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Abstract 

Background  Bivalves have independently evolved a variety of symbiotic relationships with chemosynthetic bacteria. 
These relationships range from endo- to extracellular interactions, making them ideal for studies on symbiosis-related 
evolution. It is still unclear whether there are universal patterns to symbiosis across bivalves. Here, we investigate the 
hologenome of an extracellular symbiotic thyasirid clam that represents the early stages of symbiosis evolution.

Results  We present a hologenome of Conchocele bisecta (Bivalvia: Thyasiridae) collected from deep-sea hydrothermal 
vents with extracellular symbionts, along with related ultrastructural evidence and expression data. Based on ultras-
tructural and sequencing evidence, only one dominant Thioglobaceae bacteria was densely aggregated in the large 
bacterial chambers of C. bisecta, and the bacterial genome shows nutritional complementarity and immune interactions 
with the host. Overall, gene family expansions may contribute to the symbiosis-related phenotypic variations in different 
bivalves. For instance, convergent expansions of gaseous substrate transport families in the endosymbiotic bivalves are 
absent in C. bisecta. Compared to endosymbiotic relatives, the thyasirid genome exhibits large-scale expansion in phago-
cytosis, which may facilitate symbiont digestion and account for extracellular symbiotic phenotypes. We also reveal that 
distinct immune system evolution, including expansion in lipopolysaccharide scavenging and contraction of IAP (inhibi-
tor of apoptosis protein), may contribute to the different manners of bacterial virulence resistance in C. bisecta.

Conclusions  Thus, bivalves employ different pathways to adapt to the long-term co-existence with their bacte-
rial symbionts, further highlighting the contribution of stochastic evolution to the independent gain of a symbiotic 
lifestyle in the lineage.
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Background
Since the beginning of metazoan evolution, the devel-
opment of animals has depended on the interactions 
with bacterial communities [1–3], and symbiotic rela-
tionships between microbial partners and animal hosts 
are hallmarks of these associations [4, 5]. Symbiosis has 
evolved independently in each lineage and is frequently 
associated with evolutionary adaptations [6, 7]. Thus, 
symbiosis-related evolution is a substantial contributor 
to phenotypic complexity and has long been a hot topic 
in biology [8–11].

Deep-sea chemosynthetic ecosystems are patchily dis-
tributed and turbulent [12]. Chemosynthetic bacteria are 
the primary producers of deep-sea cold seeps and vents 
[7, 13]. Thus, symbiosis is a common phenomenon in this 
ecosystem to facilitate energy utilization. As one repre-
sentative of deep-sea symbiotic organisms, the widely 
distributed bivalves have shown variations in symbiosis-
related traits, such as the spatial structure of the holobi-
onts and intimacy with the symbionts, which make them 
ideal materials for studies on the correlations between 
symbiosis and evolution [14, 15].

According to Wein et  al., the divergences of symbi-
oses are determined by three elements: symbiotic cur-
rency, mechanism of currency exchange, and inheritance 
regimes [16]. Among them, symbiotic currency is con-
stant among chemosymbiotic bivalves, where the host 
provides steady inorganic substrates to symbionts for 
carbon fixation, and in return, the bivalves obtain fixed 
carbons and rare metabolites, for example, the essential 
amino acids for bivalves [14, 17, 18]. However, the other 
two elements in deep-sea Bivalvia symbiotic systems 
have been shown to be highly varied.

The currency exchange mechanism varies and 
depends on the spatial structure of the holobionts. 
Most symbiotic bivalves belonging to Vesicomyinae and 
Bathymodiolinae host their symbionts intracellularly 
while most symbiotic thyasirids host their bacterial 
symbionts extracellularly [19, 20]. Correspondingly, the 
nutrient transfer mode may differ among taxa. Endo-
symbiotic bivalves, such as Archivesica marissinica, 
import gaseous substrates using carbonic anhydrase 
and globin so that intracellularly located symbionts can 
drive carbon fixation [21, 22]. In extracellular symbiotic 
thyasirids, the bacterial symbionts are located outside 
the cell membrane of bacteriocytes, which would allow 
the symbionts to obtain substances directly from the 
environment [20]. Moreover, many symbionts are alive 
in the bacteriocytes of endosymbiotic mussels [23]. 
In contrast, the extracellular symbionts of thyasirids 
are endocytosed in phagosomes, and the digestion 
rate of bacteria in phagosomes is much higher in the 

bacteriocytes [20, 24]. Thus, with the phenotypic diver-
gence in spatial structure and currency exchange, how 
thyasirids differ from the endosymbiotic bivalves in the 
genome remains debated.

The inheritance regimes of bivalves can be divided 
into vertical inheritance from parents to offspring and 
horizontal transmission from the environment [25]. 
How the hosts recognize and police the bacterial sym-
bionts are crucial in shaping these inheritance regimes. 
Different patterns in bacterial recognition and immune 
response have been demonstrated by comparative 
genomic investigations of endosymbiotic bivalves. For 
example, the mussel Gigantidas platifrons manifests 
horizontal transmission and expansion of gene fami-
lies involved in immunological recognition [26]. The 
same families are contracted in the clam A. maris-
sinica, which manifests vertically transmitted symbio-
sis [22]. The extracellularly symbiotic thyasirids might 
have evolved a distinct mechanism in bacterial recog-
nition and homeostasis since they are considered less 
integrated with their symbionts [27]. First, they harbor 
bacteria either among the microvilli outside the epithe-
lial cells of gills or, more integrally, in the apical vesicles 
delimited by the cell membrane and microvilli (hereaf-
ter for extracellular symbiosis to distinguish from the 
previous type of epi-symbiosis) [20]. In addition, thya-
sirids show a fluctuating dependence upon symbiont-
derived nutrients [28, 29]. Thus, extracellular symbiotic 
thyasirids might be regarded as intermediate between 
endosymbiotic and asymbiotic bivalves and may exhibit 
distinct evolutionary adaptations. In addition, how the 
thyasirid hosts select and recruit their symbionts with 
high specificity is still unknown.

Here, we present a genome of Conchocele bisecta 
(Bivalvia: Thyasiridae) and its extracellular symbiont. By 
comparative genomic analysis of C. bisecta and endos-
ymbiotic bivalves, genetic divergence related to the varia-
tions in currency exchange and bacterial recognition and 
policing are revealed. Ultrastructural observations and 
gene expression further corroborated our findings. We 
tested the hypothesis that the deep-sea bivalves evolve 
independently to give rise to the convergent symbio-
sis characteristics. Our results highlight that stochastic 
evolution may shape divergent symbiosis interactions by 
deep-sea bivalves.

Results and discussion
Distribution and constitution of symbionts in C. bisecta
To determine how bacterial symbionts are distrib-
uted in C. bisecta sampled from hydrothermal vents 
(Additional file  1: Supplementary note 1, Fig. S1) 
[30, 31], transmission electron micrography (TEM) 
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was performed. Densely aggregated bacterial symbi-
onts were in apical vesicles of gill filaments bacterio-
cytes (Fig. 1A). In most cases, the apical vesicles were 
opened at the tip but covered by microvilli, while lys-
osomes and other organelles located near the basal 
membrane side (Fig. 1A, B). In addition to long, large 

columnar vesicles, we noticed that there were also 
small ones, which were likely to be at an initial stage 
(Fig.  1A). In contrast to the bacterial symbionts in 
the apical vesicles (Fig.  1C), symbionts in intracellu-
lar vesicles had blurred cell walls and irregular shapes 
(Fig.  1D). It has been reported that thyasirids obtain 

Fig. 1  Distribution of bacterial symbionts in the gill filaments of Conchocele bisecta collected in a deep-sea hydrothermal vent field. A Transmission 
electron micrography (TEM) of bacteriocytes in gill filaments. Extracellularly symbionts were densely aggregated in the large apical vesicles (black 
arrow; v: vesicle) covered by microvilli (mv) and smaller vesicles (white arrow). Phagolysosome-like organelles (pl) and nucleus (n) located in the 
basolateral membranes of the bacteriocytes (scale bar: 5 μm). B Details of phagolysosome-like organelles with whorls of lysed bacterial products 
(scale bar 2 μm). C Living bacterial symbiont (b) with a clear border located in the apical vesicles, and the symbionts were small cocci with a 
diameter around 500 nm (scale bar 250 nm). D Lysed bacterial symbionts with blurred cell walls in the phagolysosome-like organelles (scale bar: 
250 nm). E Fluorescence in situ hybridization (FISH) of 16S rRNA of the dominate symbionts in the gill filaments. The image shows the overlay of 
DAPI-stained DNAs and 16S rRNA tagged with Cy3 dye (scale bar: 50 μm). F Schematic representation of typical bacteriocytes, including small, and 
large apical vesicles (v), phagolysosome-like organelles (pl), and lysed symbionts (b)
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nutrients by periodically engulfing and digesting their 
symbionts [24, 32]. These results suggest that most 
symbionts are quickly digested after being endocy-
tosed by bacteriocytes of C. bisecta, and most of these 
intracellular vesicles should be organelles such as late 
phagosomes and phagolysosomes. In the endosym-
biotic deep-sea mussels and vesicomyid clams, the 
phenotype is quite different: despite the presence of 
vesicles that appeared to be digesting the symbionts, 
there were many vesicles holding live endosymbionts, 
indicating that many of these vesicles might be early 
phagosomes or at more primitive stages [33, 34].

Based on the 16S rDNA V4 region amplicon analy-
sis, bacteria close to the clade SUP05 dominated in 
the gill tissue of C. bisecta with a relative abundance of 
94.73±3.20% (Additional file  2: Table. S1). Fluorescence 
in situ hybridization (FISH) was conducted to verify this 
observation. Probes (16S-Probe) were designed based on 
16S rDNA sequences of the dominated symbionts, and a 
strong signal was detected in columnar vesicles arranged 
in the gill filaments, in accordance with the TEM exami-
nation. The negative control probe did not hybridize 
with both tissues, and no positive signal was observed 
in gonad tissue (Fig.  1E, Additional file  1: Fig. S2). The 
bacteria-host specificity has been widely reported in mul-
tiple lineages, including corals, nematodes, and mollusks 
[35–37]. Although the mechanism underlying this phe-
nomenon is still being debated, the vertical transmission 
of symbionts and immune interactions were thought to 
be significant contributors [36–38]. However, according 
to our data, the dominant symbionts were absent in the 
gonad tissue of the C. bisecta, supporting the theory that 
thyasirids acquire symbionts horizontally [39, 40]. Thus, 
the genomic characterization of the holobionts would be 
necessary to provide insights into the interactions and 
specificities between host and its symbionts.

A high-quality genome of the extracellular bacterial 
symbiont of C. bisecta (hereafter SCbi) with a 92.85% 
completeness was recovered through a binning pipeline. 
The assembly consists of three single-copy rRNAs and 
31 tRNAs (Additional file  1: Table  S2). The 16S rDNA 
sequences and the GTDB (Genome Taxonomy Database) 
taxonomy annotation agreed to assign SCbi as Thiodu-
biliella sp. Interestingly, we found some genomic features 
that may contribute to symbiotic life by providing fixed 
carbons and rare metabolites to the thyasirid host. In 
brief, SCbi uses a modified Calvin cycle for carbon fixa-
tion driven by sulfur oxidation. We identified many cop-
ies of SulP-type transporters in the symbiont genome 
(Additional file 2: Table S3) [41, 42]. Members of the SulP 
family are associated with the intake of inorganic anions, 
such as sulfates and bicarbonates, in prokaryotes [43, 44], 
suggesting that these genes facilitate chemoautotrophy. 

The SCbi genome exhibited complete routes for biosyn-
thesis of 18 of 20 amino acids and five of ten cofactors 
(Additional file 1: Fig. S3, S4, Additional file 2: Table S4). 
As supported by proteomic data, missing enzymes in 
the biosynthesis of the amino acid threonine and folate 
may be compensated by a different enzyme or reaction 
products provided by the host (Additional file  1: Sup-
plementary note 2, Fig. S3–7 and Table  S5, Additional 
file 2: Table S4) [22, 45, 46]. Additionally, genes related to 
lipopolysaccharide (LPS) modifications and pathogenic 
invasion, such as homologs of slyB and yeeJ, were found 
in the SCbi genome and may be implicated in symbiotic 
interactions. For instance, according to our proteomic 
data, the invasin, encoded by yeeJ (intensity-based abso-
lute quantification (iBAQ) per million: 512.64), and the 
host receptor of integrin-beta1 (iBAQ per million: 49.18) 
were both actively translated in the gill tissue, pointing to 
a potential pathway of bacteria triggered phagocytosis or 
invasion [47, 48].

Taken together, C. bisecta hosts bacterial symbionts in 
large apical vesicles of bacteriocytes in gill tissue, similar 
to the previously reported cold seep C. bisecta, and other 
thyasirids such as Thyasirid flexuosa [20, 49]. Moreover, 
C. bisecta harbors a dominant Thiodubiliella symbiont 
that appears adequate for providing most necessary rare 
metabolites to the host and interacting immunologically 
with the host. Moreover, our TEM results emphasize 
differences between the intracellularly symbiont-hold-
ing vesicles of the extracellular symbiotic C. bisecta and 
endosymbiotic mussels and clams. The absence of SCbi 
in gonad tissue further supports that C. bisecta acquired 
its bacterial symbiont from the surrounding environ-
ments horizontally, highlighting the importance of bacte-
rial recognition in this symbiotic relationship.

Host genome assembly and phylogenetic analysis
To decipher the genetic machinery under these unique 
symbiotic features, we assembled a high-quality genome 
of C. bisecta by combining long-read PacBio sequenc-
ing reads with highly accurate short reads generated 
on the BGISEQ 500 platform and used Hi-C data for 
super-scaffolding (Additional file 1: Supplementary Note 
3, Fig. S6 and Table  S6–9). In detail, the 1.9 Gb assem-
bly contained 17,791 contigs with a contig N50 length 
of 488 kb (Fig. 2A, Additional file 1: Table S7). We anno-
tated 25,483 protein-coding genes and recovered 95.4% 
of metazoan BUSCOs (Benchmarking Universal Single 
Copy Orthologs) (Additional file 1: Table S7).

Our phylogenetic results showed that C. bisecta from 
Lucinida lies in a basal position of the heterodont clade, 
and the divergence time between C. bisecta and other 
heterodont clams is estimated as 464.9 million years 
ago (mya) in the mid-Ordovician (Fig.  2B). As recently 
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reported, the oldest fossil record of thyasirid bivalve is 
Eothyasira antiqua from the early Jurassic [50]. However, 
it was previously suspected, employing 18S rRNA gene 
data, that Thyasiridae have a longer fossil history than its 
published records [51], and our phylogenetic results sup-
port this long divergence time. The conservation index 
(CI) of six bivalves with ancestral linkage groups (ALG) 
that are represented by genes of Nematostella vectensis 
were calculated by a chromosome-based macrosynteny 
analysis [52]. Although the CI of C. bisecta (0.73) is not 
the highest among heterodont bivalves, the CIs of het-
erodont bivalves fell in a narrow window (0.7–0.8), which 
was much higher than that of the pearl oyster (0.45) 
(Additional file  1: Fig. S9). The accordant high CIs of 
heterodont bivalves indicated the genome organization 
of this clade is highly conserved to bilaterian ancestral 
genomes, although with a long divergence time among 
these clams.

Integrating repeat content results from hybrid software 
revealed that the transposable element (TE) content of C. 
bisecta is strikingly high. About 6.5 million repetitive ele-
ments were identified, accounting for the relatively large 
genome of the species (Additional file 1: Fig. S10a). Com-
parative analysis further revealed that the genome of C. 
bisecta contains both the largest amount (1.27 Gb) and 
the highest percentage (66.96%) of TEs than genomes of 
other lineages (Additional file 1: Fig. S10a and Table S10). 
It has been argued that TE content contributes to larger 

genome sizes [53–55]. We found that the genome size 
and TE content correlated in 27 lophotrochozoan 
genomes, except for the symbiotic clams C. bisecta and 
A. marissinica, which showed an elevated proportion of 
TEs (Additional file 1: Fig. S10b). Moreover, the two sym-
biotic clams had longer introns than other heterodont 
clams, which could be the results of high TE contents 
in the genomes, as seen in the African lungfish (Addi-
tional file  1: Fig. S10c) [54]. Expansions in TE-related 
protein domains have been shown to contribute to the 
high TE proportions in A. marissinica [22]. These pro-
tein domains, including the reverse transcriptase domain, 
DDE superfamily endonuclease, and the MULE trans-
posase domain, were also significantly expanded in the C. 
bisecta genome (Additional file 1: Fig. S11). TEs can rep-
licate independently within their host genomes and are a 
major source of genetic variation and novelty [56]. Thus, 
based on our data, the expansion in TE-related protein 
domains and the large amounts of TEs in these symbiotic 
clams may provide sufficient evolutionary material for 
the hosts to adapt to the symbiotic lifestyle, or at the very 
least, to diverse environments.

Evolution of gene families and their roles in symbiosis
Bivalves are ideal materials for studies on symbio-
sis and evolution due to the diverse symbiotic forms 
among different lineages [14, 15]. To the best of our 
knowledge, only two genomes of symbiotic bivalves, 
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A. marissinica and G. platifrons, have been published 
[22, 26]. As described, both species were endosym-
biotic, with A. marissinica appearing to be more inte-
grated with its symbionts than G. platifrons did. To 
investigate the evolution of symbiosis by bivalves and 
compare the genetic machinery under different sym-
biosis-related traits, we compared extracellular symbi-
otic C. bisecta and endosymbiotic A. marissinica and 
G. platifrons with five asymbiotic bivalves (Crassostrea 
gigas, Lutraria rhynchaena, Mizuhopecten yessoensis, 
Modiolus philippinarum, Pinctada fucata). The expan-
sion and contraction events were identified both at gene 
and domain levels (Additional file 1: Fig. S11, Additional 
file 2: Table S11).

For each of the three symbiotic bivalves, there appeared 
to be fewer contracted KEGG orthologs (KOs) than 
expanded KOs, but nearly half of these contracted KOs 
were shared by the bivalves (Fig. 3A, B). Considering the 
independent origin of the taxa compared, the shared con-
tracted KOs might be related to the convergent adapta-
tions, such as adaptions to nutritional symbiosis in the 
deep sea. For instance, the cholecystokinin receptor 
(CCKAR) with roles in bivalve digestion was contracted 
in C. bisecta and A. marissinica, in agreement with their 
reduced digestive systems (Fig.  3C, Additional file  2: 
Table  S11) [57, 58]. In addition, among the contracted 
KOs, several reduced acetylcholine receptors (CHRNAs) 
gene families were shared by all three symbiotic species 
(Fig. 3C, Additional file 2: Table S11). The adaptation to 
a lifestyle of coexisting with bacterial symbionts might 
be related to these contraction events since CHRNAs are 
implicated in regulating immune response and pathogen 
removal in both vertebrates and invertebrates (including 
bivalves) [59, 60].

We found many gene families expanded specifically in 
different lineages. Hence, we propose that the uniquely 
evolved KOs, especially the large amounts of expanded 
KOs, might be related to the variations of symbiosis-
related phenotypes among the three bivalves, such as the 
spatial structures and the ways of symbiont inheritance. 
In agreement with this hypothesis, KOs related to the 
divergent symbiotic traits in bivalves (e.g., nutrient trans-
port, phagocytosis, bacterial recognition, and immune 
response) were included in each list of the expanded KOs 
(Fig. 3C, Additional file 2: Table S11). This indicates that 

gene family expansions may contribute to the adaptive 
evolution of symbiosis and in shaping the different sym-
biotic phenotypes in C. bisecta and other bivalves. Thus, 
we further investigated the expanded KOs.

Symbionts as the primary nutrient supply for the host
With the absence of biosynthesis capabilities of some 
amino acids and cofactors, it is important for mollusks 
to derive nutrients from external sources or their bacte-
rial symbionts [61]. C. bisecta was unable to synthesize 
eight amino acids, including histidine, phenylalanine, iso-
leucine, lysine, leucine, valine, tryptophan and methio-
nine, and genes involved in the uptake these amino acids, 
such as Slc6a19, Slc7a9, and Slc16a10, were found in the 
genome (Additional file 1: Fig S3, S12, Additional file 2: 
Table  S4). SLC16A10, a transporter mediating the dif-
fusion of amino acids across basolateral membranes 
of the epithelial cells [62], is both expanded and highly 
expressed in the gills of C. bisecta (Additional file  1: 
Fig. S12). As described, C. bisecta digests its symbiont 
intracellularly, and amino acids released by the symbi-
onts should be accumulated in bacteriocytes, which is 
in correspondence to the actively transcribed Slc16a10 
(Fig.  4A). Similarly, transporters for vitamin B5 (VB5), 
VB7, and VB12 are highly expressed in the symbiotic tis-
sue of C. bisecta (Additional file  1: Supplementary note 
4, Fig. S4, S12, Additional file 2: Table S4). Therefore, the 
highly expressed gene family of these transporters in C. 
bisecta could emphasize the nutritional function of its 
gill tissues. Moreover, gene families coding for enzymes 
related to the filter-feeding lifestyle in mollusks, such 
as the glycosyl hydrolase and chymotrypsins, are found 
either contracted or missing in C. bisecta, suggesting that 
the clam had relied on symbiosis for nutrition for a long 
time (Additional file 1: Supplementary note 5, Additional 
file 2: Table S12) [22, 28, 63–65].

Unlike bivalves with endosymbionts, we did not find 
an expansion of gene families required for gaseous sub-
stance transport in C. bisecta (Additional file 1: Fig. S13, 
Fig. S14). Bacterial symbionts are located outside the cell 
of C. bisecta, and the symbionts could acquire gaseous 
substrates from the seawater directly (Fig. 4A). Thus, it is 
reasonable that there is no expansion of these transport-
ers. As the endosymbionts obtain the gaseous substances 
from the cytoplasm, cytoplasmic carbonic anhydrase 

(See figure on next page.)
Fig. 3  Gene family dynamics in the genomes of Conchocele bisecta, Archivesica marissinica, and Gigantidas platifrons. A Venn diagram showing 
the number of shared and unique expanded and contracted gene families in the three symbiotic species compared to five asymbiotic bivalves. 
Annotated to KEGG orthologs (KOs). B Total counts of KOs that expanded or contracted in each of the three bivalves, and the rates (%) of shared 
KOs. There are more exclusively expanded KOs than contracted ones in each bivalve. C Bubble plot of key expanded or contracted KOs in the three 
bivalves. Bubble size indicates the gene number of each KO in the eight species: C. bisecta (Conbis), G. platifrons (Gigpla), A. marissinica (Arcmar), 
Lutraria rhynchaena (Lutrhy), Mizuhopecten yessoensis (Mizyes), Modiolus philippinarum (Modphi), Pinctada fucata (Pinfuc), Crassostrea gigas (Cragig). 
Significant expansion (red), contraction (blue), or no significance (dark gray) were determined by Fisher’s exact test (P < 0.05)
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Fig. 3  (See legend on previous page.)
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(CCA) and hemoglobin (Hb) that may be involved in the 
transportation of CO2 and sulfide and oxygen for carbon 
fixation are expanded in their hosts [22, 65, 66]. These 
findings support the hypothesis that an expansion of 
CCAs and Hbs in endosymbiotic bivalves is adaptive [66].

To summarize, evolutionary divergences in gene fami-
lies associated with gaseous substrate transport might 
depend on whether symbionts are located inside bacteri-
ocytes. In addition, the high expression of transporters of 
rare metabolites in symbiotic tissues and the contraction 
in filter-feeding-related genes revealed a high reliance on 
nutritional symbiosis by C. bisecta, and the results under-
lined the convergences in symbiotic currencies among 
the chemosymbiotic bivalves.

Enhanced phagocytic capabilities provide insights 
into extracellular symbiosis
As revealed by previous studies and our TEM examina-
tion (Fig.  1), phagocytosis was considered to contribute 

significantly to nutritional currency exchange in extracel-
lular symbiotic thyasirids and two endosymbiotic bivalves 
[20, 24, 33, 34]. Accordingly, phagocytosis-related gene 
families are expanded in all three symbiotic bivalves. 
However, the evolutionary pattern of these genes in C. 
bisecta is distinct from the endosymbiotic ones (Fig. 4A).

Phagocytosis in eukaryote cells includes bacterial 
internalization, digestion, and the recycling of lys-
osomes. Remarkably, the C. bisecta genome exhibit a 
series of expansion events that related to the processes 
of lysosome-mediated intracellular digestion and lyso-
some recycling, including the mannose-6-phosphate 
receptor (MPR), cathepsin L (CSTL), Syntaxin7 (Stx7), 
mucolipin (MCOLN), and Ras-related protein Rab-
35 (Rab35) (Fig.  4A, Additional file  2: Table  S11). The 
above processes may be critical for the regulation and 
digestion of symbionts, and the related genes are highly 
expressed in symbiotic tissues [67, 68]. However, accord-
ing to our analysis, they are only significantly expanded 
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in C. bisecta, highlighting their possible contribution on 
extracellular symbiosis. For instance, MPR plays a key 
role in the phagosome maturation by importing hydro-
lases to phagosome [69]. In contrast to 2 or 5 copies 
coded by the endosymbiotic bivalves, 15 gene copies of 
MPR were found in C. bisecta genome (Fig. 3C), and four 
are specifically expressed in the gill tissues (Additional 
file 1: Fig. S15). Moreover, an expanded set of MCOLN 
genes, which are crucial for lysosomes recycling [70–72], 
is present in C. bisecta. Based on phylogenetic relation-
ships, MCOLNs split into two clades in bivalves, and 
thyasirid MCOLNs expanded in both clades and clus-
tered with their heterodont relatives (Fig. 4B). However, 
based on our analysis, genes implicated in the internali-
zation of the symbionts were only expanded in the endo-
symbiotic bivalves but the extracellular symbiotic C. 
bisecta (Fig 4A). For example, Rac family small GTPase 1 
(Rac1) and phosphatidylinositol 3-kinase (VPS34) were 
key factors in this process [73, 74]. These two families 
were only found to be expanded in the endosymbiotic 
bivalves, but not in the extracellular symbiotic C. bisecta 
(Fig.  3C, Additional file  2: Table  S11). Thus, although 
phagocytosis-related expansion events were observed 
in all symbiotic bivalves, only the thyasirid genome 
exhibited overall expansion of bacterial digestion and 
subsequent lysosome recycling genes. In contrast, the 
endosymbiotic bivalves likely show enhanced bacterial 
internalization.

Interestingly, we found some genetic evidence related 
to a rapid bacterial clearance rate in C. bisecta. Compared 
to the endosymbiotic bivalves, cathepsins, the hydrolases 
responsible for the catabolic ability of lysosomes with high 
expression in gills, were significantly expanded in thya-
sirid (Fig. 3C, Additional file 1: Fig. S15) [22, 65, 66, 75]. 
Based on the divergence time of ctsL genes, four copies 
(Conbi17702, Conbi17048, Conbi07646 and Conbi23783) 
were estimated to have expanded in a narrow window, 
while two of them were identified as tandem duplicate 
pairs (Fig.  4C). Interestingly, among the four ctsL copies, 
three genes were exclusively expressed and accounted for 
most of the ctsL transcripts in gill tissue (Fig. 4C). We spec-
ulate the expansion events enhance bacterial digestion. 
The processes from early phagosome through symbiont 
digestion may be particularly efficient in the extracellu-
lar symbiotic C. bisecta, which corresponded to the phe-
notype of the thyasirids, where most internal vesicles 
retain lysed bacterial symbionts [24, 49, 76]. Furthermore, 
expanded gene families related to lysosome recycling have 
been implicated in forming a large phagocytic cup via pro-
moting membrane extensions [77–79]. The large apical 
vesicles harboring densely aggregated C. bisecta symbionts 
were stunning. Additional membrane is required when 
the apical vesicles form, which might be related to these 

expansion events [72]. In addition, compared to endos-
ymbiotic bivalves, the capability of internalizing symbi-
onts might be relatively modest in C. bisecta, accentuating 
the above phenotypic variations between the extracellular 
symbiotic thyasirid and endosymbiotic bivalves.

In conclusion, the massive expansion in phagocytosis is 
in line with the theory that thyasirids periodically engulf 
and digest symbionts [28, 76]. In addition, the gene fami-
lies related to phagocytosis divergently evolved among 
different bivalves. These divergences may be related to 
the phenotypic variations, such as the large apical vesicles 
in extracellular symbiotic clams, and the large amounts 
of endosymbiotic vesicles with live bacteria in both A. 
marissinica and G. platifrons.

Immune system remodeling to the establishment 
and maintenance of extracellular symbiosis in C. bisecta
According to our comparative genomic analysis, the 
immune system of C. bisecta is remodeled differently 
from that of A. marissinica and G. platifrons to make 
room for its extracellular symbiont (Fig.  5A). The roles 
of pattern recognition receptors (PRRs) in bacteria selec-
tion and capture may be reduced in thyasirid as four out 
of 13 PRR-related Pfam domains are contracted (Fig. 5B, 
Additional file  2: Table  S13). However, the expansion 
of mucosal immunity-related genes, including mucin 
protein families and the GCNT1 (acetylglucosaminyl-
transferase) family for mucin glycosylation, has been 
observed, and these genes were functional in the gill tis-
sues as are supported by both transcriptomes (Fig.  3C, 
Additional file  1: Fig. S16). As described, TEM exami-
nation and 16S rDNA analysis found SCbi was the only 
dominant bacteria in the apical vesicles of bacteriocytes, 
indicating that inter-partner recognition of symbionts 
has completed before the settlement of the symbionts 
in the apical vesicles. Thus, we speculate that the selec-
tion of symbionts occurred extracellularly possibly at the 
mucin layer based on both microscopic observation and 
comparative genomics. The mucosal interface is the first 
physical encounter where the interactions of microbe 
and host begin through bindings of host surface glyco-
sylated proteins and symbiont sugars [25]. In the squid-
vibrio system, it has been revealed that the glycosylated 
surface mucus secreted by the host is the key factor in 
recruiting and entraining of bacterial symbionts from 
seawater [5]. Therefore, although both C. bisecta and G. 
platifrons acquire symbionts by horizontal transmission, 
the expanded mucins and GCNT1 enzymes in C. bisecta 
are likely to function in bacterial symbiont aggregation 
and specificity of the bacterial symbionts, rather than via 
PRRs as in deep-sea mussels.
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Once symbiotic relationships are established, the bac-
teriocyte may suffer from stressors like ROS (reactive 
oxygen species) due metabolic waste from symbionts. 
Hence, homeostasis maintenance strategies are needed 
to sustain the symbiosis system. Inhibitors of apopto-
sis protein (IAPs) are known to inhibit apoptosis and 
promote cell cycle progression and are expanded and 
highly expressed in gills of endosymbiotic bivalves 
to maintain cellular homeostasis (Fig.  5A) [22, 26]. 
However, the copy number of IAP Pfam domains in 
C. bisecta [37] is somewhat lower than the asymbiotic 
bivalves (56 on average) and much lower than endos-
ymbiotic bivalves (232 for A. marissinica, 123 for G. 
platifrons) (Fig.  5A, B). In C. bisecta, most symbionts 
remain in apical vesicles among the microvilli of bacte-
riocytes and are digested once entering bacteriocytes. 
Thus, population control of symbionts by suppressing 
host cell apoptosis may not be required.

Although mainly located outside the cell, the thya-
sirids nevertheless need to accommodate the lifestyle of 
extracellular symbionts resident at their gills and foot. 
LPS is a common cell surface antigen of Gram-negative 
bacteria and one of the most potent initiators of inflam-
mation and apoptosis, which can induce cytokine pro-
duction and cause cytotoxic effects in animals, including 
mollusks (Fig.  5A) [80, 81]. We found that several gene 
families coding LPS-binding proteins expanded substan-
tially and are highly expressed in both tissues of gill and 
foot (Fig.  5C). For example, apolipoprotein H (ApoH) 
can associate with and scavenge LPS by binding mem-
bers of the low-density lipoprotein receptor-related 
protein (LRP) family to reduce endotoxin concentra-
tion [82, 83]. In addition to the expansion of ApoH, an 
expansion of three LRP families, including the LRP1B (14 
vs. 3.7 gene copies in all other seven analyzed bivalves), 
LRP3/10/12 (26 vs. 4.9 gene copies), and LRP4 (34 vs. 
21.7 gene copies), were observed in C. bisecta (Fig.  5A, 
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Additional file 2: Table S11). LRP1B genes are the most 
highly expressed family among the expanded LRPs 
and are mainly expressed in the gills and mantle, while 
LRP3/10/12 genes are mainly expressed in the three 
muscle tissues (Additional file 1: Fig. S16). These results 
support a hypothesis that the host may maintain the rela-
tionship with the bacterial symbionts by neutralizing the 
defects of bacterial LPS. As additional evidence, other 
gene families involved in the immune response to LPS 
were significantly evolved, including the tumor necro-
sis factors (TNF), lipopolysaccharide induced TNF fac-
tors (LITAFs), and E3 ligases (Fig. 5A, Additional file 2: 
Table  S11). For instance, we found that the E3 ubiqui-
tin-protein ligase ring finger protein 213 (RNF213) has 
expanded in symbiotic bivalves. This family was recently 
reported to induce antibacterial autophagy by ubiquity-
lating LPS in cytosol [84].

Taken together, significant genetic differences have 
been observed in the two bivalves that obtain symbionts 
horizontally. In C. bisecta, glycosylated mucins, rather 
than the PRRs, may aid in symbiont integration, which 
is crucial for the horizontal transmission of symbionts in 
thyasirids [39, 40]. Although the convergent expansion 
of IAPs in endosymbiotic bivalves was not observed in 
C. bisecta, the expansion and high expression of multiple 
gene families may allow this thyasirid clam to resist the 
toxic effect of extracellular symbiosis.

Independent genome evolution drives the diversify 
of the deep‑sea bivalve symbioses
Symbiosis is a major driven force of evolution, and this 
relationship shapes the phenotypic complexity of the 
symbiotic host [13, 85]. Among bivalves, chemosym-
biosis with primary producers in the deep sea is one of 
the convergent adaptations to the oligotrophic environ-
mental context [7]. However, symbiosis-related pheno-
types, such as the spatial structure of bacteriocytes and 
the physiological adaptations between the host and the 
symbiont, are highly variable in bivalves [25]. The evolu-
tionary fingerprints under these variations need further 
investigation.

Symbiont digestion through phagolysosome contrib-
utes significantly to the nutritional transfer from the sym-
biont to the host, and evidence has been obtained from 
both mussels and clams [33, 34]. However, as revealed 
by genomic comparisons, gene families related to symbi-
ont digestion were divergently evolved among the three 
symbiotic bivalves. The expansion events in C. bisecta 
may enhance the phagocytic capabilities of this clam. For 
instance, cathepsins are representative hydrolases that 
participate in symbiont digestion, and the gene duplica-
tion of ctsL likely facilitated its specific expression in the 
symbiotic gill tissue. Regarding substrate transport from 

the host to the symbionts, genetic divergences were also 
observed between the extracellular symbiotic thyasirid 
and its endosymbiotic relatives. Thus, these divergences 
in currency exchange might account for the distinct spa-
tial structure of bacteriocytes among symbiotic bivalves, 
whereas these evolutionary events converged to the facil-
itating of currency exchange.

The immune systems of the three symbiotic bivalves 
were remodeled at the genome level, but the evolution-
ary patterns were distinct. For instance, the bacterial LPS 
is one of the most potent initiators of inflammation and 
toxic to bivalves [80, 81]. According to our analysis, the 
symbiotic bivalves employed different pathways to adapt 
to the long-term co-existence with their bacterial symbi-
onts. For example, expanded IAP families in the endos-
ymbiotic bivalves have been linked to the homeostatic 
maintenance in bacteriocytes [22, 26]. Instead, we found 
that the expansion events in the LPS scavenging pathway 
might account for the thyasirid’s adaptation to the bacte-
ria-hosting life. Likewise, although the G. platifrons and 
C. bisecta recruit symbiont horizontally and show a high 
degree of specificity with the symbiont, the bacterial rec-
ognition-related gene expansion events were divergent.

Our results suggest that distinct genome events, in 
particular gene duplications, underlie the independ-
ent evolution of symbiosis by deep-sea bivalves. Gene 
duplication results from stochastic accidents during 
inheritance and is considered a rich source of evolution-
ary substrates [86, 87]. The emerging evolutionary pic-
ture from our data is that gene duplications occurred 
persistently and stochastically, either before or after the 
establishment of symbiosis in the ancestors of symbiotic 
bivalves. During the many millions of years of co-evolu-
tion between the bivalves and their symbionts, selective 
pressure has resulted in extant species with optimal cur-
rency exchange and a high-tolerance immune strategy.

Conclusions
Biologists have long been fascinated by the evolution of 
symbiotic relationships. Bivalves have shown varied sym-
biosis forms, and phenotypic divergence-driven com-
parison of bivalve genomes may provide insights into 
this question. By characterizing the hologenome of C. 
bisecta, genetic clues for the nutritional complementa-
rity and immune interactions between the host and the 
Thioglobaceae symbiont were provided. Furthermore, 
by comparing this extracellular symbiotic thyasirid with 
endosymbiotic bivalves, we show that bivalves employ 
divergent evolution of genes and pathways, includ-
ing phagocytosis, bacterial recognition, and immune 
response to LPS, to adapt to the long-term co-existence 
with their bacterial symbionts, highlighting the contribu-
tion of stochastic evolution to the independent gain of a 
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symbiotic lifestyle in the lineage. Thus, our work provides 
a resource and valuable insights for understanding the 
evolution and dynamics of invertebrate symbiosis.

Methods
Sample collection
Individuals of Conchocele bisecta were collected during 
R/V Kexue “2018 Hydrothermal vent & Cold-seep com-
bined expedition” at hydrothermal vents field in the East 
China Sea (27° 47.5′ N, 126° 53.8′ E), with the help of TV 
grab. Anatomy was processed on ice immediately after 
sampling, and tissues were stored at −80°C unless other-
wise mentioned.

FISH and TEM analysis
Both the gill tissue and gonad tissue of freshly collected 
clam were prepared for fluorescent in  situ hybridiza-
tion (FISH) analysis. In brief, the tissues were fixed in 
4% paraformaldehyde at 4°C for 16 h. The fixed tissues 
were washed in cold PBS for three times and dehy-
drated in 100% methanol, and dehydrated tissues were 
stored at −20°C before use. The tissues were embedded 
with Paraplast plus (Sigma) first and cut into sections 
of 7-μm thickness with a microtome (Leica) for FISH 
analysis. Probe was labeled with Cy3 for FISH analy-
sis and designed based on 16S rDNA sequence of the 
symbiont. The 16S-Probe was mapped to both the host 
genome and the assemblies of metagenomes of gill tis-
sue to avoid unspecific hybridization. Sequential sections 
of gill or gonad tissue of C. bisecta were analyzed using 
both the 16S-Probe and the reverse complement one of 
it. The FISH experiments were performed according to 
the method described by Halary [88].

For transmission electron microscope (TEM) analysis, 
gill tissues were dissected and fixed in 2.5% glutaralde-
hyde and 2% paraformaldehyde at 4°C. Then the tissue 
was post-fixed with 1% osmium tetroxide and embed-
ded in Ep812 resin. Sections of 70-nm thickness, which 
generated by a ultramicrotome (Reichert-Jung ULTRA​
CUT​ E), were double-stained with lead citrate and ura-
nyl acetate. The sections were examined using a TEM 
(JEM1200, JEOL) set to 100 kV.

Amplicon sequencing of 16S rDNA V4 region
DNA templates that extracted from gill tissues of three 
individuals and gonad tissue of one individual were used 
for amplicon sequencing of 16S rDNA V4 region. The 
libraries were constructed and sequenced according to 
the instruction of BGISEQ-500 platform. Adapters and 
low-quality reads were removed, and operational taxo-
nomic units (OTUs) were assigned to the SILVA riboso-
mal RNA database (r123) using the USEARCH pipeline 
with a 97% similarity cut-off. All OTUs mapped by more 

than 10 reads in any of the three samples were considered 
to be candidates of symbionts.

Nucleic acid extraction and sequencing
Genomic DNA was extracted from the muscle tissue 
of C. bisecta using QIAamp DNA Mini Kit (Qiagen), 
and the DNA was examined with the Agilent 4200 Bio-
analyzer (Agilent Technologies). Similarly, metagenomic 
DNA was exacted from tissues of gill and gonad by an 
identical progress, respectively.

For WGS sequencing, the DNA was fragmented to 
500–800 bp in size with Covaris E220 and selected using 
AMPure XP beads to obtain fragments around 200 bp. 
Then the fragments were end-repaired and A-tailed 
with T4 DNA polymerase (NEB), T4 polynucleotide 
kinase (NEB), and rTaq DNA polymerase (Takara). After 
that, the DNA were amplified for eight PCR cycles and 
sequenced on the BGISEQ-500 platform with a layout of 
pair-end 100 bp.

For PacBio sequencing, 8 μg of extracted genomic 
DNA was sheared and concentrated with AMPure PB 
beads. The libraries were constructed using the Pacific 
Biosciences SMRTbell express template prep kit 2.0, and 
the constructed libraries were selected on a BluePippin 
system for molecules longer than 20 kb. Finally, the tem-
plates were primer annealed and bound to polymerases 
with the DNA/Polymerase Binding Kit, and sequencing 
was carried out on the Pacific Biosciences Sequel II plat-
form for 15 h.

For Hi-C library construction, gonad tissue was disso-
ciated, and cells were collected and crosslinked with 1% 
formaldehyde (Sigma) and 0.2M glycine (Sigma). After 
that, the fixed powder was resuspended in nuclei isola-
tion buffer and then incubated in 0.5% SDS for 10 min at 
62°C. Then the reaction was quenched with 10% Triton 
X-100 (Sigma) and the nuclei were collected by centrif-
ugation. Then the DNA was digested with MboI (NEB), 
and the overhang was filled and biotinylated before 
ligated by T4 DNA ligase (NEB). Before library construc-
tion, the DNA was purified using the CTAB method. The 
purified DNA was sheared, and biotin-containing frag-
ments were captured on streptavidin-coated beads using 
Dynabeads MyOne Streptavidin T1 (Invitrogen). Then 
the fragments were end-repaired and linked with adap-
tors before eight cycles of PCR reaction with KAPA HiFi 
HotStart ReadyMix (Kapa Biosystem). After that, the 
Hi-C library was sequenced with BGISEQ-500 platform 
with a layout of pair-end 100 bp.

For RNA sequencing, tissue-specific total RNA was 
extracted from tissues of adductor muscle, mantle, foot, 
and gill with TRIzol (Invitrogen), and the reverse tran-
scription was performed with HiscriptII (Vazyme) to 
generate cDNA. The cDNA fragments were sequenced 
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on the BGISEQ-500 platform with a layout of pair-end 
100 bp.

For metagenome sequencing, selected DNA frag-
ments were end-repaired, A-tailed, and amplified, and 
the libraries were sequenced on the BGISEQ-500 plat-
form with a layout of pair-end 100 bp. In addition, DNA 
of gill tissues for Oxford Nanopore Technologies (ONT) 
long-read sequencing was extracted from gill tissues of 
a third individual with the Blood & Cell Culture DNA 
Midi Kit (Qiagen), and the library were prepared and 
sequenced with the Oxford Nanopore Ligation Sequenc-
ing Kits SQK-LSK109 according to the manufacturer’s 
instructions.

Mitochondrial genome assembly and collinearity analysis
Conchocele cf. bisecta HPD1644 mitochondrial sequence 
[31], retrieved from the NCBI with sequence number 
“LC126312.1,” was used as the “Seed Input” in the configu-
ration file of NOVOPlasty v4.2 [89], resulting in the mito-
chondrial genome of C. bisecta in this study. The genome 
was annotated using online tool of MITOS (http://​mitos2.​
bioinf.​uni-​leipz​ig.​de/​index.​py) [90]. For collinearity analy-
sis, the assembled mitochondrial sequences were aligned 
to that of Conchocele cf. bisecta HPD1644 using Sibelia 
v2.1.1 [91] to generate a Circos configure file and plot in 
Circos v0.69 [92].

Host genome assembly and chromosome anchoring
Before genome assembly, all of the generated short 
reads were quality filtered using SOAPnuke v1.5.2, 
with the parameter as “-l 20 -q 0.2 -Q 2 -d” [93]. K-mer 
frequency-based method was used for genome size 
estimation. In detail, the K-mers were counted using 
Jellyfish v2.2.6 with the parameter “-m 17”, and the out-
put file was employed to estimate the genome size with 
“histo” of Jellyfish v2.2.6 [94].

The generated PacBio reads were converted to fasta for-
mat using bam2fastq. These raw reads were assembled by 
Shasta-OldLinux-0.4.0 with a PacBio-CLR configure file 
(minReadLength = 10000, maxAlignmentCount = 50, 
consensusCaller = Modal) [95]. This primary assembly was 
then polished twice using clean short reads generated by 
BGI sequencer by Pilon v1.22 [96]. BUSCO v5.3 estimation 
of the percentage of complete metazoan (odb10) dataset 
reached 87.8% [97]. Contigs from this assembly were then 
clustered using Hi-C data, after quality control process 
with HiC-Pro v3.2 [98] and assembled by 3D-DNA [99], 
the final heat map showed these contigs were mounted into 
17 pseudo-chromosomes visualized in Juicebox v1.9 [100].

Repeat annotation
Tandem Repeats Finder v 4.0.7 program was applied 
to detect tandem repeats in the genome [101]. 

Homolog-based and de novo prediction methods were 
integrated to identify transposable elements (TEs). 
For the de novo search, LTR_Finder v1.0.6 [102] and 
RepeatModeler v1.0.8 [103] were employed to find 
repetitive elements with specific consensus models. For 
the homology-based search, RepeatMasker v4.0.6 and 
RepeatProteinMask v4.0.6 against the Repbase v21.01 
database were used at the nucleotide and protein lev-
els respectively [104, 105]. Secondly, RepeatMasker was 
employed again to detect species-specific TEs against 
the database concatenated by the results of LTR_Finder 
and RepeatModeler together. All other species used in 
this work were annotated repetitive elements following 
the same pipeline for comparative analysis.

Gene annotation
Ab initio, homology-based and gene expression evidence 
were combined to predict protein-coding genes in the 
genome of C. bisecta. Augustus v3.1 was first employed 
on repeat-masked genome for ab  initio gene predic-
tion [106]. For the homology-based annotation, gene 
sets from 10 molluscan species (Archivesica marissinica, 
Biomphalaria glabrata, Crassostrea gigas, Gigantidas 
platifrons, Lottia gigantea, Lutraria rhynchaena, Modio-
lus philippinarum, Octopus bimaculoides, Pinctada 
fucata, and P. canaliculate) were used. These homologous 
protein sequences were first aligned onto the genome of 
C. bisecta using Blast v2.2.26 with an e-value cut-off of 
1 × 10−5 [107], and then we linked the alignment hits 
to candidate gene loci by GenBlastA [108]. Secondly, 
genomic sequences of candidate gene regions together 
with their 2-kb flanking sequences were extracted and 
used GeneWise v2.2.0 to determine gene models [109]. 
Moreover, Stringtie v 1.3.4 was employed to generated 
gene annotation files on RNA-Seq alignments generated 
by HISAT v2.1.0 of different tissues (adductor muscle, 
mantle, foot, and gill) [110, 111]. Then these files were 
merged together to predict candidate coding regions 
open reading frames (ORFs) using Transdecoder v5.5.0 
and were aligned to genomes to obtain a gene annota-
tion file with transcript evidence. Finally, these three evi-
dences were integrated using EVM v1.1.1 to obtain a final 
version of protein-coding genes [112], and their function 
were annotated by searching against the following pub-
lic databases: Swiss-Prot v201709, KEGG v87.0, InterPro 
v55.0, and TrEMBL v201709. The other 7 species used in 
gene family analysis were functionally annotated in the 
same way.

Phylogenetic relationships and divergence 
times of mollusks and selected bivalves
Twenty-four well-assembled lophotrochozoan genomes 
were selected for phylogenetic analysis, include one 

http://mitos2.bioinf.uni-leipzig.de/index.py
http://mitos2.bioinf.uni-leipzig.de/index.py
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annelid (Helobdella robusta) as outgroup, 21 bivalves 
(Archivesica marissinica, Argopecten concentricus, Argo-
pecten irradians, Conchocele bisecta, Crassostrea gigas, 
Crassostrea virginica, Cyclina sinensis, Gigantidas plati-
frons, Lutraria rhynchaena, Mactra quadrangularis, 
Mercenaria mercenaria, Mizuhopecten yessoensis, Modi-
olus philippinarum, Mytilus coruscus, Pecten maximus, 
Pinctada fucata, Pinctada imbricata, Ruditapes philip-
pinarum, Saccostrea glomerata, Scapharca broughtonii, 
Sinonovacula constricta), 5 gastropods (Aplysia califor-
nica, Chrysomallon squamiferum, Lottia gigantea, Hali-
otis rufescens, Pomacea canaliculata), and 2 cephalopods 
(Octopus bimaculoides and Octopus vulgaris) [22, 26, 52, 
113–132]. SonicParanoid v1.3.0 was used to define gene 
family clusters among different species [133]. The amino 
acid sequences of one-to-one single-copy orthologous 
genes were used to reconstruct their phylogenetic topol-
ogy. The protein sequences were aligned using MAFFT 
v7.407 under default settings [134], and then were con-
catenated for phylogenetic analysis using a maximum-
likelihood method implemented in IQ-TREE v 2.0.6 with 
the “-m MFP” parameter was applied to each protein 
partition [135]. To estimate divergence times, the rooted 
maximum-likelihood tree, along with a concatenated 
fourfold degenerate site sequence extracted from single-
copy CDS (coding sequence), was used as the input of 
MCMCtree software implemented in PAML v4.8 [136]. 
For calibration, nine nodes were constrained by either 
fossil records obtained from website of TimeTree.

Host gene family analysis and domain analysis
For expansion and contraction analysis, in addition to 
genome of C. bisecta, we selected 7 representatives with 
good BUSCO performance out of the 15 collected bivalve 
genomes. The selected genomes include that of the only 
two published endosymbiotic bivalves (A. marissinica, 
G. platifrons) [22, 26], and 5 asymbiotic bivalves (Cras-
sostrea gigas, L. rhynchaena, M. yessoensis, Modiolus 
philippinarum, P. fucata) which were separated in dif-
ferent bivalve clades and not known to host chemosyn-
thetic bacteria. Before analysis, HMMSCAN (HMMER 
v3.1) was applied to identify Pfam domains in protein-
coding gene sequences among the selected bivalve. The 
Pfam domains of the respective species were counted to 
construct a data frame, while multiple copies of a same 
domain in the same gene were counted as one.

Gene family analyses in the symbiotic bivalves were 
conducted using one-tailed Fisher’s exact tests for either 
expansion or contraction. In detail, for gene expansion/
contraction at the protein domain level, we first calcu-
lated the counts of each Pfam domain in each genome of 
the 8 analyzed species, and the Pfam domain counts in 

each of the symbiotic bivalves (A. marissinica, C. bisecta, 
G. platifrons) was compared against the background 
average domain counts of the five asymbiotic bivalve 
genomes (Crassostrea gigas, L. rhynchaena, M. yessoensis, 
Modiolus philippinarum, P. fucata), which method was 
employed by Sun et  al. for comparative genomic analy-
sis [26]. Furthermore, we conducted the same analysis 
with the gene counts of each KEGG ortholog on each 
of the three symbiotic bivalves. After that, Pfam domain 
or KEGG ortholog with a P value less than 0.05 is con-
sidered statistically expanded or contracted in the three 
symbiotic bivalves. Finally, the evolutionary patterns of 
A. marissinica, C. bisecta, and G. platifrons were com-
pared according to the expansion/contraction results by 
Fisher’s exact tests.

For phylogenetic analysis of each gene family, we 
employed Muscle v3.8.31 for multiple sequence align-
ment [137], and the phylogenetic trees were constructed 
with FastTreeMP v2.1.10 [138]. Specially, for reported 
expansion events of subfamilies of hemoglobin, which 
were not included in the KEGG database, we performed 
additional alignment with the sequences mentioned in Ip 
et al. [22] using Diamond, and phylogenetic analysis was 
conducted as the same.

Time of gene duplication
To evaluate the temporal dynamics of expanded gene 
families during the evolution of C. bisecta, the nucleo-
tide substitution rates of bivalves were calculated by the 
branch distance divided by the estimated divergence time 
using MCMCtree. With default settings of MAFFT and 
“-automated1” option of trimAl v1.4 [139], all paralogs of 
the target gene family were aligned to determine the time 
required for gene duplication. The Nei-Gojobori pairwise 
codeml method was used to determine the dN values for 
all aligned pairs. Divergence times of gene pairs were esti-
mated using the equation T = K/2r [140], where T is the 
insertion time, and r is the nucleotide substitution rate. 
The relationships between different gene pairs are deter-
mined following the DupGen_Finder (https://​github.​com/​
qiao-​xin/​DupGen_​finder) pipeline, using Nematostella 
vectensis as a reference genome.

Transcriptome analysis
Adaptor sequence removal and read quality filtering 
from the raw transcriptome datasets were performed 
using SOAPnuke, with the parameter as described above. 
HISAT2 were used to build index and align clean RNA 
reads to the reference genome. RNACocktail v0.2.1 were 
used to build genome-guided transcriptome assemblies 
[141]. Tissue-specific expression levels were quantified 
using Salmon v0.8.2 [142].

https://github.com/qiao-xin/DupGen_finder
https://github.com/qiao-xin/DupGen_finder
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Metagenomic assembly and binning
The raw reads generated from either metagenomic 
libraries of the two individual gill tissues were filtered 
using SOAPnuke. The filtered reads which were confi-
dently aligned to the host’s genome were removed, and 
remained reads were assembled with MEGAHIT v1.1 
(--min-count 2/3 --k-min 33 --k-max 53 --k-step 10 
--no-mercy) [143]. Metagenome-assembled genomes 
(MAGs) were binned with Metawrap v1.1.5 [144], and 
the bins were combined and filtered with the “bin_refine-
ment” module from Metawrap. To further completing 
the MAGs, all metagenomic short reads were mapped to 
each MAGs, and we employed the hybrid assembler Uni-
cycler v0.4.8 to de novo assemble the genomes with both 
the mapped short reads and all of the ONT reads [145]. 
Finally, we calibrated the MAGs again by using the GATK 
pipeline to remove potential errors, and the MAGs’ taxo-
nomic assignment was completed with GTDB-tk v1.0.2 
[146, 147]. CheckM v1.0.12 was used to estimate the 
completeness and contamination of the genomes [148].

To annotate the symbiont genome, we employed 
Prokka v1.14.6 to predict the CDS region [149], and 
tRNAscan-SE v1.3.1 to identify the tRNA gene [150], and 
RNAmmer v1.2 were used to identify the rRNA gene for 
annotation [151]. In parallel, Diamond was employed to 
align the protein sequences to the KEGG. Transporters 
were predicted by online tools of TransAPP and ABCdb 
[41, 42]. Metabolic potential of the bacterial symbiont in 
amino acids and cofactors were checked thoroughly, and 
missed genes were confirmed by aligning the ONT long 
reads to the chromosomal level genome of endosymbiont 
of Bathymodiolus septemdierum (NCBI Accession Num-
ber: NZ_AP013042.1), while the results were visualized 
in IGV v2.10 [152].

Metaproteomics
The gill tissue was grinded and sonicated using a high-
intensity ultrasonic processor (Scientz). After centrifuga-
tion at 4°C, the supernatant was collected and the protein 
concentration was determined with BCA kit according to 
the manufacturer’s instructions. Next, the protein solu-
tion was reduced with 5 mM dithiothreitol for 30 min 
at 56°C and alkylated with 11 mM iodoacetamide for 45 
min at room temperature in darkness, and trypsin was 
employed to digest the protein. Tryptic peptides were 
dissolved and separated on a nanoElute UHPLC sys-
tem (Bruker Daltonics). The peptides were subjected to 
mass spectrometry with the timsTOF Pro (Bruker Dal-
tonics) in a parallel accumulation serial fragmentation 
(PASEF) mode. With 1.65 kV, precursors and fragments 
were analyzed at the TOF detector with settings includ-
ing Tandem Mass Spectrometry (MS/MS) scan range 
from 100 to 1700 m/z, precursors with charge states 0 to 

5 for fragmentation, 10 PASEF-MS/MS scans per cycle, 
and 30s for dynamic exclusion. The data were processed 
with MaxQuant search engine v.1.6.15.0. Tandem mass 
spectra were searched against the protein catalog of the 
hologenome (26928 entries) concatenated with reverse 
decoy database. The mass tolerance for precursor ions 
was 20 ppm and that for fragment ions was 0.02 Da, and 
FDR (false discovery rate) was adjusted to 0.01. The iBAQ 
values of the gill tissue were normalized as iBAQ values 
per million.
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