roles were also suggested for NBN (NBS1), BLM, RECQL, 
FANCM, BARD1 and several other genes, but, contrary to the evidence obtained for ATM and CHEK2, 
these observations have not been uniformly reproduced across distinct data sets[5,6,47,52-54]. BRIP1 is 
the only known gene, which is associated with hereditary OC but not with hereditary BC[47]. There are 
no mechanistic explanations, why some genes predispose to BC, others to OC, and a few to both BC and 
OC.

Many “novel” BC/OC-predisposing loci were discovered by candidate gene approach, where genes 
with similar to BRCA1/2 functions, i.e., the participants of DNA repair pathways, were selected for DNA 
testing in case-control studies. These functional considerations also influenced the interpretation of 
whole-exome studies, i.e., the priority was given to genes involved in the maintenance of cellular 
genome[55,56]. Overall, exome sequencing studies largely failed to reveal novel BC predisposing genes 
whose contribution to BC morbidity is comparable with the impact of BRCA1/2, PALB2 or CHEK2 
germline PVs[53,57,58].

BC may arise as a part of multiorgan cancer syndrome. Germline TP53 PVs predispose to Li-
Fraumeni syndrome, which is manifested by a wide spectrum of tumors. TP53 PVs are particularly 
common in very young patients with BC[59]. Recent large-scale next-generation sequencing (NGS) 
studies suggest that mutated TP53 can be found in non-selected BC patients, which do not have 
personal or family history of non-breast tumors[60-63]. A rare BC subtype, lobular BC, is associated 
with CDH1 germline PVs predisposing to diffuse stomach cancer[47,64].

There are convincing data indicating that patients with Lynch syndrome, i.e., hereditary predis-
position to colorectal and endometrial cancer, develop OC more often than in general population[46,65-
69]. Unlike BRCA1/2-driven tumors, Lynch syndrome associated OCs often have non-serous histology
[68]. Several other multiorgan cancer syndromes also render marginally increased OC risk[46,70].

Exome sequencing studies of OC families identified several promising OC-predisposing candidates, 
e.g., ANKRD11 and POLE genes[71]. Some data indicate that protein-truncating germline PVs in the 
ERCC3 gene may confer increased OC risk[72]. Validation of these findings is complicated due to rarity 
of BRCA1/2-independent familial OC clustering.

Small cell carcinomas of the ovary, hypercalcemic type (SCCOHTs) constitute a rare variety of OC. 
SCCOHTs are associated with germline PV in the SMARCA4 gene, which plays a role in chromatin 
remodeling[70].
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Table 1 Health impact of major hereditary cancer genes: Frequency of pathogenic variants in non-selected subjects and oncological 
patients

Gene Frequency of pathogenic variants in 
population Contribution in cancer morbidity Ref.

BRCA1 Approximately 0.1%; > 1% in some founder 
populations

Breast cancer: 1%-3%; High-grade serous ovarian cancer: 15%-
30%

[5,6,45,230-
233]

BRCA2 Approximately 0.3%; > 1% in some founder 
populations

Breast cancer: 1%-3%; High-grade serous ovarian cancer: 7%-
12%; Prostate cancer: 2%-4%; Pancreatic cancer: 2%-3%

[5,6,45,99,102,
112,232,233]

PALB2 Approximately 0.1% Breast cancer: Approximately 0.5%-1% [5,6,45]

CHEK2 0.5%-0.7% Breast cancer: 0.5%-2%; Moderately elevated frequencies across 
several cancer types

[5,6,25,113,
234,235]

ATM 0.3%-0.5% Breast cancer: 0.5%-0.8%; Moderately elevated frequencies 
across several cancer types

[5,6,45,99,102,
113]

MLH1, MSH2, MSH6, 
PMS2, EPCAM

0.02%-0.05% for MLH1, MSH2, MSH6, EPCAM 
each; approximately 0.1% for PMS2

Colorectal cancer: 1%-6%; Endometrial cancer: 2%-6% [5,6,76,236-
238]

CDH1 < 0.005% Diffuse gastric cancer: 7%; Lobular breast cancer: 0.3% [5,6,92]

TP53 < 0.01% Breast cancer in women < 30 years old: 2%-6%; Pediatric 
cancers: 8%; Osteosarcoma: 4%

[161,239,240]

HOXB13 0.2%-0.4% Prostate cancer: Approximately 1% [112,117,241]

Colorectal tumors 
The accumulation of multiple cases of colorectal cancer (CRC) in pedigrees was systematically described 
in 1967 by Lynch et al[73]. Lynch syndrome, also called hereditary non-polyposis colorectal cancer 
(HNPCC), is the best-known genetic cause of CRC predisposition. HNPCC is associated with hetero-
zygous germline inactivation of genes involved in DNA mismatch repair (MMR), namely MLH1, MSH2, 
MSH6 or PMS2 (Table 1). In addition, some Lynch syndrome patients carry deletion of the last portion 
of epithelial cell adhesion molecule (EPCAM), a gene located upstream to the MSH2 genomic segment. 
This deletion results in the loss of transcription of the termination polyadenylation signal at the end of 
EPCAM and consequent emergence of the read-through EPCAM-MSH2 fusion RNA message; 
furthermore, cells expressing the EPCAM-MSH2 chimera demonstrate methylation of the MSH2 
promoter and failure to produce functional MSH2 protein[74]. The genetic causes of Lynch syndrome 
are apparently limited to the germline inactivation of MLH1, MSH2, MSH6 or PMS2 genes, as attempts 
to link this disease with PVs in other participants of MMR were unsuccessful[4]. The lifetime risk of 
CRC for the carriers of pathogenic alleles falls within 40%–70% for MLH1 and MSH2 genes, however it 
reaches only 10%–20% for MSH6 and PMS2 heterozygous individuals. Lynch syndrome contributes 
approximately to 3% of CRC morbidity in Western countries, however this estimate is significantly 
lower in some other populations[3,4,75-79]. In addition to CRC, Lynch syndrome is associated with a 
highly elevated risk of endometrial cancer as well as increased susceptibility to gastric, small bowel, 
biliary, urothelial, ovarian, brain, and some other malignancies. The spectrum and the risk of 
extracolonic and extraendometrial cancers varies depending on the gene involved[4,77,80]. The 
development of tumors in Lynch syndrome patients involves somatic second-hit inactivation of the 
remaining copy of the disease-causing gene[4].

Malfunction of MMR in HNPCC-associated tumors results in a high tumor mutation burden (TMB). 
Short repetitive sequences, so-called microsatellites, are particularly prone to MMR defects. 
Consequently, Lynch syndrome tumors have high-level microsatellite instability (MSI-H) diagnosed by 
electrophoretic detection of multiple changes in the length of mononucleotide repeats. Electrophoretic 
equipment is not a component of the standard morphological laboratory; therefore, many hospitals 
chose to use immunohistochemical (IHC) detection of MMR deficiency (MMR-D). Indeed, tumors 
arising in carriers of MLH1 PVs lack the expression of MLH1 and PMS2 proteins, while MSH2-related 
CRCs show concomitant loss of MSH2 and MSH6 staining. Germline heterozygosity for MSH6 or PMS2 
genes is accompanied by tumor-specific IHC negativity for MSH6 or PMS2, respectively[77,81]. 
Importantly, only a minority of tumors with MSI-H/MMR-D phenotype are hereditary cancers. MSI-
H/MMR-D is also highly characteristic for sporadic colorectal, gastric and endometrial carcinomas, 
especially for malignancies occurring in elderly patients. Inactivation of MMR in sporadic tumors is 
usually attributed to the down-regulation of the MLH1 gene via promoter hypermethylation[81]. For the 
time being, MSI-H/MMR-D screening is recommended for all patients with CRC[82]. The selection of 
patients with MSI-H/MMR-D phenotype for subsequent germline testing may include consideration of 
age, family history of cancer, tumor location, and, in some instances, molecular characteristics of cancer 
cells. For example, Lynch syndrome related CRCs usually do not have mutation in the BRAF oncogene 
and demonstrate lack of methylation in the MLH1 gene promoter[81]. Increasing availability of NGS is 
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Figure 2 Main hereditary cancer genes and organs at risk. This figure illustrates major hereditary cancer types observed in females, males, adults of both 
genders, and children.

likely to result in the acceptance of uniform germline testing for all patients with microsatellite unstable 
colorectal and endometrial cancer, therefore the significance of procedures applied for the patient 
selection may diminish in the near future.

CRC familial clustering commonly occurs irrespective of MSI-H/MMR-D and Lynch syndrome. 
Surprisingly, the attempts to identify other than Lynch syndrome hereditary CRC genes were largely 
unsuccessful. Besides MLH1, MSH2, MSH6, PMS2 and EPCAM, there is only one hereditary CRC gene 
with proven significance, RPS20. However, RPS20 is altered only in a minority of multi-case CRC 
families and its impact is limited to a few selected populations[4,76,79].

Some germline PVs predispose to polyposis of gastrointestinal tract and increased risk of malignant 
transformation. There is a number of polyposis-related genes, which are associated with several 
scenarios of the disease development, e.g., either the emergence of CRC in combination with the 
presence of multiple polyps, or, alternatively, the appearance of CRC in the absence of benign colon 
lesions. Some polyposis syndromes are transmitted by autosomal-dominant mode (APC, POLE, POLD1, 
STK11, SMAD4, BMPR1A, PTEN, GREM1, RNF43), while others involve recessive inheritance and 
biallelic gene inactivation in affected patients (MUTYH, NTHL1, MSH3, MBD4)[23,24,83].

The most known polyposis gene, adenomatous polyposis coli (APC), is associated with very severe 
impairment of gastrointestinal tract, although some hypomorphic APC variants cause an attenuated 
form of this disease. APC is a tumor suppressor gene, its inactivation results in up-regulation of the 
WNT signaling pathway. The incidence of APC is around 1:10000, and approximately 30% of detected 
APC PVs are de novo mutations. In addition to colon polyposis and CRC, there are some common 
extracolonic features of this disease, in particular, duodenal polyps and carcinomas, stomach polyps, 
osteomas, desmoid tumors and congenital hypertrophy of the retinal pigmented epithelium[84].

MUTYH-associated polyposis (MAP) has a somewhat lower incidence than APC, with estimates 
approaching approximately 1:20000. MUTYH gene is involved in base excision repair (BER), therefore 
its biallelic deficiency is associated with increased risk of accumulation of oncogenic mutations. MAP is 
usually characterized by a moderate number of polyps and relatively late disease onset. However, the 
probability of CRC development in MAP patients is high and approaches approximately 80%. MUTYH-
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driven CRCs often contain KRAS G12C substitution. Approximately 5% of patients with KRAS G12C-
mutated CRC are biallelic carriers of MUTYH pathogenic alleles, therefore somatic KRAS status may be 
used as an indicator for MAP screening in CRC patients. Extracolonic manifestations of MAP are 
relatively uncommon, with the exception of highly increased risk for kidney cancer[83]. Most patients of 
European ancestry with genetic MAP diagnosis are homozygotes or compound heterozygotes for 
founder MUTYH alleles, Y165C and/or G382D[3,84-86].

NTHL1-related polyposis is similar to MAP, as it is caused by germline biallelic inactivation of the 
gene involved in BER. It is exceptionally rare, with estimated incidence falling below 1:100000. Various 
extracolonic tumors are highly characteristic for this syndrome, with a particularly elevated risk for BC
[24]. A recent study identified MBD4, another participant of BER pathway, as a genetic cause of 
polyposis and multiorgan cancer predisposition[83].

Heterozygous germline PVs in POLE and POLD1 genes predispose to gastrointestinal polyposis, 
CRC, endometrial carcinomas and some other malignancies. Inactivation of these genes results in failure 
of proofreading activities of DNA polymerases, therefore tumors arising in carriers of POLE and POLD1 
pathogenic alleles contain ultrahigh number of somatic mutations[24,76,85,87].

Gastric cancer
Gastric cancer (GC) is among the most common malignancies worldwide. Its incidence is highly 
influenced by environmental and behavioral factors: GC risk is significantly associated with Helico-
bacter pylori infection, low hygienic standard, high consumption of salt, “Northern” diet, alcohol abuse, 
etc.[88]. Consequently, family clustering of GC is not necessarily attributed to genetic factors, but may 
also be observed due to sharing of some GC-predisposing attitudes.

Strong evidence for the role of heredity is obtained only for diffuse GC, a histological variety of GC 
characterized by poor differentiation and presence of signet-ring cells[9,89]. The causative gene, CDH1, 
was initially discovered in New Zealand Maori families characterized by an exceptionally high 
incidence of diffuse GC[90]. CDH1 encodes E-cadherin, a protein involved in cell adhesion. CDH1 
germline PVs are uncommon in the majority of analyzed populations, with the frequency being around 
1:5000–1:20000[5,6,91], while the proportion of CDH1 heterozygotes in consecutive series of GC patients 
approaches approximately 7% for diffuse GC and 2% for non-selected GC[92]. A few hundred CDH1-
related GC pedigrees have been described worldwide. Presence of CDH1 germline PVs is also 
associated with high risk of lobular BC, a peculiar and relatively uncommon variety of BC disease. 
Family studies estimated penetrance of CDH1 PVs to be around 70% for GC and 40% for BC[9]. 
Unbiased NGS data sets revealed instances of CDH1 germline PVs unrelated to clinically diagnosed 
diffuse GC, therefore, there are yet unknown factors modifying phenotypic consequences of CDH1 
heterozygosity[5,6,91]. Genetic analysis of CDH1 PV-negative diffuse GC families led to the identi-
fication of subjects with inactivating PVs in CTNNA1 gene, which encodes alpha-catenin and interacts 
with beta-catenin and E-cadherin[9].

There are studies suggesting the role of PVs in double-strand DNA repair genes in GC predisposition. 
For example, contribution of PALB2 PVs has been suggested in some investigations[93,94], however the 
analysis of PALB2-related families did not confirm these findings[95]. GC is likely to be a part of 
BRCA1/2 syndrome, as some GCs arise on BRCA1/2-mutated background and demonstrate somatic loss 
of the remaining allele of the involved gene[13,96,97]. Lynch syndrome and some hereditary polyposis 
syndromes may involve malignant transformation of stomach epithelia. The lifetime GC risk in carriers 
of MLH1 or MSH2 PVs approaches 7%–8%. Specific nucleotide substitutions located in the promoter 1B 
region of the APC gene cause a condition, which is called gastric adenocarcinoma and proximal 
polyposis of the stomach (GAPPS). GAPPS is attributed to down-regulation of APC transcription in 
gastric mucosa; interestingly GAPPS patients do not have extensive involvement of the colon because 
APC expression in colonic epithelium is regulated by the promoter 1A[9,23,24,84,98].

Pancreatic cancer
Predisposition to pancreatic cancer (PanCa) is usually inherited as a part of multi-organ HCS. BRCA2 is 
the best-established PanCa-predisposing gene (Table 1). PVs in BRCA2 confer approximately 5%–10% 
lifetime risk of developing PanCa, which is an order of magnitude higher than in general population[99-
102]. In contrast to BRCA2, the data on the contribution of BRCA1 in PanCa morbidity are controversial
[103]. It is safe to state that if BRCA1 indeed plays a role in PanCa susceptibility, its penetrance towards 
this cancer type is significantly lower as compared to BRCA2[99-101].

The association of the PALB2 gene with familial PanCa was initially demonstrated by exome 
sequencing analysis of a PanCa patient whose sister also suffered from this disease[104]. Family-based 
studies of PALB2-related pedigrees have confirmed this association, although the risk of PanCa 
associated with PALB2 PVs is moderate[95]. Moderate-to-high elevation of PanCa risk is also charac-
teristic for ATM heterozygotes[99,105-108].

PanCa may emerge as a part of Li-Fraumeni syndrome, a disease caused by TP53 germline PVs, as 
well as a manifestation of Lynch syndrome[99,101,107]. Peutz-Jeghers syndrome (PJS) (attributed to PVs 
in STK11/LKB1) and CDKN2A-driven familial melanoma syndrome are associated with 20%–25% 
lifetime risk of PanCa[101,107,109].
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Whole-genome sequencing study of a PanCa family revealed segregation of this disease with RABL3 
truncating PV[110]. RABL3 is involved in the prenylation of KRAS protein. However, PVs in the RABL3 
gene appear to be exceptionally rare and are unlikely to significantly contribute to overall PanCa 
morbidity[111].

Prostate cancer
PVs in two genes, HOXB13 and BRCA2, are associated with more than 5-fold elevation of prostate 
cancer (PrCa) risk, and, therefore, with almost 1:2 probability of developing this disease during lifetime. 
HOXB13 is the only known gene specifically associated with PrCa (Table 1). It encodes a prostate-
specific homeobox transcription factor. Its PVs are represented by several ethnicity-specific missense 
mutations, which affect the interaction between HOXB13 protein and MEIS homeobox cofactor. 
HOXB13 PVs contribute to approximately 1% of PrCa incidence[112-114].

BRCA2 is apparently the most frequent cause of hereditary PrCa. Its penetrance towards PrCa in men 
is comparable to the risk estimates observed for BC in female BRCA2 PV carriers[103,112,114,115]. 
Similar to pancreatic cancer, evidences regarding the contribution of BRCA1 in PrCa morbidity are 
controversial, and associated risks are at best low-to-moderate[103,115,116]. The role of ATM PVs in 
PrCa predisposition is well established; ATM-heterozygous men have an approximately 2-fold elevation 
of the probability of PrCa development[112,114,117]. The impact of PALB2 PVs has been suggested in 
some studies, although systematic investigations failed to validate these findings[95]. Lynch syndrome 
associated with PVs in MSH2 and MSH6 genes may also render an increased PrCa risk[118].

Renal cell cancer
Next-generation sequencing of DNA obtained from renal cell carcinoma (RCC) patients revealed an 
unexpectedly high frequency of germline PVs: Pathogenic or likely pathogenic alleles were detected in 
41/254 (16%) analyzed subjects[119]. Approximately 5% of RCC incidence is associated with RCC-
predisposing syndromes[119]. Von-Hippel-Lindau syndrome caused by germline PVs in the von Hippel-
Lindau (VHL) gene renders approximately 30%–40% lifetime risk of RCC and is also associated with the 
development of pancreatic neuroendocrine tumors, pheochromocytomas and hemangioblastomas. PVs 
in the fumarate hydratase (FH) gene are responsible for hereditary leiomyomatosis and renal cell cancer. 
Germline PVs in MET receptor tyrosine kinase confer a fatal risk of papillary RCC. RCC is also charac-
teristic for Birt-Hogg-Dubé syndrome, a disease caused by PVs in the FLCN gene and associated with 
slowly progressing renal lesions, skin fibrofolliculomas and lung cysts[120]. The risk of various types of 
RCC is increased in patients with tuberous sclerosis syndrome[121].

Lung cancer
Genuine hereditary lung cancer (LC) is an exceptionally rare disease. The best-described cause of 
familial LC is the inheritance of the epidermal growth factor receptor (EGFR) T790M variant[122,123]. EGFR 
T790M was initially discovered as a secondary somatic mutation acquired during the course of therapy 
by EGFR inhibitors[124,125]. Subsequent studies demonstrated that some subjects carry this missense 
substitution in germline. Inborn EGFR T790M allele is associated with the development of lung tumors, 
which contain tyrosine kinase inhibitor sensitizing mutations in exons 19 and 21 of the EGFR gene[126]. 
Only a few dozen subjects carrying germline EGFR T790M allele have been described worldwide[123]. 
The frequency of the EGFR T790M allele in consecutive LC series is vanishingly low[127,128]. In 
addition to EGFR T790M, a few unique LC families with other germline pathogenic EGFR variants have 
been described[123,128]. LC may also arise as a part of Li-Fraumeni syndrome, being attributed to 
germline TP53 pathogenic allele[8,129].

Melanoma
Germline PVs in the CDKN2A gene have been detected in 20%–40% of families with multiple instances 
of cutaneous melanoma. CDKN2A PV carriers are at risk of development of other tumor types, partic-
ularly pancreatic cancer[130,131]. CDKN2A pathogenic alleles are associated with a more aggressive 
superficial spreading subtype, however there are controversial data with regard to their impact on 
melanoma-specific survival[132]. There are several described pedigrees where melanoma incidence is 
segregated with pathogenic alleles in CDK4, POT1 or TERT genes[133].

Multiple endocrine neoplasia
Multiple endocrine neoplasia (MEN) type 1 affects parathyroid glands, pancreatic islet cells and the 
anterior pituitary. It is caused by heterozygous inactivation of the MEN1 tumor suppressor gene, which 
encodes menin, a protein involved in regulation of a spectrum of biological processes. The prevalence of 
MEN1 syndrome is approximately 1:30000[22], although the population frequency of MEN1 PVs may be 
slightly higher[5]. Most of MEN1 patients demonstrate primary hyperparathyroidism caused by 
parathyroid hyperplasia. This condition is accompanied by hypercalcemia with varying degrees of its 
consequences. Duodeno-pancreatic neuroendocrine tumors of pancreas are represented by gastrinomas, 
non-functioning tumors, insulinomas, glucagonomas and vasoactive intestinal peptide producing 
tumors. Anterior pituitary neoplasms include prolactinomas as well as somatropin-, adrenocorticotropic 
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hormone- and gonadotropin-secreting adenomas. In addition to the above three organs, MEN1 may 
manifest by adrenocortical, bronchopulmonary and thymic neuroendocrine tumors as well as by a 
number of non-endocrine neoplasms[134]. Unexpectedly, a strong association between MEN1 heterozy-
gosity and highly increased risk of acute pancreatitis has been demonstrated in a recent study[108]. 
Some patients, who have MEN1-related phenotype, but lack PVs in the MEN1 gene, carry CDNK1B 
pathogenic alleles. CDNK1B-related MEN is now classified as MEN4 syndrome[22].

MEN2A (MEN2) and MEN2B (MEN3) syndromes are caused by activating PVs in RET receptor 
tyrosine kinase. Both these conditions are strongly associated with the development of medullary 
thyroid carcinoma (MTC). MTC is a relatively rare subtype of thyroid cancer, however germline RET 
pathogenic alleles make a very significant contribution to the incidence of this disease being detected in 
about a quarter of MTC patients. Besides MTC, approximately half of subjects with MEN2A syndrome 
develop pheochromocytomas, and up to a third of MEN2A cases are characterized by hyperpara-
thyroidism. The prevalence of MEN2A is similar to the one for MEN1. MEN2A is caused by RET PVs in 
codon 634, or less, frequently, in codons 609, 611, 618, 620 or 630. These PVs, being located in the 
extracellular domain and resulting in replacements of cysteines, induce conformational changes in RET 
protein, which facilitate dimerization and cross-phosphorylation of this receptor. There are some other 
point mutations, which do not affect cysteines and generally cause a milder disease phenotype, i.e. the 
development of MTC in the absence of other endocrine tumors; isolated MTC may also be associated 
with cysteine mutations involving other than 634 codons of the RET oncogene. MEN2B (MEN3), being 
an order of magnitude less common than MEN2A, is a significantly more aggressive disease manifested 
in the first or second decade of life with highly metastatic and potentially fatal MTC. Patients with 
MEN2B also often develop pheochromocytomas as well as some non-endocrine features, e.g., neuromas 
and musculoskeletal abnormalities. MEN2B is usually caused by RET M918T allele or, in less than 5% of 
cases, A883F substitution. These amino acid substitutions are located in the kinase domain and render 
dimerization-independent activation of RET receptor. Overall, the distinction between familial MTC, 
MEN2A and MEN2B may look counter-intuitive, as these maladies are all related to RET activating 
alleles and differ from each other mainly by the disease severity but not by underlying biological 
mechanisms[22,135,136].

Carney complex manifests with adrenocortical disease, pituitary adenomas, gonadal and thyroid 
tumors, spotty skin pigmentation, cardiac and cutaneous myxomas, and some other non-endocrine 
neoplasms. This condition is caused by PRKAR1A germline PVs[137]. There is a number of genes, 
associated with isolated endocrine cancers. Germline PVs in the WDR77 gene have been recently shown 
to predispose to papillary subtype of thyroid cancer. WDR77 is a component of a transmethylase 
complex responsible for posttranslational modification of histone H4[138]. Genetic susceptibility to 
pheochromocytoma and/or paraganglioma may be rendered by PVs affecting SDHAF2, SDHB, SDHC, 
SDHD, MAX, TMEM127 or some other genes[139]. There are instances of familial pituitary adenoma 
associated with AIP germline PVs[140,141].

Li-Fraumeni syndrome
Li-Fraumeni syndrome is caused by PVs in the TP53 gene. TP53 is apparently the best-studied tumor 
suppressor gene, which is involved in the regulation of DNA damage response, programmed cell death, 
cell cycle and several other biological processes. Population occurrence of TP53 germline heterozygosity 
is well below 1:10000, although some communities demonstrate a noticeable frequency of founder 
hypomorphic TP53 variants[5,6,142]. Earlier family-based studies suggested nearly-fatal penetrance for 
TP53 germline PVs, although recent data indicate that some carriers of TP53 pathogenic alleles manage 
to achieve late adulthood without being affected by cancer disease[8].

TP53 PVs render a highly increased risk of childhood cancers. Li-Fraumeni syndrome-associated 
pediatric malignancies include adrenal cortical carcinomas, choroid plexus carcinomas, rhabdomy-
osarcomas and medulloblastomas. Adult cancers are mainly represented by very-young-onset BC in 
females as well as lung carcinomas, osteosarcomas, soft-tissue sarcomas and brain tumors[8,63,143]. 
Breast carcinomas arising in TP53 PV carriers frequently carry HER2 amplification[144]. Li-Fraumeni 
syndrome related lung carcinomas are characterized by an exceptionally high frequency of EGFR 
somatic mutations[129,145]. Carriers of TP53 PVs also have highly elevated risk of hematological 
malignancies[146]. The analysis of specific groups of consecutive patients revealed that Li-Fraumeni 
syndrome is a significant contributor to the incidence of pediatric cancers, very-young-onset breast 
carcinomas and osteosarcomas[142,146-150].

PTEN hamartoma tumor syndrome
PTEN hamartoma tumor syndrome (PHTS) is manifested by multiple benign and malignant tumors 
affecting breast, thyroid, endometrium, skin, kidney, colon and some other organs[151-153]. It is caused 
by heterozygous inactivating PVs in the PTEN gene, which is involved in the negative regulation of 
phosphatidylinositol 3-kinase/AKT/mechanistic target of rapamycin (mTOR) pathway and plays a role 
in the regulation of cell survival, proliferation, apoptosis and various metabolic processes[152,154]. 
PTEN-related syndrome is commonly known as Cowden syndrome, however the PHTS is a more 
preferable definition as it includes some other PTEN-associated maladies, e.g., Bannayan-Riley-
Ruvalcaba syndrome and Lhermitte–Duclos disease[151,152]. Patients with PHTS often have a wide 
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range of skin and mucosal manifestations and frequently present with macrocephaly[151]. Based on 
clinical considerations, the reported frequency of PHTS is approximately 1:200000[154], although 
unbiased NGS studies suggest that approximately 1:10000 healthy people are PTEN heterozygotes[5,6]. 
Activating germline PVs in the WWP1 gene, which encodes E3 ubiquitin ligase and negatively regulates 
PTEN, were detected in some PTEN-wild-type patients with PHTS-associated tumors[155].

PJS
PJS manifests via characteristic mucocutaneous pigmentations and various polyp-related complications. 
Multiple gastrointestinal hamartomatous polyps in the affected patients are located mainly in the small 
bowel. The disease is caused by heterozygous inactivating PVs in tumor suppressor kinase STK11/LKB1. 
STK11/LKB1 is involved in the regulation of cell cycle, apoptosis and cell metabolism. Population 
occurrence of PJS is estimated to be within 1:50000–1:200000, however as many as 1 out of 10000 
apparently healthy subjects may carry STK11/LKB1 PVs[5,156]. STK11/LKB1 is a highly-penetrant 
cancer-predisposing gene. This genetic condition is associated with highly elevated risk of breast, colon, 
stomach, pancreatic and some other malignancies[156]. In addition, there are rare tumor subtypes 
specifically linked to PJS, e.g., so-called sex cord tumors with annular tubules affecting ovaries[157]. 
Clinical presentation of PJS may depend on the type of STK11/LKB1 PVs[158].

Gorlin syndrome
Gorlin syndrome [nevoid basal cell carcinoma (BCC) syndrome] is characterized by the appearance of 
BCCs and the development of odontogenic keratocysts. This disease is also associated with increased 
risk of medulloblastoma. In addition, various developmental abnormalities are frequently seen in 
patients with this condition. Gorlin syndrome is a rare disease, being observed in approximately 
1:30000–1:300000 subjects. The most frequent cause of Gorlin syndrome is a heterozygous inactivating 
PV in the PTCH1 gene. SUFU or PTCH2 pathogenic alleles have been identified in the affected subjects, 
who are mutation-negative for PTCH1. Tumor development in Gorlin syndrome patients involves 
upregulation of the Hedgehog signaling pathway due to loss of its negative regulation by PTCH1, SUFU 
or PTCH2[159]. BCC predisposition may also be rendered by heterozygous inactivating PVs in the 
PTPN14 tumor suppressor gene[160].

Pediatric cancers
It is difficult to draw a strict distinction between “pediatric” and “adult” hereditary cancers because 
many HCSs may present with various manifestations both in childhood and in the middle of life. 
Relevant examples include Li-Fraumeni syndrome, Cowden syndrome, PJS, neurofibromatosis, RET-
related malignancies, etc. Expectedly, NGS analysis of non-selected patients with pediatric cancers 
revealed elevated frequency of PVs in known cancer-predisposing genes[161,162].

Retinoblastoma was the first pediatric tumor for which the genetic origin was convincingly 
established and the causative gene was identified. Hereditary retinoblastoma is caused by germline 
inactivation of the RB1 gene. RB1, being the first cloned tumor suppressor gene, is implicated in the 
negative regulation of the cell cycle[19]. RB1 germline alterations are observed in all patients with 
familial and/or bilateral retinoblastoma as well as in 14% of subjects with sporadic unilateral 
appearance of this disease[163]. Retinoblastoma survivors are at high risk of developing other 
neoplasms, particularly sarcomas[164]. Spliceosome dysfunction has been recently shown to underlie 
the emergence of bone malignancies in RB1 heterozygotes[165].

Wilms` tumor (nephroblastoma, WT) is a relatively common pediatric cancer. The most frequent 
genetic cause of WT is a mutation in the WT1 gene, which can be associated either with isolated WT, or 
with its combination with aniridia, nephrotic syndrome and/or abnormal genitalia. WT can also be a 
part of so-called overgrowth syndromes (Beckwith-Wiedemann syndrome, Sotos syndrome, Simp-
son–Golabi–Behmel syndrome, Perlman syndrome) or several syndromes associated with a wide 
spectrum of cancers (Li-Fraumeni syndrome, Bloom syndrome, Fanconi anemia, etc.)[166].

Neurofibromatosis type 1 is caused by inactivating heterozygous PVs in the NF1 gene. NF1 is a 
negative regulator of the RAS signaling pathway. NF1 heterozygosity is estimated to occur in 1:3500 
newborns and is manifested by cafe au lait spots, axillary freckles, Lisch nodules and neurofibromas. 
This syndrome is associated with a high risk of development of gliomas, hematological malignancies, 
pheochromocytomas and some other tumors. Neurofibromatosis type 2 is ten times less common than 
the type 1 disease. The NF2 gene encodes merlin, its inactivation is associated with the development of 
schwannomas and meningiomas in adolescence or adulthood[167].

DICER1 syndrome has been described relatively recently[168]. It is associated with heterozygous 
germline inactivation of the DICER1 gene. DICER1, a ribonuclease III family enzyme, is responsible for 
the maturation of microRNA. The pathogenesis of DICER1-related malignancies usually involves 
somatic alteration of the remaining gene allele. DICER1 PVs are characterized by incomplete penetrance. 
Carriers of DICER1 PVs are at risk of developing pleuropulmonary blastomas, gynandroblastomas, 
sarcomas, Sertoli-Leydig cell tumors and some other neoplasms[169,170].

PVs in the SMARC family genes, which regulate chromatin remodeling, are responsible for the 
rhabdoid tumor predisposition syndrome[171]. SMARCB1 pathogenic alleles are associated with the 
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development of malignant rhabdoid tumors of the central nervous system and kidneys. Hypomorphic 
SMARCB1 PVs are also implicated in familial schwannomatosis where the development of 
schwannomas involves concomitant down-regulation of both SMARCB1 and NF2 genes[172]. SMARCE1 
PVs predispose to the development of meningiomas. SMARCA4 pathogenic alleles are associated with 
rhabdoid tumors as well as small-cell OC, hypercalcemic type[171].

Constitutional mismatch repair deficiency syndrome (CMMRD) is an autosomal-recessive disorder 
caused by biallelic inactivation of MMR genes[4]. This condition has characteristic cutaneous manifest-
ations and renders a high probability of developing brain, gastrointestinal and hematological 
malignancies at a young age[173].

Hematological malignancies
Hematological malignancies often manifest as a part of a syndromic condition. Various abnormalities of 
hematopoiesis resulting in the depletion of some cell lineages are frequently accompanied by myeloid-
derived neoplasms. Immune deficiencies render an increased risk of development of lymphomas[174]. 
Familial clustering of acute myeloid leukemia may be attributed to germline PVs in CEBPA, DDX41, 
RUNX1, GATA2, ETV6, SAMD9, SAMD9L and some other genes. Hereditary acute lymphoblastic 
leukemia is related to germline PVs in ETV6, IKZF1 or PAX5 genes and may as well be a part of clinical 
manifestation of Li-Fraumeni syndrome[175]. Alterations in the KDR (vascular endothelial growth 
factor 2) receptor tyrosine kinase are the most frequent cause of hereditary Hodgkin lymphoma; high 
risk of this disease may also be rendered by germline PVs located in KLHDC8B, NPAT or POT1 genes
[176].

MANAGEMENT OF HEREDITARY TUMORS
Cancer detection and prevention
The research on HCSs was initially viewed mainly as a part of prophylactic medicine. Indeed, there is a 
strong emphasis on the identification of yet healthy people, who are carriers of tumor-predisposing PVs 
and may significantly benefit from early cancer detection and prevention (Figure 3). Diagnostic 
surveillance strategies have been articulated for all major cancer syndromes. For example, female 
carriers of BRCA1, BRCA2 and some other pathogenic alleles are advised to start breast self-examination 
from 18 years old; regular clinical breast examination and magnetic resonance imaging are usually 
added beginning from 25 years, and they are supplemented by annual mammography in women aged 
30–75 years. OC screening includes annual transvaginal ultrasound examination and CA-125 serum 
marker measurement starting at 30–35 years[84]. Clinical efficacy of surveillance is considerably higher 
in patients with Lynch syndrome. The adherence to colonoscopy performed every 1–2 years beginning 
from 20–25 years of age, upper endoscopy every 3–5 years starting at 30–35 years as well as endometrial 
cancer screening, significantly reduces individual risk of cancer death[84]. Effective surveillance is more 
complicated in subjects with multiorgan cancer predisposition. In particular, carriers of TP53 germline 
PVs are advised to begin cancer screening in early childhood and, wherever possible, to abstain from 
potentially mutagenic diagnostic procedures, e.g., X-ray examination[146]. The development of 
screening recommendations for subjects with HCSs is a continuous process, which is usually 
coordinated by international and national healthcare professional societies or initiative groups, involves 
interaction of a high number of experts working in different areas of medicine, requires significant 
research efforts aimed at collection of real-world data and is a subject of regular updates[84,146,177,
178]. There is a multitude of published guidelines, which generally suggest similar diagnostic 
algorithms but differ from each other in many nuances. The detailed discussion on existing recommend-
ations is beyond the scope of this review.

Prophylactic risk-reducing surgery has become a standard medical intervention, being particularly 
well investigated in subjects with the HBOC syndrome, hereditary diffuse GC, hereditary medullary 
thyroid cancer, etc.[9,22,146,179-181]. It is self-explanatory that surgical removal of the organ(s) at-risk 
may be applied only in situations when this procedure is not associated with life-threatening adverse 
effects or disproportional decrease of the quality of life, and only for syndromes with insufficient 
reliability of early cancer diagnosis. Carriers of highly-penetrant BC-predisposing PVs (BRCA1, BRCA2, 
PALB2, TP53, etc.) are encouraged to undergo risk-reducing breast surgery, given that even high 
compliance with diagnostic check-ups does not fully warrant cancer detection at early stage or good 
treatment outcome[182]. BRCA1/2 heterozygous women are strongly recommended to opt for prophy-
lactic salpingo-oophorectomy at the age of 35–45 years (or after the completion of childbearing)[177,178,
183]. This procedure is justified by the poor clinical efficacy of OC screening and dispensability of 
ovaries for women entering their second half of life. Prophylactic gastrectomy in CDH1 PV carriers is 
associated with severe impairment of the quality of life, however the abstinence from this procedure is 
associated with a significant risk of death due to diffuse GC[9]. Risk-reducing thyroidectomy followed 
by hormone replacement therapy is a standard option for carriers of RET high-risk PVs. This surgery is 
usually performed in childhood, and the recommended age for intervention varies depending on the 
type of RET PV[184,185].
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Figure 3 Management of hereditary cancer syndromes. PARPi: Poly (ADP-ribose) polymerase inhibitors; TMB: Tumor mutation burden; HIF-2α: Hypoxia 
inducible factor-2α; VHL: von Hippel-Lindau; mTOR: Mechanistic target of rapamycin; MAPK: Mitogen-activated protein kinase signaling pathway; MEK: Mitogen-
activated protein kinase; VEGFR: Vascular endothelial growth factor receptor; SMO: Smoothened; CMMRD: Constitutional mismatch repair deficiency syndrome.

Benefit from risk-reducing surgeries has been confirmed by real-world data, however this experience 
is mainly limited to healthy relatives of cancer patients, who were found to be heterozygous for a 
highly-penetrant pathogenic allele[184,186,187]. Recent large-scale genetic investigations have identified 
some carriers of tumor-predisposing variants, who do not have a family history of cancers associated 
with their genetic findings[5,6]. Apparently, these individuals should be advised to undergo full-scale 
diagnostic surveillance, whereas great caution must be taken while considering prophylactic surgical 
interventions in subjects with favorable pedigree data[23].

Advances in cytotoxic and targeted therapy
Despite substantial advances in early detection and prevention of malignant diseases, cancer genetics 
remained an “exotic” discipline for many practicing oncologists until the second decade of this century. 
This was due to relative rarity of familial tumors and limited impact of germline DNA testing on the 
treatment strategies. Several discoveries, which were made within the past 10–15 years and resulted in 
the recognition of specific drug vulnerabilities in hereditary cancers, have moved familial cancer studies 
to the frontline of medical oncology[188,189].

BRCA1/2-driven breast and ovarian carcinomas arise due to somatic inactivation of the remaining 
allele of the involved gene (Figure 3 and Table 2). Consequently, these tumors are deficient in DNA 
double-strand break repair and demonstrate pronounced sensitivity to platinum compounds, 
mitomycin C, bifunctional alkylating agents and poly (ADP-ribose) polymerase (PARP) inhibitors 
(PARPi). Several clinical studies involving cisplatin or carboplatin suggested that platinum-based 
regimens are highly effective in women with breast or ovarian BRCA1/2-associated cancer[190-192]. 
Combined administration of cisplatin and mitomycin C resulted in a remarkable improvement of 
treatment outcomes in patients with BRCA1-mutated carcinomas[193,194]. There are a number of 
successful clinical investigations, which resulted in the approval of PARPi for the treatment of 
hereditary breast, ovarian, pancreatic and prostate malignancies[195]. Interestingly, non-breast/ovarian 
carcinomas arising in BRCA1/2 PV carriers often retain the second BRCA1/2 allele and therefore do not 
have this drug vulnerability. Findings obtained on BRCA1/2 PV carriers may or may not be applicable to 
other genes involved in homologous recombination, as not all of the latter trigger tumor development 
by the two-hit mechanism, and even biallelic defects in some genes, e.g., ATM or CHEK2, are not 
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Table 2 Cytotoxic and targeted therapy for tumors arising in carriers of cancer-predisposing alleles

Tumor type Target Drugs Ref.

BRCA1/2-driven carcinomas and their phenocopies BRCA1/2 inactivation resulting in the 
deficiency of DNA repair by 
homologous recombination

Platinum derivatives, 
Mitomycin C, Bifunctional 
alkylating agents, PARPi

[190-
193,
195]

Hypermutated cancers (Lynch syndrome associated microsatellite 
unstable tumors; POLD1/POLE-deficient cancers; MUTYH-associated 
colorectal carcinomas; tumors in patients with CMMRD syndrome)

High tumor mutation burden resulting 
in excessive number of neoantigens

Immune checkpoint 
inhibitors

[199-
206]

RET-associated malignancies RET tyrosine kinase RET inhibitors [207-
209] 

Neurofibromatosis, type 1 Upregulation of RAS/RAF/MEK 
pathway due to NF1 inactivation

MEK inhibitors [210,
211] 

Basal cell carcinomas in patients with Gorlin syndrome Hedgehog pathway SMO inhibitors [213]

Tumors arising in patients with tuberous sclerosis mTOR pathway mTOR inhibitors [214,
215] 

Renal cell carcinomas associated with von Hippel-Lindau syndrome Up-regulation of HIF-2α due to VHL 
gene inactivation

HIF-2α inhibitors [216]

HIF-2α: Hypoxia inducible factor-2α; PARPi: Poly (ADP-ribose) polymerase inhibitors; CMMRD: Constitutional mismatch repair deficiency syndrome; 
MEK: Mitogen-activated protein kinase; SMO: Smoothened; mTOR: Mechanistic target of rapamycin; VHL: von Hippel-Lindau.

necessarily associated with platinum or PARPi sensitivity[21,196-198].
Microsatellite-unstable cancers, including tumors arising due to Lynch syndrome, are characterized 

by an excessive number of somatic mutations, and, consequently, high tumor antigenicity. These 
malignancies can be managed by the administration of so-called immune checkpoint inhibitors, the 
drugs which antagonize immune suppressor molecules and restore proper antitumor immunity[199]. 
Clinical studies on microsatellite-unstable cancers involved both patients with Lynch syndrome and 
subjects with sporadic carcinomas. Pembrolizumab has been approved for the treatment of MSI-H 
tumors irrespective of their organ localization[200]. Interestingly, a small study comparing hereditary vs 
sporadic microsatellite-unstable endometrial carcinomas revealed that tumors associated with a 
germline pathogenic allele have higher TMB and are more responsive to this drug[201]. The results of 
available clinical trials support the use of pembrolizumab or a combination of nivolumab and 
ipilimumab in the first-line therapy of metastatic MSI-H CRC[199-202]. There are instances of successful 
utilization of immune checkpoint inhibitors for the treatment of POLE/POLD1- and MUTYH-related 
malignancies[203,204]. Several case studies reported clinical benefit from immune therapy in patients 
with CMMRD-associated tumors[205,206].

Some hereditary cancers are associated with the upregulation of specific signaling pathways. A 
multikinase inhibitor vandetanib, which has activity towards RET and several other tyrosine kinases, 
has demonstrated significant clinical activity in patients with hereditary MTCs[207]. Clinical studies on 
selective RET inhibitors, selpercatinib and pralsetinib, included subjects with both hereditary and 
sporadic RET-driven thyroid tumors, and demonstrated remarkable benefit from these drugs[136,208,
209].

Tumors arising in patients with neurofibromatosis type 1 are characterized by inactivation of NF1 
gene, which is a negative regulator of RAS/RAF/MEK pathway. Consequently, these malignancies are 
potentially sensitive to MEK inhibition[210,211]. MEK inhibitor selumetinib has been evaluated in 25 
children with recurrent, refractory, or progressive pediatric low-grade NF1-related gliomas, which 
failed at least one prior therapy. Objective response was documented in 10 (40%) cases, and 24 (96%) 
patients experienced no progression of the disease within 2 years[210]. Another study included children 
with NF1-associated symptomatic inoperable plexiform neurofibromas. Objective responses were 
observed in 37/50 (70%) patients, with 28 instances of response lasting more than 1 year[211]. 
Activating mutations in RAS/RAF/MEK pathway are also characteristic for hypermutated cancers 
arising in CMMRD patients. Pronounced efficacy of selumetinib or trametinib has been demonstrated in 
several patients with heavily pretreated CMMRD-related brain tumors[212].

Gorlin syndrome related BCCs can be managed by down-regulation of G-protein coupled receptor 
smoothened (SMO), which is involved in the activation of the Hedgehog pathway. Vismodegib, a 
selective SMO inhibitor, has been evaluated in placebo-controlled trial involving 46 patients, who had at 
least ten tumors each. All subjects receiving this drug experienced the decrease of existing tumor 
burden. Furthermore, the use of vismodegib slowed the emergence of new cancer lesions in patients 
with Gorlin syndrome[213].

Cancers associated with tuberous sclerosis are responsive to mTOR targeted drugs. Clinical efficacy 
of everolimus has been repeatedly demonstrated in angiomyolipomas and subependymal giant cell 
astrocytomas associated with this syndorme[214,215]. There are promising results of the treatment of 
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VHL syndrome related tumors by hypoxia-inducible factor-2α inhibitor belzutifan[216]. FH-deficient 
RCCs often respond to the combination of anti-vascular endothelial growth factor therapy and mTOR 
antagonists or to multitargeted tyrosine kinase inhibitors[217,218].

Drug vulnerabilities detected in hereditary cancer often have clinical relevance to their sporadic 
phenocopies. For example, platinum/PARPi sensitivity was initially described in BRCA1/2-driven 
carcinomas, but subsequent research revealed that tumors with BRCA1/2-like (BRCAness) properties, 
e.g., a specific pattern of chromosomal instability, are also sensitive to these compounds[219,220].

CONCLUSION
Increasing involvement of healthy people in whole exome or multigene sequencing will certainly 
identify a huge number of subjects, who have a potentially severe disease according to a genetic test, but 
continue to remain unaffected until the elderly age. We are already witnessing that virtually all updated 
penetrance estimates are significantly lower than the ones observed by earlier studies, and, vice versa, 
the population frequency of some presumably “fatal” germline PVs is manifold higher than the 
observed incidence of corresponding genetic diseases[4-6,8,9]. The distinction between genetic health 
and disease is likely to be reconsidered in the near future.

Earlier cancer genetic studies produced rather straightforward gene-disease interactions, where all 
relevant genes and associated diseases could be easily presented in a table-like format. Systematic large-
scale investigations carried out in the last decade revealed substantial promiscuity in genotype-
phenotype interactions, thus complicating the clinical diagnosis of HCSs and interpretation of genetic 
findings[4,17,103,108,119,149,161,162,221]. The unbiased cataloging of patient data may help to account 
for the diversity of HCS manifestations.

Most of the known non-cancer genetic diseases are recessive, while most of the already identified 
cancer predisposition syndromes are dominant. This difference is unlikely to be related to genuine 
biological reasons, but is rather attributed to difficulties in the genetic studies of common cancer types. 
Virtually all “classic” genetic pathologies are orphan maladies (e.g., cystic fibrosis or phenylketonuria), 
so the appearance of even 2-3 patients with a unique phenotype in the same family/pedigree, or in the 
same neighborhood, is immediately recognizable by practicing physicians or clinical investigators. 
However, if we consider a recessive mechanism for say, conventional breast, lung, or colorectal 
carcinomas, i.e., the situation when both parents are asymptomatic heterozygous carriers of a recessive 
tumor-predisposing allele, and the disease is manifested only in subjects with biallelic gene 
involvement, there is little if any chance to distinguish these subjects from sporadic phenocopies[222]. 
Indeed, already known recessive tumor-predisposing syndromes include mainly rare diseases with very 
characteristic phenotypic manifestation, e.g., some hereditary polyposis syndromes[84]. Systematic 
germline sequencing of cancer patients and the analysis of accumulated “big data” may eventually 
identify some examples of recessive predisposition to common cancer types. Focus on large commun-
ities with pronounced founder effect may facilitate the research in this direction.

The critical mass of advances in clinical genetics, including studies on HCSs, has been achieved due 
to efforts of scientists working mainly in North America, Western Europe, Japan, and several other parts 
of the world distinguished by the combination of an exceptionally high level of technological 
development and strong dedication to biomedical research. Consequently, current knowledge on 
pathogenic alleles and corresponding familial diseases mainly reflects the genetic background of 
Western European populations and some Eastern Asian communities. It is self-explanatory that each 
ethnic group has its own ancestors, who have a unique composition of pathogenic gene variants. 
Consequently, the distribution of genetic diseases is a subject of major interethnic variations, with a 
number of maladies observed only in selected populations. It is important to encourage ethnicity-
specific cataloging of pathogenic alleles and corresponding phenotypes in order to support proper 
practical implementation of gene-based tests. Furthermore, analysis of “novel” populations is likely to 
result in the discovery of new medically relevant genes and corresponding genetic diseases[36,223-226].

Most of cancer studies rely mainly on the identification of protein-truncating variants. The 
clarification of functional/pathogenic significance for missense mutations is complicated, and there is a 
need for robust bioinformatic and laboratory pipelines supporting the distinction between disease-
causing and neutral amino acid substitutions[227,228]. Current research is mainly focused on the coding 
regions of the genome; however other genetic loci, to be studied by whole genome cataloging, are also 
very likely to be a source of disease-predisposing variations[229].

Identification of cancer-predisposing genes is an example of triumph of translational medicine. The 
development of methods of non-surgical prevention of tumor progression in carriers of disease-
associated pathogenic alleles is an obvious priority for future studies in this field.
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