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Abstract

Chronic exposure to arsenic (As) remains a global public health concern and our understanding 

of the biological mechanisms underlying the adverse effects of As exposure remains incomplete. 

Here, we used a high-resolution metabolomics approach to examine how As affects metabolic 

pathways in humans.

We selected 60 non-smoking adults from the Folic Acid and Creatine Trial (FACT). Inorganic 

(AsIII, AsV) and organic (monomethylarsonous acid [MMAs], dimethylarsinous Acid [DMAs]) 

As species were measured in blood and urine collected at baseline and at 12 weeks. 

Plasma metabolome profiles were measured using untargeted high-resolution mass spectrometry. 

Associations of blood and urinary As with 170 confirmed metabolites and >26,000 untargeted 

spectral features were modeled using a metabolome-wide association study (MWAS) approach. 

Models were adjusted for age, sex, visit, and BMI and corrected for false discovery rate (FDR).

In the MWAS screening of confirmed metabolites, 17 were associated with ≥1 blood As species 

(FDR<0.05), including fatty acids, neurotransmitter metabolites, and amino acids. These results 

were consistent across blood As species and between blood and urine As. Untargeted MWAS 

identified 423 spectral features associated with ≥1 blood As species. Unlike the confirmed 

metabolites, untargeted model results were not consistent across As species, with AsV and 

DMAs showing distinct association patterns. Mummichog pathway analysis revealed 12 enriched 

metabolic pathways that overlapped with the 17 identified metabolites, including one carbon 

metabolism, tricarboxylic acid cycle, fatty acid metabolism, and purine metabolism.

Exposure to As may affect numerous essential pathways that underlie the well-characterized 

associations of As with multiple chronic diseases.

Graphical Abstract
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Introduction

Chronic exposure to inorganic arsenic (InAs) in drinking water is a global health concern 

that afflicts >140 million people in 70+ countries and contributes to multiple chronic 

diseases, including cancer1–3, cardiovascular disease4,5, and metabolic dysfunction6,7. In 

Bangladesh, exposure to As began in the 1970s, when nongovernmental organizations 

advocated a massive switch from drinking microbially contaminated surface water to 

groundwater in an effort to reduce infant mortality due to diarrheal disease. This led to 

excessive consumption of groundwater contaminated with naturally occurring As, with 

concentrations ranging from nondetectable to levels exceeding 1,000 μg/L8. This widespread 

exposure is further complicated by limited scalable, economical, and effective exposure 

prevention or mitigation strategies. The metabolism of InAs in the human body is well 

characterized. Arsenate (AsV) is reduced to the more toxic inorganic form, arsenite (AsIII), 

before being methylated and oxidized to monomethylarsonic acid (MMAs) by arsenic-3-

methyltransferase, which is further methylated to dimethylarsinic acid (DMAs). Efficient 

methylation of InAs to DMAs is important because studies have shown that intermediates 

such as AsIII and trivalent MMAs are among the most toxic forms of As9–11.

Despite clear evidence that As contributes to many chronic diseases, the mechanisms 

underlying exposure-disease relationships remains poorly understood. Part of the reason 

for this knowledge gap is that mechanistic studies require model organisms, but rodents 

are remarkably efficient in methylation of As and are less susceptible to As toxicity 

than humans, with the exception of in utero exposure windows12. Thus, new approaches 

using human populations are needed to complement existing data to characterize As-

affected biological pathways. Identification of these effects and pathways, especially among 

individuals without overt disease, will help us better identify individuals at risk and design 

effective mitigation strategies.

Metabolomic studies can be used to identify key metabolic changes and toxic mechanisms 

underlying environmental exposures and the associated health consequences. By profiling 

the metabolome, we can directly assess the functional effect of environmental exposures 

downstream from gene expressionand epigenetic changes and more proximal to health-

relevant endpoints. Untargeted metabolomics, which aims to comprehensively measure 

metabolic changes in response to an exposure or disease outcome, provide a key strategy to 

test targeted hypotheses on biological changes underlying As exposure as well as generate 

new insight into systemic biological alterations underlying As toxicity.

Studies of As-impacted populations suggests that As exposure is associated with metabolic 

alterations in urine13–16 and blood14. For example, a study in Mexico found that urinary 

total As levels were associated with numerous changes in plasma and urinary metabolites 

among individuals with and without diabetes14. However, there were minimal overlapping 

metabolites differing between individuals with and without diabetes. This result suggests 
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there may be specific metabolic responses that set certain exposed individuals on a 

path to diabetes or poor metabolic health. Overall, these studies highlight the need to 

comprehensively characterize metabolic patterns and pathways underlying As toxicity, 

particularly prior to disease onset.

In this study, we leveraged comprehensive metabolomic profiling to evaluate the impact of 

As exposure and characterize potential mechanisms underlying As toxicity using samples 

collected as part of the Folic Acid and Creatine Trial (FACT). The original FACT study 

showed that daily supplementation of folic acid (FA) decreased total As levels in blood17 

and increased the efficiency of As metabolism18 after 6–12 weeks. In the current study, we 

used a subset of participants from the FACT study to investigate the relationships of As 

exposure with untargeted ultra-high-resolution mass spectrometry to identify key pathways 

underlying the relationship between As exposure and health outcomes.

Methods

Study Population and Study Design:

The Folic Acid and Creatine Trial (FACT) is a unique clinical trial of 610 Bangladeshi adults 

chronically exposed to As-contaminated drinking water. Starting in 2010, 610 participants 

were recruited from the Health Effects of Arsenic Longitudinal Study (HEALS) cohort 

based in Araihazar, Bangladesh, a parent cohort in which As exposure had been well 

characterized since its inception in 200019. FACT participants were randomly selected given 

the following criteria: inclusion criteria were adults between 20–75 years of age who had 

been drinking from their current well with water As > 50 μg/L for at least 3 years. We 

excluded women who were pregnant, individuals taking nutritional supplements, individuals 

with proteinuria, and individuals with known renal disease, diabetes, or gastrointestinal or 

other health problems. Once enrolled, FACT participants were given arsenic water filters and 

block randomized separately for men and women into one of five treatment groups: placebo, 

400 or 800 μg FA, creatine, or creatine+FA. Compliance was monitored by observing pill 

ingestion, inquiring about compliance and through pill counts; the latter indicated a median 

compliance of 99.5%. For the current study, starting from all participants who did not smoke 

nor chewed betel nut, we randomly selected 60 FACT participants (30 each from the 800 μg 

FA and placebo groups), specifying 50/50% male/female in each group.

Informed consent was obtained by our Bangladeshi field staff physicians. Ethical approval 

was obtained from the Institutional Review Board of Columbia University Medical Center 

and the Bangladesh Medical Research Council.

Blood and Urine Arsenic Concentrations:

Details of blood collection and As measurement have been described elsewhere17. In brief, 

venous blood was collected in Ethylenediaminetetraacetic acid (EDTA) vacutainers from 

participants at baseline and week 12. Arsenic species (AsIII, AsV, MMAs, and DMAs) 

from both blood and urine were measured using high performance liquid chromatography 

coupled to dynamic reaction cell inductively coupled plasma mass spectrometer20,21. The 

method can detect AsIII and AsV, but samples can oxidize during processing, particularly 
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urine samples, resulting in exposure misclassification of the absolute and relative levels of 

AsIII and AsV. Blood As levels, expressed in absolute concentrations, are less susceptible to 

oxidation and hydration status and better reflect As exposure to tissues. Thus, for the present 

analysis, blood As species were the primary exposures of interest while specific gravity-

corrected urinary InAs levels were used in sensitivity analyses to validate the observed 

associations for blood As.

Blood levels of AsIII and AsV were summed to create a single variable reflecting total 

inorganic As concentrations (∑InAs). We also derived %InAs, %MMAs, and %DMAs in 

urine as biomarkers of As metabolism. These As metabolism biomarkers were used in 

sensitivity analyses to assess potential confounding of our associations by As metabolic 

efficiency.

High Resolution Metabolomic Profiling:

We measured plasma metabolomic profiles at baseline and week 12 using untargeted 

high-resolution metabolomics22. Plasma samples were thawed, treated with 130 μL of 

acetonitrile containing mixture of 14 stable isotope standards to remove proteins and 

centrifuged; the resulting extract was transferred to a low-volume vial that was placed 

in an autosampler maintained at 4°C23. Sample extracts were analyzed in triplicate by 

liquid chromatography-Fourier transform mass spectrometry using a Thermo Scientific 

Ultimate 3000 liquid chromatography system interfaced to a Fusion Tribrid Orbitrap high-

resolution mass spectrometer.23,24 Analyte separation was accomplished using dual column 

chromatography with C18 and hydrophilic interaction liquid chromatography (HILIC). 

HILIC columns were run in positive electrospray ionization (ESI) mode while C18 was 

run in negative ESI mode. The resulting spectral data were processed to provide data 

tables containing mass m/z, retention time(s), intensity, coefficient of variation, and related 

descriptive characteristics, including minimal information standards for metabolomics data 

using apLCMS25–27 and xMSanalyzer28. The untargeted metabolomics analysis comprised 

12992 HILIC+ and 15549 C18- features in total, of which 98 (HILIC+) and 74 (C18-) 

metabolite identities were confirmed by comparison to a database of authentic standards ran 

on the same platform and confirmed using MSMS. For features without confirmed identities, 

we used xMSannotator with the HMDB database29,30. In brief, xMSannotator allows feature 

clustering to combine the feature m/z (mass tolerance ±5 ppm), retention time (±5 seconds), 

ion intensity profiles, mass defect, and expected isotopic and adduct patterns to assign 

predicted metabolite annotations for detected features.

Metabolite Data Processing:

Raw feature tables were processed with established filter and normalization criteria. Daily 

batches were normalized using ComBat. Two individuals were identified as outliers via 

visualization of principal component analysis and were subsequently removed. Features 

that were not detected in at least 50% of samples (2000 features, 7%) were removed. For 

the remaining features, values below detection were replaced with the lowest observed 

value divided by square root of 2. All samples were then quantile normalized and log2 

transformed. For confirmed metabolites, two C18 metabolites were dropped due to <50% 

detection rates, resulting in 98 HILIC+ and 72 C18- metabolites available for analysis. 
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In total, 12413 HILIC+ and 14128 C18- m/z features without confirmed identities were 

available for analysis.

Statistical Analysis:

To estimate the association of blood As species (AsIII, AsV, ∑InAs, MMAs, and DMAs) 

with confirmed metabolites or unconfirmed features, we used generalized estimating 

equation (GEE) with identity link and Gaussian outcome likelihood to account for the 

repeated measures. In these models, blood As species were modeled as the predictor 

variables while log2-transformed metabolite abundance was modeled as the outcome 

variables. Because we log2-transformed the semi-quantitative metabolic data, the model 

coefficients were then converted to concentration ratios (CR) via exponentiation of 

regression coefficients, which can be interpreted as the relative change for that specific 

metabolite/feature for every μg/L increase in As species. Due to differences in the 

confidence of metabolite identification, we used this metabolome wide association study 

(MWAS) approach to analyze confirmed metabolites and unconfirmed features separately. 

All models were adjusted for age, sex, and BMI.

One primary finding of the parent FACT trial was that FA supplementation increased the 

metabolism of InAs to DMAs18. To test whether FA treatment impacted our MWAS results 

as a potential confounder, we conducted a sensitivity analysis comparing the estimates 

of the multivariable model with and without adjusting for treatment group, including an 

interaction term between treatment and time. Then, we tested whether FA supplementation 

may have altered the As related metabolic changes as a potential effect modifier. To do so, 

we used only week 12 metabolomic data and fitted multivariable linear regression models 

with blood As species as predictor variables, metabolite abundance as outcome, and an 

added interaction term between treatment group and As exposure at baseline. We tested for 

the statistical significance of the interaction term via likelihood ratio tests comparing models 

with and without this interaction term to calculate the p-values. All models in this analysis 

were adjusted for age, sex, and BMI. To minimize the possibility of spurious findings, we 

restricted this sub-analysis to only confirmed metabolites that were associated with at least 

one blood As species in the MWAS analysis.

While blood As species were our primary exposures of interest, we also compared model 

results using blood versus urinary InAs biomarkers as another sensitivity analysis. We did 

not compare methylated species in urine directly to blood concentrations due to well-known 

differences in their excretion patterns31. All urinary As biomarkers were corrected for 

specific gravity and the models were adjusted for age, sex, and BMI.

Finally, we specifically investigated phosphatidylcholine (PC) to phosphatidylethanolamine 

(PE) due to their abundance, previous known relationship with key As metabolism enzymes, 

link to chronic disease32,33, and dependence on methyl groups generated by one carbon 

metabolism (OCM). While our targeted panel does not contain PC and PE specifically, 

it includes lysoPCs and lysoPEs, derivatives of PC and PE, respectively. We summed all 

lysoPCs and lysoPEs and calculated the ratio of lysoPC to lysoPE as a proxy to PC/PE ratio. 

All models were adjusted for age, sex, and BMI.
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Pathway Analysis

We performed pathway enrichment analysis using Mummichog34, which was developed 

specifically for untargeted high resolution metabolomics data. For each blood As species, 

we ran the Mummichog algorithm on the MetaboAnalyst platform35 specifying mixed mode 

(both positive and negative ion modes), 5 parts per million (ppm) mass tolerance, and 

included retention time, p-values, and Z-scores from the GEE models. Our p-value cutoff 

was 0.05 and only used pathways containing at least 3 entries. For visualization, putative 

metabolite Kyoto Encyclopedia of Genes and Genomes (KEGG) IDs for significant features 

generated through Mummichog pathway analysis were used to populate the KEGG human 

metabolic map using iPATH36.

Results

Descriptive Features and Arsenic Distribution

Age and BMI were similar between the placebo and treatment groups (Table 1). Baseline 

blood As distribution was also similar with respect to total metabolite concentrations (8.84 

μg/L in placebo vs. 8.80 μg/L in FA supplementation) as well as relative concentrations of 

AsV, AsIII, MMAs, and DMAs (Table 1). Since we gave water filters to all participants to 

reduce As exposure, both groups showed somewhat lower blood As concentrations at week 

12 (Supplemental Table 1). Arsenic metabolite concentrations showed strong correlation 

with one another (Spearman r ≥0.87), with the exception of AsV, which showed a moderate 

correlation with other metabolites (0.45 < Spearman r < 0.61) (Supplemental Figure 1). 

Consistent with the overall FACT study, the 800 μg/day FA treatment group selected for this 

study had lower concentrations of As species compared to the placebo group after 12 weeks 

(Supplemental Table 1), supporting that FA supplementation facilitates the elimination of As 

from blood17.

Standard Confirmed Metabolites

MWAS with the 170 confirmed metabolites as outcomes identified 17 metabolites associated 

with at least one of AsV, AsIII, ∑InAs, MMAs, and DMAs at the FDR <0.05 when 

adjusting for age, sex, and BMI. Among all As species, AsIII, the trivalent inorganic As 

species, had the most statistically significant associations (n=12 at FDR < 0.05), followed by 

MMAs (n=7), AsV (n=4), and DMAs (n=2). Although the number of statistically significant 

associations differed by metabolite, when results were compared across different As species, 

model results overlapped and were largely consistent across all blood As species. As shown 

in Figure 1, 16 of the 17 identified metabolites were nominally associated with four of the 

five blood As species (p-value<0.10) and have the same direction of association. Full results 

of the MWAS models, including metabolite information, can be found in Supplemental 

Table 2.

As a sensitivity analysis, adjustment for FA supplementation status in addition to age, sex, 

and BMI did not change our model estimates (Supplemental Figure 2). We found no strong 

evidence for effect modification by FA treatment in the 17 metabolites previously identified 

to be associated with blood As levels (Supplemental Table 3).
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We also compared models using blood As to comparable models using urinary As 

biomarkers corrected for specific gravity and found that the results were similar between 

blood and urinary As species (Supplemental Figure 3).

Untargeted Metabolome Wide Association Study

We next applied an untargeted MWAS framework to evaluate systems-level metabolic 

alterations associated with As. MWAS of C18 and HILIC metabolite features as outcomes 

identified 423 unique features associated with at least one blood As species at FDR<0.05 

after adjusting for age, sex, and BMI. Similar to the confirmed metabolites, inorganic As 

species had more statistically significant associations compared to methylated As species 

MMAs and DMAs (Supplemental Table 4). However, there were some differences across As 

species, as AsV had far more statistically significant associations than the rest of the four 

metabolites combined and the majority of these features uniquely associated with AsV were 

not associated with any other blood As species (Supplemental Table 4, Figure 2A). Results 

were more consistent across AsIII, ∑InAs, and MMAs, while the associations were weaker 

for blood DMAs (Figure 2B). Similar to the confirmed metabolites MWAS analysis, further 

adjustment for supplementation status did not change the model estimates (Supplemental 

Figure 2). Full MWAS results from the untargeted features can be found in Supplemental 

Table 5.

Pathway enrichment analysis identified 12 metabolic pathways associated with at least 

one blood As species (Figure 3). Seven of the enriched pathways were related to lipid 

metabolism, and there was general agreement across all As species, which suggests that 

blood As was related to alterations in fatty acid metabolism. Metabolite annotations from 

Mummichog were evaluated using the KEGG human metabolic map (Figure 4). The results 

suggest multiple KEGG metabolites mapped to OCM pathway and lipid metabolism and 

were common across several As species. Additional mapped metabolites included xenobiotic 

metabolism associated with AsV and energy metabolism and tricarboxylic acid (TCA) cycle 

associated with DMAs.

To support our MWAS results, we extracted unique KEGG IDs identified from these 

enriched pathways and compared them across blood As species (Figure 5). AsV and DMAs 

were associated with numerous unique KEGG metabolites that were not shared with other 

blood As species while numerous KEGG metabolites were associated with ≥1 blood As 

species.

Lysophosphatidylcholine (lysoPC) and Lysophosphatidylethanolamine (lysoPE)

Given that OCM is a key regulator of As methylation, we examined known pathways that 

may connect OCM to lipid metabolism, which was observed to be associated with blood As 

levels in our analyses of both confirmed metabolites and untargeted metabolomic features. 

All blood As species were positively associated with lysoPC:lysoPE ratio in multivariable 

models adjusting for age, sex, BMI, and study visit (Table 2).
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Arsenic Metabolism Biomarkers

To examine the impact of As metabolism on the metabolome, we conducted MWAS 

screening of 170 confirmed metabolites with urinary %InAs, %MMAs, and %DMAs. We 

identified 5 unique metabolites that were associated with at least one of the three urinary 

As metabolism biomarkers (Supplemental Figure 4). There were no overlaps with the results 

from blood As species.

Discussion

In our analysis of 60 individuals from Araihazar, Bangladesh, evaluated twice over 

a 12 week period, we found that all blood As species were associated with key 

metabolites broadly related to lipid metabolism (various fatty acids), neurotransmitters 

(N-acetylaspartate, 5-hydroxyindoleacetic acid [5-HIAA], homovanillate), amino acid 

metabolism (leucine/isoleucine, tryptophan, kynurenine), and purine metabolism (urate). 

Using untargeted analyses, we reaffirmed the association between As and lipid 

metabolism alterations common across all As species. In addition, we identified metabolic 

pathways specific to AsV (steroid and xenobiotic metabolism) and DMAs (TCA cycle). 

Mechanistically, As exposure has been linked to oxidative damage, mitochondrial 

dysfunction, inflammation37, and neurotransmitter dysregulation38–40. Our study was able 

to similar to observations from previous studies13–15,41–46 and identified novel pathways 

associated with As.

The observed enrichment of OCM metabolites and pathways in our analysis are consistent 

with existing knowledge of As metabolism and its relationship with OCM. OCM comprises 

a series of reactions in both the cytoplasm and mitochondria centered around folate 

and methionine cycles, involving numerous enzymes and co-factors, including several B 

vitamins47. OCM takes methyl groups from folate, making these methyl groups available 

for transmethylation reactions in the form of S-adenosylmethionine (SAM). The ability to 

metabolize InAs to methylated species requires SAM, and almost all methyltransferases are 

subject to inhibition by S-adenosyl-homocysteine (SAH), a product of all SAM-dependent 

methylation reactions. Our research group demonstrated in the original FACT study, and 

in an earlier RCT of folate-deficient participants, that FA supplementation increases As 

methylation, reducing blood MMAs burden by up to 50%17,48. Vitamin B6 (pyridoxine) is a 

key co-factor for multiple reactions in OCM, and its metabolic pathway was enriched in our 

untargeted metabolites analysis. Vitamin B6 was also in our panel of confirmed metabolites; 

while it did not cross the FDR threshold, it was positively associated with all As species 

except AsV (p-values = 0.003–0.07). Thus, our targeted and untargeted results both show the 

expected association between blood As and OCM related metabolites.

OCM is an essential process that is critical to numerous other biological processes, and 

disruption may have downstream consequences on metabolic pathways such as purine 

metabolism. In the methionine cycle, SAH is converted by S-adenosylhomocysteine 

hydrolase to homocysteine and adenosine. Related to the folate cycle, 10-formyl-

tetrahydrofolate (10-formyl-THF) is required for the synthesis of inosine monophosphate 

(IMP), the precursor to both adenosine and guanine. The catabolism of adenosine and 

guanine, two purines, produces uric acid. In the present study, we observed that blood As 
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is positively associated with plasma uric acid, which suggests that the interactions between 

As exposure and OCM may result in greater uric acid levels. This may also be related to 

the observed negative association between blood As and methylhistamine in our study as the 

catabolism of histidine to methylhistamine generates 10-formyl-THF. However, the potential 

mechanistic interplay involving As, OCM, histidine metabolism, and purine metabolism is 

ambiguous and merits deeper investigation in the future. Ultimately, As association with 

uric acid are supported by previous targeted studies that showed urinary arsenic levels were 

associated with higher serum uric acid levels and odds of hyperuricemia in adults from 

the US41 and Bangladesh42. Elevated uric acid is associated with gout49, diabetes50,51, 

cardiovascular disease52,53, kidney diseases54 and may be one of the biological pathways 

that underlies As-associated disease risk.

The broad impact of As exposure on pathways related to lipid metabolism and TCA cycle 

was evident throughout our results. All blood As species were associated with lower levels 

of leucine/isoleucine and fatty acids, higher citric acid level, and higher lysoPC:lysoPE 

ratio while pathway analysis of untargeted results reveled enrichment of lipid metabolism 

pathways and the TCA cycle pathway. Previous studies have reported separate evidence 

for associations of As exposure with different aspects of energy metabolism13,14,43–45; 

these results suggest broad alterations in metabolic effects that may arise from interactive 

crosstalk between As exposure, OCM, and energy metabolism. This is perhaps not 

surprising because As exposure can impact the TCA cycle and lipid metabolism in several 

ways. For example, As is a known inhibitor of pyruvate dehydrogenase55, a key enzyme that 

helps convert pyruvate to acetyl-CoA. Not only does this directly affect the TCA cycle, the 

regulation and availability of pyruvate dehydrogenase can directly impact glucose and fatty 

acid oxidation56.

It is also possible for As to influence lipid metabolism through OCM-related pathways. 

OCM is a regulator of lipid metabolism through its production of methyl-donor SAM. One 

potential pathway is through the SAM-dependent methylation of lysine to trimethyl-lysine, a 

precursor to carnitine, which in turn is a regulator of lipid metabolism because it transports 

long-chain fatty acids from cytosol into mitochondria for beta-oxidation57. However, our 

evidence does not support this particular connection because As was not associated with 

trimethyl-lysine or carnitine in our data. A more likely pathway is the SAM-dependent 

methylation of PE to PC. PE and PC are the two most abundant phospholipids and comprise 

a large portion of cellular lipid membranes. While we could not assess PC:PE ratio directly, 

we did observe an association of blood As levels with the ratio of their metabolic derivatives 

– lysoPCs and lysoPEs – as proxies. One previous study showed that AsIII exposure induced 

decreased PC and increased lysoPCs in rats46, but our observation in humans is novel. Not 

only are PE and PC important for cell membrane integrity, their balance has been associated 

with numerous chronic diseases32,33 that have also been linked to As exposure. Thus, it 

is possible that disruption to PE and PC balance partially underlies As-associated health 

effects.

OCM is also essential to maintaining redox state58 via production of NADPH and 

glutathione. The oxidation of 10-formyl-THF to CO2 generates an NADPH equivalent 

that is not consumed by the OCM cycle and this has been suggested to be important for 
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mitochondrial redox homeostasis59,60. The redox balance crosstalk between OCM and TCA 

cycle is biologically important because excess NADPH/NADH, possibly from impaired 

cellular respiration, inhibits the TCA cycle while OCM remains uninhibited. In this state, 

the continued contribution of NADPH by OCM may result in redox imbalance and NADH 

toxicity in the mitochondria61,62. Indeed, As has been known to impair cellular respiration63, 

induce oxidative stress37, and lead to mitochondrial dysfunction64,65.

Arsenic is also known to be neurotoxic66 and has been previously linked to poor 

cognitive development67–69 and neurodegeneration37. In the present study, we see that 

As is associated with numerous neurotransmitter metabolites such 5-HIAA (metabolite 

of serotonin), tryptophan (precursor to serotonin and 5-HIAA), N-acetylaspartate (key 

metabolite and regulator of glutamate), and potentially homovanillate (metabolite of 

dopamine). Glutamate was also in our panel of confirmed metabolites and was nominally 

associated with AsV (p=0.06) and MMA (p=0.03). While our analytical method could 

not distinguish homovanillate from hydroxyphenyl lactate, 3,4-dihydroxyphenylpyruvic acid 

(DHPP), and caffeic acid due to their identical chemical formula (C9H10O4), our pathway 

analysis identified that As was associated with an overrepresentation of metabolites related 

to tyrosine metabolism, which is the precursor of dopamine, providing overall support for 

an association between As exposure and dopamine homeostasis. Tryptophan metabolism 

can be tied to OCM as the kynurenine pathway of tryptophan produces formate, a 1-

carbon source and a key component of the folate cycle. However, the significance of this 

connection is unclear as formate is produced from numerous sources70. Overall, our results 

are consistent with previous human metabolic studies suggesting similar actions of As on 

pathways broadly related to serotonin13,14 and glutamate14. Importantly, our study was able 

to demonstrate these changes among healthy individuals and across multiple As species.

Despite the relatively small sample size, there was a clear observation that many metabolites 

and pathways were associated with multiple As species but some were uniquely associated 

with specific As species. The latter is to be expected given that 1) As species differ in their 

toxicity and their mechanism(s) of action, and 2) methyl-group availability is crucial for 

As metabolism, so the observed associations, e.g between blood DMAs levels and OCM 

related metabolites and pathways, may well be a product of reverse causation. However, As 

metabolism capacity is unlikely to be a major confounder in other observed associations 

of As with metabolites and pathways because there were no overlaps between metabolites 

associated with blood As species and biomarkers of As metabolism.

A key strength of our study was that we were able to utilize blood and urinary measures 

of As. We were able to leverage this to show that the plasma metabolome differences 

associated with As were generally consistent between blood and urinary As. Furthermore, 

we were able to utilize proportional As measures in urine (%InAs, %MMA, %DMA) as 

indicators of in As metabolic efficiency to show that our primary results with blood As 

concentrations were not a function of confounding by As metabolic efficiency. In addition, 

our study was able to leverage data on both targeted (i.e. confirmed metabolites) and 

untargeted metabolomic features. We were able to show consistency in the MWAS results 

from both approaches, which affords us greater confidence in our findings. We were also 
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able to complement untargeted pathway analysis with specific known metabolites to gain 

additional insight toward the underlying biological actions.

While our study provides novel insights toward the underlying mechanisms behind As-

related pathophysiology, there are some limitations. Our sample size was limited and 

given the high number of tests, it is possible that we failed to detect small or moderate 

associations. However, we did find several associations in both the confirmed metabolites 

and the untargeted mass spectrometry features. Importantly, our results were internally 

consistent not only between confirmed and untargeted analyses, but also across multiple 

types of analyses, As species, and biomatrices, showing the reliability and robustness 

of our results despite limited sample size. It is also unclear whether results from this 

Bangladeshi population is generalizable to other populations. It may be reasonable to expect 

that the results will be applicable to other As-afflicted regions because high As exposure 

is not exclusive to Bangladesh71, and we are examining biologic relationships between As 

exposure and metabolomic changes. However, we cannot know for certain without direct 

replication in other populations whether the strength of relationships may differ due to 

differences in genetics, exposure levels, relative As compositions, and other influences such 

as dietary folate intake. Another limitation is that while this is set within the context of a 

randomized trial, the present study is observational in nature and cannot strictly establish 

causality and temporality because the exposure predates our study and our analyses are 

cross-sectional in nature. Lastly, while this study includes metabolomic changes assessed at 

two time-points within a randomized clinical trial, we cannot asses the temporality of the 

observed associations. As exposure is chronic and ubiquitous in this population and predates 

the baseline of our study. OCM, lipid metabolism, and TCA cycle are all fundamental 

processes that are intricately linked to other metabolic pathways, and it is difficult to 

accurately detail the cascade of effects with only snapshots of the metabolome. Thus, more 

studies are needed to better understand the mechanisms of As action on these processes,

Conclusion

In this analysis of As biomarker concentrations and plasma metabolomic differences 

in adults from Bangladesh, we found that blood As concentrations were associated 

with multiple metabolic alterations. Specifically, we observed associations of As with 

neurotransmitter levels, expected alterations in OCM pathway, and changes in many 

pathways that directly connect to OCM such as purine metabolism, TCA cycle, and 

fatty acid metabolism. These results provide plausible pathways and explanations that 

enhances our understanding of the biological changes underlying As related health effects 

such as diabetes50,51, cardiovascular disease52,53, and neurotoxicity37,66. Future studies 

should not only seek to reaffirm these associations, but also identify the timescale and 

reversibility of these effects, as well as seek to identify unique effects in vulnerable 

windows such as childhood and pregnancy. As climate change affects global water resources 

while simultaneously increasing groundwater As levels72, our increasing global reliance on 

groundwater makes As exposure an urgent global health priority.
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• Targeted analyses identified 17 metabolites associated with blood arsenic 

levels

• Untargeted screening identified 12 metabolic pathways associated with blood 

arsenic

• Altered pathways were consistent with changes to one-carbon metabolomics

• Most effects were common across all arsenic species

• Some pathways and associations were unique to arsenate and 

dimethylarsinous acid
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Figure 1. 
Heat map showing 17 metabolites with confirmed identities associated with at least one 

of the five blood Arsenic species at the False Discovery Rate (FDR) <0.05 level. Cells 

were colored based on the direction of the regression coefficient and nominal statistical 

significance. Overall, the plot shows that for all 17 metabolites, the models were consistent 

across As species in both statistical significance and direction of effect. FA: Fatty Acid; 

DHPP: 3, 4-Dihydroxyphenylpyruvic acid.
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Figure 2. 
Heat map showing untargeted features associated with blood Arsenic species at the False 

Discovery Rate (FDR) <0.05 level A) with AsV and B) without AsV. Cells were colored 

based on nominal p-values. Panel A shows that many features were exclusively associated 

with AsV and no other As species. Panel B shows that AsIII, ∑inAs, and MMA were 

consistent and DMA is different from the other species.
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Figure 3. 
Heat map showing the 12 KEGG metabolic pathways that were enriched for at least one 

blood As species. The color represent the degree of fold enrichment while the number shows 

the Fisher Exact Test p-values from Mummichog pathway analysis. All pathways are also 

significant using a permutation based significant test.
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Figure 4. 
KEGG human metabolic map showing the clustering of related pathways associated with As 

exposure around four central themes. Each colored dot represents a metabolite associated 

with a specific As species. We identified four general metabolic paths, shown in rectangles 

and group labels. The lipid metabolism pathway was well represented by all As species. AsV 

was associated with xenobiotic metabolism. DMA was associated with energy metabolism 

and TCA cycle as well as metabolites related to one carbon metabolism such as vitamin B6 

and folate.
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Figure 5. 
Upset plot showing the number of unique KEGG IDs associated with each As species and 

overlaps across species. The KEGG IDs were extracted from enriched pathways identified 

by Mummichog.
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Table 1.

Baseline characteristics of the participants in the pilot study.

Placebo (n=30) Treatment (n=30) p-value

Mean (SD) Mean (SD)

Age 34.43 (6.60) 36.83 (6.58) 0.16

BMI 21.18 (2.97) 20.00 (2.63) 0.11

Sex

Male 15 (50.0) 15 (50.0) 1.00

Female 15 (50.0) 15 (50.0)

Baseline Blood Arsenic (ug/L)

ASV 0.27 (0.25) 0.36 (0.36) 0.29

ASIII 1.99 (0.90) 1.98 (0.79) 0.95

MMA 3.95 (2.23) 3.85 (1.80) 0.86

DMA 2.63 (1.71) 2.61 (1.79) 0.97

∑inAs
1 2.26 (1.06) 2.34 (1.00) 0.79

∑Total
2 8.84 (4.87) 8.80 (4.37) 0.97

1
Sum of AsIII and AsV

2
Sum of all metabolites
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Table 2.

Associations of Blood Arsenic Metabolites with Lysophosphotidylcholine to Lysophosphatidylethanolamine 

Ratio

Arsenic Species
∑lysoPC:∑lysoPE Ratio

Regression β2 95% CI P-value IQR Estimate
3

ASV 6.18 1.78, 10.58 0.01 1.52

ASIII 1.15 0.14, 2.15 0.03 1.42

∑inAs
1 1.14 0.30, 1.97 0.01 1.59

MMA 0.59 0.17, 1.02 0.01 1.53

DMA 0.59 −0.001, 1.18 0.05 1.24

1
Sum of AsIII and AsV

2
Interpreted as the change in ratio per 1 ug/L increase in exposure

3
Effect estimate standardized to interquartile range

All models adjusted for age, sex, BMI, and visit
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