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PROGRESS AND POTENTIAL

Recent advances in machine

learning have led to the

development of tools and

techniques with the potential to

make a transformative impact in

the pharmaceutical sciences. In

this perspective, we propose

combining state-of-the-art

machine-learning techniques with

high-throughput experimentation

to create a materials acceleration

platform for nanomedicine

development, NanoMAP.

Development of such a platform

requires interdisciplinary

collaboration between the drug

delivery and artificial intelligence

communities. Currently, the lack

of large robust datasets limits the

use of these data-driven methods.

To overcome this, NanoMAP

includes a large data curation

initiative made possible by a web-

based application. We see the

implementation of this platform as

a means to improve bench-to-

bedside translation of innovative

medicines for patients who suffer

from life-threatening diseases.
SUMMARY

Nanomedicines have transformed promising therapeutic agents
into clinically approved medicines with optimal safety and efficacy
profiles. This is exemplified by the mRNA vaccines against COVID-
19, which were made possible by lipid nanoparticle technology.
Despite the success of nanomedicines to date, their design remains
far from trivial, in part due to the complexity associated with their
preclinical development. Herein, we propose a nanomedicine mate-
rials acceleration platform (NanoMAP) to streamline the preclinical
development of these formulations. NanoMAP combines high-
throughput experimentation with state-of-the-art advances in artifi-
cial intelligence (including active learning and few-shot learning) as
well as a web-based application for data sharing. The deployment of
NanoMAP requires interdisciplinary collaboration between leading
figures in drug delivery and artificial intelligence to enable this data-
driven design approach. The proposed approach will not only expe-
dite the development of next-generation nanomedicines but also
encourage participation of the pharmaceutical science community
in a large data curation initiative.

INTRODUCTION

Nanomedicines have enabled significant advancement in pharmaceutical formula-

tion due to their ability to confer improvements in drug safety and efficacy, thereby

transforming promising active agents (such as small-molecule drugs and biologics)

into viable drug products.1,2 The clinical success of nanomedicines has afforded

global improvement in the treatments and lives of patients suffering from a range

of diseases. For example, two of the clinically approved mRNA COVID-19 vaccines

were formulated in lipid nanoparticles that provide stability to the mRNA cargo, al-

lowing delivery to their sites of action in the body.3,4 Similarly, nanomedicines have

been demonstrated to increase the efficacy and/or reduce the side effects (i.e.,

toxicity) of several chemotherapeutics.5 Prominent examples include DOXIL (lipo-

somal doxorubicin) and VYXEOS (liposomal daunorubicin hydrochloride and cytar-

abine, encapsulated at a synergistic ratio). Indeed, numerous active agents require

formulation in advanced drug delivery systems such as nanomedicines to be

commercially viable. However, despite the great potential and clinical success of

nanomedicines, their design and development remain challenging compared with

the development of conventional pharmaceutical products such as tablets and cap-

sules.6 As a result, we propose the use of a self-driving laboratory (SDL) or materials

acceleration platform (MAP),7–12 named NanoMAP (nanomedicine MAP). NanoMAP

will harness artificial intelligence (AI), machine learning (ML), and high-throughput

experimentation to automate the design process and expedite the development

of nanomedicines.
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SDLs are loosely defined as an experimentation paradigm characterized by the

union of automated laboratory equipment for both sample preparation and charac-

terization (often with high-throughput capabilities) andML-guided experiment plan-

ning. These two aspects are linked by software that facilitates the interexchange of

information with limited or no human involvement. Specifically, the experiment plan-

ning algorithm sends instructions in the form of experimental parameters to be car-

ried out by the autonomous laboratory, which in turn reports back the corresponding

figures of merit or objective function values.

Researchers have been automating experiments using high-throughput strategies

(such as factorial grid search or design of experiment) for decades,13,14 which has

enabled reproducibility, parallelization, and miniaturization of experiments while

freeing researchers from repetitive tasks.15,16 Although some demonstrations

showed promising results,17–20 high-throughput experimentation strategies suffer

from the curse of dimensionality, with higher-dimensional parameter search do-

mains becoming exponentially costly to measure with uniform resolution. Early ex-

amples of SDLs, which focused on optimizing chemical reactions in continuous-

flow systems,21,22 instead enlisted data-driven optimization techniques to navigate

the parameter domain sequentially, thus leveraging feedback from previous

measurements and enhancing the efficiency with which promising candidates are

identified. Since then, SDLs have experienced cascading adoption in diverse

research areas, including nanomaterials,23–25 catalysis,26 condensed matter

physics,27 and photovoltaic materials,28–30 to name a few.

RISING TO THE CHALLENGE

NanoMAP addresses two of the key challenges that confront the field of

nanomedicine development

First, the applicationofAI andML in thepharmaceutical sciences is currently challenged

by the lack of high-quality data necessary for effective deployment of this approach.31

This may seem paradoxical given the tremendous investment into applications of

nanotechnology in drug delivery in the last two decades. Indeed, there is a vast body

of scientific literature on both nanotechnology-based formulation development and

preclinical characterization of nanomedicines.32 A Web of Science search for either

‘‘nanoparticles,’’ ‘‘polymer nanoparticles,’’ ‘‘liposomes,’’ or ‘‘lipid nanoparticles’’ and

the secondary keyword ‘‘drug delivery’’ returns more than 70,000, 20,000, 14,000,

and 10,000 research articles in the last 20 years, respectively (Figure 1). However, the

utility of this research for data-driven nanomedicine design is limited by poor publica-

tionpractices anda lackof standardization in reportingkeycomponentsorpropertiesof

drug formulations.33,34 For example, when one combs through the articles related to

polymer nanoparticles and drug delivery to compile the properties of materials and

active agents in an effort to build a database, the extent to which important meta-

data is omitted from manuscripts becomes clear (Table 1). This lack of complete,

high-quality data in scientific articles is recognized as a key challenge for researchers

who rely on data mining to train ML models, with extracted datasets rarely exceeding

1,000 data instances and more often limited to <200 samples.31 In order to address

this issue, NanoMAP will implement standardized high-throughput experimentation,

open access databases, and ready-to-use experimental protocols.

Second, there are a plethora of active agent properties, material properties, and

manufacturing parameters that must be considered in the development of nanome-

dicines. The currently employed design-build-test loop is largely reliant on an itera-

tive, trial-and-error-based experimental approach. Owing to the combinatorial

explosion of possible experiments, full resolution of the relationship between
1072 Matter 6, 1071–1081, April 5, 2023
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Figure 1. Summary of the number of publications on nanoparticles (yellow bars), polymer

nanoparticles (red bars), liposomes (orange bars), and lipid nanoparticles (purple bars) and drug

delivery in the past 20 years

Data sourced from the Web of Science using keyword combinations of ‘‘nanoparticles’’ and ‘‘drug

delivery’’; ‘‘polymer nanoparticles’’ and ‘‘drug delivery’’; ‘‘liposomes’’ and ‘‘drug delivery’’; or ‘‘lipid

nanoparticles’’ and ‘‘drug delivery,’’ with the search results filtered by research articles only.
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parameters and formulation performance is typically intractable. Moreover, it is well

established that material-drug (or active agent) compatibility significantly influences

the properties and performance of a formulation (i.e., loading capacity, stability,

release kinetics, etc.). Yet, most current research efforts in this space focus on the

use of the same small pool of materials that are clinically approved. This is largely

due to the additional time and cost associated with potential regulatory hurdles

for new materials and excipients.35 In order to justify the cost of bringing such a

material to market, its inclusion would need to result in a formulation with a perfor-

mance that is unachievable with any combination of currently approved materials or

excipients. Additionally, as each active agent has its own unique physicochemical

properties, it is understood that no one material can serve as the ideal candidate

for the formulation of all active agents. Thus, restriction of the formulation design

space clearly deters innovation. The proposed MAP harnesses advances in ML

to enable data-driven development of innovative nanomedicines within the

boundaries of the established, currently available and clinically approved materials.

Moreover, NanoMAP may allow for the design of new materials that could afford

formulations with leap-step advances in performance.

NanoMAP

Physical platform for high-throughput nanoparticle development

Nanoprecipitation for high-throughput nanomedicine screening

Among the various methods to prepare nanomedicines, nanoprecipitation is perhaps

the most amenable to automation and high-throughput experimentation via liquid-

handling robots. Briefly, this method involves the addition of molecularly dissolved ex-

cipients and active agents (within the organic phase) to an aqueous phase (often con-

taining surfactant to stabilize the resulting nanoparticles). This process has been used

to prepare lipid nanoparticles,36 polymer nanoparticles,37 and liposomes.38

Miniaturization of the nanoprecipitation process onto a 96-well plate format using a

liquid-handling robot has been reported in an effort to screen the lipid composition

for mRNA-loaded lipid nanoparticles.39,40 Moreover, it has also been demonstrated

that nanomedicines screened in this manner can be scaled up on microfluidics

platforms, thus eradicating potential downstream manufacturing concerns.39,40 It is

straightforward to envision the development of similar workflows for small molecules,
Matter 6, 1071–1081, April 5, 2023 1073



Table 1. A snapshot of the information reported on drug-loaded polymer nanoparticle formulations

Active agent Polymer
Polymer
PDI

Polymer
molecular
weight (kDa)

Particle size
(nm) Particle PDI

Zeta potential
(mV)

Drug loading
capacity (%)

Encapsulation
efficiency (%)

Coumarin-6 PLGA – 40–75 201 G 2 0.04 �37 – –

Docetaxel PLGA (PEG) – 15 (3) �50 – � �29 �4 �28

Paclitaxel PLA – 106 589 G 245 0.33 – – 43

Paclitaxel PLGA – 22 112 G 4 0.18G 0.005 �0.6 G 6 0.7 G 0.04 70 G 4

Curcumin alginate – – 100 G 20 – – – �11

Tetanus toxoid chitosan – >50 354 G 27 – +37 G 6 – 55 G 3

Silk peptide chitosan – 80 206 G 22 – +25 G 3 8 82

Gatifloxacin chitosan – 65–90 205 G 16 – +27 G 4 – 78 G 5

Estradiol PLGA – 15 98 G 3 0.16G 0.008 +79 G 2 – 51 G 6

BSA PLGA – 120 110 – – 23 90

Data are extracted from a Web of Science literature search for publications on ‘‘polymer nanoparticles’’ and ‘‘drug delivery.’’ Specifically, the search results were

sorted in order of the number of citations, and the top ten articles deemed relevant were inspected further are summarized in this table. PDI, polydispersity index.
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proteins, or peptidesgiven the necessary equipment to characterize the resultingnano-

medicines. For instance, drug loading capacity (DLC) and encapsulation efficiency (EE)

can be automated with appropriate extraction methods and analysis via high-perfor-

mance liquid chromatography (HPLC). High-throughput in vitro stability and release as-

says in biorelevantmedia are also amenable to automation using 96-well dialysis plates

and similar sampling protocols to those mentioned above for DLC and EE. Dynamic

light scattering plate readers enable the high-throughput measurement of particle

size.39,40 Therefore, all of the necessary equipment and components to conduct such

high-throughput experiments alreadyexist. In theNanoMAP framework,weunite these

components in order to systematically prepare and characterize nanomedicines in an

automated fashion (Figure 2).

ML strategies to enhance efficient formulation development

AL to efficiently generate informative datasets

Active learning (AL)41 is a model-based sequential learning strategy in which an ML

model can achieve greater predictive accuracy with fewer training data if it is allowed

to choose the data on which it is trained. AL is a well-established framework for tasks

in which unlabeled data are abundant (e.g., potential drug-lipid-surfactant formula-

tions) but obtaining such labels incurs significant expense. Here, we intend to use an

active learner to efficiently construct an informative dataset of nanomedicines (Fig-

ure 3A). Our active learner will sequentially recommend formulations to be prepared

and measured by the automated laboratory via a utility function, which prioritizes

certain formulations based on their expected informativeness. Resulting formulation

performance measurements will be passed to the model for retraining. This process

will repeat until a predetermined experimental budget is exhausted. Indeed, AL

strategies such as Bayesian optimization42–44 and variance-based sampling41 have

recently been applied in the context of closed-loop design of nanomaterials,

including inorganic nanoparticles,45,46 polymeric nanoparticles encapsulating nu-

cleic acids,47 and polymer-protein hybrids,48 as well as being proposed to empower

self-driving platforms for biologics formulation development.49

Nanomedicines commonly consist of a combination of polymer and/or lipid-basedma-

terials or excipients that encapsulate small molecules or biologic-based active agents.

Representing these complex entities for AL therefore becomes a crucial challenge.

Moreover, in the early days of NanoMAP, ML models will be forced to operate in

the low-data regime (less than a few thousand training examples). In this regime, sim-

ple one-hot encodings of molecular parameters have been shown to produce reliable
1074 Matter 6, 1071–1081, April 5, 2023



Figure 2. A scheme summarizing the physical platform for high-throughput nanomedicine screening

(A) Candidate excipients and a formulation design space are derived from the existing literature.

(B) The design space can then be explored to identify nanomedicines with desirable performance (e.g., size, active agent loading, and release kinetics)

using automated experimentation.

(C) This high-throughput approach will allow for lead candidate formulations that meet key design criteria (i.e., active agent loading levels, release

kinetics) to be identified in a manner that saves time and resources. Potential lead candidate formulations can then be scaled up for further preclinical

studies as required.

Figure created with BioRender.com.
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performance on reaction optimization tasks.50 Our group’s previous work also indi-

cates that carefully selected physicochemical descriptors (e.g., via the Mordred pack-

age51) are a flexible representation that produces accurate and calibrated predictions

of small-molecule properties when used in conjunction with probabilistic MLmodels in

a low-data supervised learning setting52 and can also increase the optimization rate in

an AL setting.53 The work of Tom et al.52 also suggests that graph-based representa-

tions54,55 of small molecules are not as effective as simple vector-valued representa-

tions in the low-data regime. However, as the corpus of information within

NanoMAP increases, graph representations could be considered not only for small

molecules but also for molecular ensembles.56

Few-shot learning for accurate prediction of nanomedicines for novel active agents

The availability of high-quality data in drug formulation and development is to

some extent limited by a lack of standardization in experimental design and poor re-

porting practices. Although the present study will aid in the generation of a relatively

large, standardized dataset of nanomedicines and will enable the rapid testing of

conventional supervised ML models, the paramount practical advantage to such a

dataset would be to enable accelerated nanomedicine development for novel active

agents. However, extrapolation to out-of-distribution examples is a challenging task

for conventional supervisedML. As such, we argue that nanomedicine design can be

cast as a few-shot learning problem (Figure 3B).57 In this paradigm, the entire avail-

able dataset is organized by active agents into subsets called source tasks. Few-shot
Matter 6, 1071–1081, April 5, 2023 1075
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Figure 3. Schematic of the machine-learning and software aspects of NanoMAP

(A) Given an active agent, excipient design space, and user-defined target objectives (e.g., active agent loading capacity and/or release kinetics), an

active learner is employed to drive a closed-loop experiment, resulting in a dataset of parameter-objective pairs.

(B) After collection of formulation datasets for several active agents, meta/few-shot learning models are trained on existing data and used as the

surrogate model in an active learning framework for a novel active agent.

(C) NanoMAP will consist of a graphical user interface accessible via a web-based application that provides facile access to formulation design (meta-)

data and to detailed instructions on how to reproduce the physical NanoMAP platform and automated protocols, as well as programming-free access to

pretrained machine-learning models.

Figure created with BioRender.com.
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learners are then trained on all source tasks individually. Test time refers to

commencement of a novel campaign in which an optimal formulation must be

discovered for a novel active agent. Sequential experimentation can now commence

but with the few-shot learner guiding experimentation with access to the novel

campaign and the source task information. Such approaches have been shown to

effectively transfer knowledge from source tasks onto novel campaigns, thus

increasing predictive accuracy in the low-data regime and ultimately accelerating

the discovery process.58–60 Despite the appeal of the aforementioned few-shot or

meta-learning optimization procedures, they are limited to campaigns that share

the same set of adjustable formulation parameters. Recently, developments in

few-shot/meta-learning optimization based on large language models (LLMs),

such as OptFormer,61 alleviate this restriction by learning from large-scale optimiza-

tion campaign data using flexible text-based representations. Nevertheless,

OptFormer was originally demonstrated on the task of ML hyperparameter optimi-

zation, for which results of millions of unique optimization campaigns are available.

In the experimental sciences, such a corpus of curated data does not yet exist. In the

distant future, we imagine that NanoMAP, along with self-driving platforms in

general, could benefit from using optimization strategies based on LLMs.

Web-based application for data sharing

Graphical user interface for dissemination of research progress

Historically, in addition to the lack of freely available high-quality data to train

models, one of the challenges with the integration of ML into the pharmaceutical
1076 Matter 6, 1071–1081, April 5, 2023
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sciences has been a lack of the necessary programming skills needed to implement

these tools.12,31 To ensure the maximum impact and adoption of the data-driven

tools described herein, the NanoMAP platform will include a user-friendly web-

based application (Figure 3C). This application will allow access to the curated

database and to detailed instructions on how to reproduce our low-cost physical

platform, as well as access to the trained few-shot learning models via an interface

that does not require programming expertise. Similar interfaces have been created

to democratize data-driven molecular property prediction62–65 and chemical reac-

tion optimization.66,67 Crucially, we will also provide an option to upload datasets

and meta-data, which will promote community engagement and tackle the repro-

ducibility crisis in the pharmaceutical sciences. The NanoMAP framework will also

seek to abide by and promote adoption of the FAIR (findable, accessible, interoper-

able, and reusable) data principles for scientific data management.68

ROADMAP TO NanoMAP

NanoMAP will combine high-throughput experimentation with state-of-the-art

advances in AI (including AL and few-shot learning) and a web-based application

for data sharing to not only expedite the design of innovative next-generation nano-

medicines but also to promote community participation in a larger data curation

project. As a roadmap to the development of NanoMAP, we have identified three

key milestones.

Milestone 1

An initial formulation design space of excipients and active agents will be estab-

lished to develop the necessary automation workflows for NanoMAP. This initial

design space will consist of commonly used excipients or materials and a panel of

up to five active agents selected to have diverse physicochemical properties. The

hardware required to conduct the proposed high-throughput experiments is

commercially available. Most research labs skilled in nanomedicine development

have the necessary analytical equipment and consumables to conduct this research.

The key piece of equipment preventing automation is likely access to a liquid-

handling robot. However, these have become significantly more affordable in recent

years, with entry-level models available for as little as $5,000.

Milestone 2

Milestone 2 is the expansion of the initial design space with new active agents for the

integration of active learners and few-shot learners into NanoMAP. At this point, key

design criteria (i.e., figures of merit) for the nanomedicines will be established as

target objectives for the active learners and few-shot learners. Various AL algorithms

for optimization tasks have been developed and are freely available via GitHub,

including several that have been developed by members of our research

team.53,69 Conversely, few-shot learners are much less explored in the pharmaceu-

tical sciences, and the full potential of such models has yet to be realized.

Milestone 3

Finally, there will be the construction of a web-based application to host a database

of formulation design (meta-)data and automated protocols, as well as detailed in-

structions on how to reproduce the physical NanoMAP platform. Additionally, a

graphical user interface will be accessible through the website that will host pro-

gramming-free access to pretrained ML models. Various platforms exist to host

such web-based applications. For example, the Aspuru-Guzik group has developed

MOLAR, an open-source database management system for PostgreSQL that is

tailored to the needs of materials scientists.70
Matter 6, 1071–1081, April 5, 2023 1077
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Feasibility of approach

The necessary hardware to conduct the proposed high-throughput experimentation

is commercially available. Moreover, advances in AI and ML research over the past

two decades have affordedmuch of the software framework for themodel-based op-

timizers necessary to close the design-build-test loop for NanoMAP.What remains is

for the components to be assembled into a single platform. This is not a trivial task.

The successful implementation of NanoMAP (and other such self-driving labs in the

pharmaceutical sciences) requires interdisciplinary collaboration between leading

figures in drug delivery and AI. Herein, we have assembled a team with the skills,

experience, and knowhow necessary to build NanoMAP. However, measurable

impact on the field requires widespread adoption of such an approach with open

sharing of data, methods, and statistical models throughout the community. For

this reason, we propose construction of a web-based application to enable and pro-

mote access and dissemination. Importantly, the platform will enable those who are

not experts in formulation or computer science to deploy these data-driven tools.

Limitations

In this section, we identify and discuss several limitations to the proposed approach.

Software maintenance and supervision

NanoMAP proposes the construction of a web application intended to be interactive

for the research community. Also, we propose to have state-of-the-art ML models

available for prediction and trained periodically using the latest collective training

set. These aspects will require at least part-time oversight by a programmer with

software-engineering qualifications to allow the platform to operate as intended.

For many academic research groups, financing one or more software engineers

may be prohibitive.

Scale up of nanomedicine production

Our motivation in focusing on nanomedicines prepared via nanoprecipitation using

liquid-handling robots stems from the amenability of this method to high-

throughput experimentation. As well, this method is currently more economical on

a per-experiment basis than other nanomedicine manufacturing techniques, such

as microfluidics. For instance, an entry-level liquid-handling robot can be acquired

for as little as $5,000, while an entry-level microfluidics system is much more expen-

sive. Moreover, most microfluidics systems require expensive chips or disposable

cartridges for operation, which further increases the cost associated with experi-

ments. However, our proposed approach is not without its limitations. In general,

nanoprecipitation affords lower active agent EEs and is a less scalable process

than microfluidics. To balance this trade-off between experimental throughput

and scalability, researchers have employed a hybrid approach wherein liquid-

handling robots are used to conduct throughput nanoprecipitation experiments to

identify lead formulation compositions. These lead candidates are then scaled up

via microfluidics.39,40,71 Thus, it may be necessary for NanoMAP to adopt similar mi-

crofluidics-integrated approaches to scale lead candidate formulations.

SOCIETAL IMPACT OF NanoMAP

While the COVID-19 pandemic has challenged the operations of scientific labora-

tories around the globe, it is science and medicine that are leading us out of this

pandemic. In fact, advanced pharmaceutical formulation is among the key areas

that have played a critical role in the fight against COVID-19. NanoMAP will lead

to a better understanding of the composition-performance relationships of nanome-

dicines, to the discovery of innovative nanomedicines, and to a decrease in the
1078 Matter 6, 1071–1081, April 5, 2023
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financial cost and time associated with bringing new nanomedicines to market.

Moreover, once established, NanoMAP can be extended to generate biological

data for nanomedicines by exploring applications that are amenable to automation,

such as high-throughput cytotoxicity and cellular uptake assays, as well as evaluation

in organ-on-a-chip technologies. This research will also result in the development of

cutting-edge few-shot learning models that will help solve the ‘‘big data’’ issue that

has thus far limited the deployment of ML models in the pharmaceutical sciences.

These models, as well as the curated datasets, will be shared openly online through

open-access repositories such as GitHub for use by the global research community.

To further increase the usability of the data-driven tools that will result from this

research, we will also develop and deploy a free-to-use and user-friendly web-based

application to allow programming-free access to pretrained models. While

NanoMAP will focus on the development of nanomedicines, we see no reason

why the foundational workflows and models cannot be improved or refined and

made applicable to an extended range of sectors where formulation is critical to

product development (e.g., diagnostic imaging agents, agriculture, cosmetics,

paints, and coatings). Ultimately, we believe that the deployment of NanoMAP,

and the development of similar self-driving labs, has the potential to make a

transformative impact on the formulation development process and improve the

bench-to-bedside translation of innovative medicines for patients who suffer from

life-threatening diseases.
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