Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Feb 7;79(Pt 3):132–135. doi: 10.1107/S2056989023000634

Synthesis, crystal structure and Hirshfeld surface analysis of di-μ2-iodido-bis­[(2,2′-bi­quinoline-κ2 N,N′)copper(I)]

Ayalew W Temesgen a,*, Anton P Novikov b,c, Alexander G Tskhovrebov b, Ekaterina K Kultyshkina b, Tuan Anh Le d
Editor: G Diaz de Delgadoe
PMCID: PMC9993906  PMID: 36910000

In the layer structure of di-μ2-iodido-bis­[(2,2′-bi­quinoline-κ2 N,N′)copper(I)], π–π inter­actions provide conectivity within and between the layers.

Keywords: crystal structure, Hirshfeld surface analysis, π–π stacking, bi­quinoline, copper complex

Abstract

The mol­ecular and crystal structures of the title compound, [Cu2I2(C18H12N2)2], were examined by single-crystal X-ray diffraction and Hirshfeld surface analysis. The Cu atom is coordinated in a distorted tetra­hedral geometry by two N atoms from the 2,2′-bi­quinoline ligands and the two μ2-bridging iodide ligands. The mol­ecules are in contact via π–π-stacking inter­actions. Hirshfeld surface analysis showed that the most important contributions to the inter­molecular inter­actions are H⋯H (39.7%), H⋯I/I⋯H (17.8%), C⋯H/H⋯C (17.5%), C⋯C (16.5%), N⋯C/C⋯N (3.9%) and N⋯H/H⋯N (3.5%).

1. Chemical context

Metal complexes with N-heterocyclic ligands find wide applications in various fields such as catalysis and medicine, among others (Delgado-Rebollo et al., 2019; Novikov et al., 2021; Fong, 2016; Artemjev et al., 2022). Copper(I) bypiridine complexes are of inter­est because of their structural peculiarities, cuprophilic inter­actions, and important photochemical properties. Therefore, bypyridine-type systems are often the ligands of choice to explore new metal complexes with potentially useful properties (Ferraro et al., 2022; Starosta et al., 2012; Vatsadze et al., 2010). 2,2′-Bi­quinoline is an important and widely employed di­imine ligand. The geometry of the resulting metal derivatives depends on the ligand and counter-ion, the metal:ligand ratio and the solvent and synthetic conditions. Here we report the preparation and structural characterization of a copper iodide complex with 2,2′-bi­quinoline. We used Hirshfeld surface analysis to estimate the contribution of non-covalent inter­actions to the crystal structure. 1.

2. Structural commentary

The title compound crystallizes in the centrosymmetric space group P Inline graphic with one crystallographically independent mol­ecule in the unit cell. The mol­ecular structure is illustrated in Fig. 1. The Cu atom is coordinated in a distorted tetra­hedral geometry (Table 1) by two nitro­gen atoms from the 2,2′-bi­quinoline ligands and the two μ2-bridged iodide ligands. The Cu1—I1 and Cu1i—I1 distances [symmetry code: (i) −x + 1, −y, −z + 1] are 2.5734 (2) and 2.6487 (2) Å, which are close to the distances in similar compounds (Sun et al., 2013; Starosta et al., 2012) with a substituted quinoline ligand. The Cu—N distances of 2.0930 (13) and 2.0900 (14) Å are almost equal within standard uncertainty.

Figure 1.

Figure 1

Mol­ecular structure of the title compound, including atom and ring labelling. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) −x + 1, −y, −z + 1.]

Table 1. Selected geometric parameters (Å, °).

I1—Cu1 2.5734 (2) Cu1—N2 2.0900 (14)
I1—Cu1i 2.6487 (2) Cu1—N1 2.0930 (13)
       
Cu1—I1—Cu1i 68.829 (8) N2—Cu1—I1i 110.91 (4)
N2—Cu1—N1 79.28 (5) N1—Cu1—I1i 106.99 (4)
N2—Cu1—I1 122.14 (4) I1—Cu1—I1i 111.171 (8)
N1—Cu1—I1 122.34 (4)    

Symmetry code: (i) Inline graphic .

The quinoline fragments in the bi­quinoline ligand adopt, as expected, a planar geometry. The maximum and minimum deviations of the atoms from these planes are between −0.018 (2) and 0.026 (2) Å. The angle between the quinolines described by rings 1/2 (as defined in Fig. 1) is 5.08 (9)° and between 3/4 is 0.59 (8)°. Then, the quinoline formed by rings 1 and 2 (ring 5) makes an angle of 7.56 (5)° with the quinoline described by rings 3/4 (ring 6).

3. Supra­molecular features

The crystal packing is shown in Fig. 2, viewed down the c axis. Mol­ecules both within the layers and between them are connected by π–π-stacking inter­actions between six-membered rings of the quinoline rings. The π–π-stacking inter­action parameters are presented in Table 2. Ring 4, defined by N2/C18/C10–C13 in Fig. 1, participates in the shortest inter­actions. The contact with another ring 4, related by the symmetry operation −x, −y + 1, −z + 1, is perhaps the most efficient, based on the distance, the angle between the planes, and the shift between ring centroids.

Figure 2.

Figure 2

View along the c axis of the crystal packing of the title compound, showing the stacking of layers formed by the Cu complex.

Table 2. π–π-stacking inter­action parameters (Å, °).

Ring 1 Ring No. Ring 2 Ring No. Angle Centroid–centroid distance Shift distance between ring centroids
C1–C6 1 C1–C6(−x + 1, −y, −z + 2) 1 0.000 3.874 1.459
C13–C18 3 N1/C1/C6–C9(−x + 1, −y + 1, −z + 1) 2 4.772 3.711 1.480
    N2/C18/C10–C13(−x, −y + 1, −z + 1) 4 0.590 3.665 1.602
N1/C1/C6–C9 2 N2/C18/C10–C13(−x + 1, −y + 1, −z + 1) 4 5.301 3.564 1.139
    C13–C18(−x + 1, −y + 1, −z + 1) 3 4.772 3.711 1.283
N2/C18/C10–C13 4 N2/C18/C10–C13(−x, −y + 1, −z + 1) 4 0.000 3.652 1.555
    C13–C18(−x, −y + 1, −z + 1) 3 0.590 3.665 1.579
    N1/C1/C6–C9(−x + 1, −y + 1, −z + 1) 2 5.301 3.564 1.068

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.43, update of 2022; Groom et al., 2016) showed only a few hits for bis­[(μ2-halogen)-2,2′-bi­quinoline-di-copper(I)]. We only found data for compounds with substituted quinoline rings in position-4 with carboxyl­ate fragments. All compounds crystallize in the triclinic space group P Inline graphic . In IRIVIP (Vatsadze et al., 2010), n-hexyl carboxyl­ate groups are attached to the quinoline rings at position 4. In YIJFAA, YIJFEE, and YIJFII (Sun et al., 2013), ethyl carboxyl­ate fragments are attached, and in PAYKIL (Starosta et al., 2012), there are methyl carboxyl­ate fragments. In IRIVIP and YIJFAA, instead of the iodine atom, as in the title structure, there are chlorine atoms; in YIJFEE, there are bromine atoms. In other structures, the copper atoms are bonded through iodine atoms.

5. Hirshfeld surface analysis

Crystal Explorer21 was used to calculate the Hirshfeld surfaces and two-dimensional fingerprint plots (Spackman et al., 2021). The donor–acceptor groups are visualized using a standard (high) surface resolution and d norm surfaces are mapped over a fixed colour scale from −0.0579 (red) to 1.3919 (blue) a.u., as illustrated in Fig. 3(a). Red spots on the surface correspond to C⋯C and I⋯H inter­actions. The presence of π-stacking inter­actions is confirmed by the characteristic red and blue triangles on the shape-index surface [Fig. 3(b)]. Fingerprint plots of the most important non-covalent inter­actions for the title compound are shown in Fig. 4. The largest contribution to the crystal packing is made by contacts of the H⋯H type (39.7%). Then contacts of the H⋯I/I⋯H and C⋯H/H⋯C types make approximately equal contributions (17.8 and 17.5%, respectively). C⋯C inter­actions responsible for π-stacking contribute 16.5%. Contacts that contribute less than 1% are not shown in Fig. 4.

Figure 3.

Figure 3

Hirshfeld surface mapped over (a) d norm and (b) shape-index to visualize the inter­actions in the title compound.

Figure 4.

Figure 4

Two-dimensional fingerprint plots for the title compound divided into H⋯H (39.7%), H⋯I/I⋯H (17.8%), C⋯H/H⋯C (17.5%), C⋯C (16.5%), N⋯C/C⋯N (3.9%) and N⋯H/H⋯N (3.5%) inter­actions.

6. Synthesis and crystallization

The title compound was prepared by refluxing CuI with one equivalent of 2,2′-bi­quinoline in ethanol for 24 h. The compound precipitates as a purple solid in 87% yield. Found (%): C, 48.39; H, 2.71; N, 6.27. forC36H24Cu2I2N4. Calculated (%): C, 48.61; H, 2.64; N, 6.19.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. C-bound H atoms were placed at calculated positions (C—H = 0.95 Å) and refined using a riding model with [U iso(H) = 1.2U eq(C)].

Table 3. Experimental details.

Crystal data
Chemical formula [Cu2I2(C18H12N2)2]
M r 893.49
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 8.2032 (2), 9.4084 (3), 10.8312 (3)
α, β, γ (°) 70.9328 (8), 76.1237 (9), 74.2486 (9)
V3) 749.84 (4)
Z 1
Radiation type Mo Kα
μ (mm−1) 3.51
Crystal size (mm) 0.12 × 0.10 × 0.06
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON-III CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.656, 0.798
No. of measured, independent and observed [I > 2σ(I)] reflections 22231, 5464, 4875
R int 0.030
(sin θ/λ)max−1) 0.759
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.021, 0.050, 1.07
No. of reflections 5464
No. of parameters 200
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.93, −1.00

Computer programs: APEX3 (Bruker, 2018), SAINT (Bruker, 2013), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023000634/dj2055sup1.cif

e-79-00132-sup1.cif (654.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023000634/dj2055Isup2.hkl

e-79-00132-Isup2.hkl (434.6KB, hkl)

CCDC reference: 2237760

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Authors contributions are as follows: Conceptualization, AWT, AGT and TAL; methodology, APN, AGT; validation: AWT, AGT; formal analysis: APN, AGT, TAL; investigation: AWT, AGT and TAL; resources, AGT, TAL; data curation, APN, EKK; writing (original draft), AWT; writing (review and editing), APN, AGT, TAL; visualization, AWT, TAL; supervision, AWT, AGT; project administration, AGT; funding acquisition, AGT, TAL.

supplementary crystallographic information

Crystal data

[Cu2I2(C18H12N2)2] Z = 1
Mr = 893.49 F(000) = 432
Triclinic, P1 Dx = 1.979 Mg m3
a = 8.2032 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.4084 (3) Å Cell parameters from 9951 reflections
c = 10.8312 (3) Å θ = 2.3–32.6°
α = 70.9328 (8)° µ = 3.51 mm1
β = 76.1237 (9)° T = 100 K
γ = 74.2486 (9)° Plate, red
V = 749.84 (4) Å3 0.12 × 0.10 × 0.06 mm

Data collection

Bruker D8 QUEST PHOTON-III CCD diffractometer 4875 reflections with I > 2σ(I)
φ and ω scans Rint = 0.030
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 32.6°, θmin = 2.3°
Tmin = 0.656, Tmax = 0.798 h = −12→12
22231 measured reflections k = −14→14
5464 independent reflections l = −16→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021 H-atom parameters constrained
wR(F2) = 0.050 w = 1/[σ2(Fo2) + (0.0241P)2 + 0.2045P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
5464 reflections Δρmax = 0.93 e Å3
200 parameters Δρmin = −1.00 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier map Extinction coefficient: 0.00061 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.72676 (2) 0.05497 (2) 0.36228 (2) 0.01463 (4)
Cu1 0.47151 (3) 0.14895 (2) 0.52815 (2) 0.01482 (5)
N1 0.50362 (17) 0.22489 (16) 0.68043 (14) 0.0137 (2)
N2 0.32363 (17) 0.37275 (15) 0.48351 (13) 0.0126 (2)
C1 0.5986 (2) 0.14322 (19) 0.77875 (16) 0.0149 (3)
C2 0.7206 (2) 0.0086 (2) 0.76410 (18) 0.0188 (3)
H2 0.7335 −0.0253 0.6881 0.023*
C3 0.8205 (2) −0.0730 (2) 0.86007 (19) 0.0225 (3)
H3 0.9050 −0.1616 0.8486 0.027*
C4 0.7991 (3) −0.0268 (2) 0.97589 (19) 0.0235 (4)
H4 0.8658 −0.0869 1.0430 0.028*
C5 0.6831 (2) 0.1034 (2) 0.99178 (18) 0.0221 (3)
H5 0.6688 0.1333 1.0701 0.027*
C6 0.5837 (2) 0.1942 (2) 0.89164 (16) 0.0168 (3)
C7 0.4734 (2) 0.3365 (2) 0.89624 (17) 0.0204 (3)
H7 0.4603 0.3741 0.9702 0.024*
C8 0.3849 (2) 0.4209 (2) 0.79434 (17) 0.0186 (3)
H8 0.3134 0.5187 0.7954 0.022*
C9 0.4017 (2) 0.35984 (18) 0.68682 (16) 0.0134 (3)
C10 0.30656 (19) 0.44564 (18) 0.57445 (16) 0.0130 (3)
C11 0.2064 (2) 0.59515 (18) 0.56565 (17) 0.0151 (3)
H11 0.1989 0.6436 0.6318 0.018*
C12 0.1199 (2) 0.67017 (18) 0.46130 (17) 0.0161 (3)
H12 0.0505 0.7703 0.4552 0.019*
C13 0.1348 (2) 0.59756 (18) 0.36296 (16) 0.0135 (3)
C14 0.0488 (2) 0.6683 (2) 0.25249 (17) 0.0171 (3)
H14 −0.0225 0.7681 0.2431 0.021*
C15 0.0680 (2) 0.5933 (2) 0.15911 (17) 0.0183 (3)
H15 0.0103 0.6413 0.0850 0.022*
C16 0.1738 (2) 0.4440 (2) 0.17292 (17) 0.0181 (3)
H16 0.1868 0.3931 0.1074 0.022*
C17 0.2579 (2) 0.37192 (19) 0.27946 (17) 0.0162 (3)
H17 0.3279 0.2717 0.2876 0.019*
C18 0.23990 (19) 0.44731 (18) 0.37738 (16) 0.0129 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.01422 (5) 0.01364 (5) 0.01633 (6) −0.00129 (3) −0.00081 (3) −0.00714 (4)
Cu1 0.01437 (9) 0.01477 (9) 0.01559 (10) 0.00062 (7) −0.00375 (7) −0.00671 (7)
N1 0.0120 (6) 0.0154 (6) 0.0140 (6) −0.0033 (5) −0.0023 (5) −0.0041 (5)
N2 0.0117 (5) 0.0134 (6) 0.0131 (6) −0.0013 (5) −0.0023 (4) −0.0049 (5)
C1 0.0130 (7) 0.0179 (7) 0.0145 (7) −0.0057 (6) −0.0020 (5) −0.0035 (6)
C2 0.0187 (8) 0.0184 (7) 0.0188 (8) −0.0028 (6) −0.0069 (6) −0.0028 (6)
C3 0.0211 (8) 0.0196 (8) 0.0249 (9) −0.0041 (7) −0.0097 (7) 0.0003 (7)
C4 0.0250 (9) 0.0243 (9) 0.0207 (8) −0.0102 (7) −0.0117 (7) 0.0042 (7)
C5 0.0252 (9) 0.0282 (9) 0.0150 (7) −0.0111 (7) −0.0076 (6) −0.0013 (7)
C6 0.0149 (7) 0.0234 (8) 0.0133 (7) −0.0081 (6) −0.0018 (5) −0.0036 (6)
C7 0.0183 (8) 0.0309 (9) 0.0160 (8) −0.0060 (7) −0.0015 (6) −0.0121 (7)
C8 0.0170 (7) 0.0244 (8) 0.0175 (8) −0.0024 (6) −0.0030 (6) −0.0113 (7)
C9 0.0113 (6) 0.0162 (7) 0.0138 (7) −0.0027 (5) −0.0015 (5) −0.0059 (6)
C10 0.0103 (6) 0.0148 (6) 0.0145 (7) −0.0032 (5) −0.0009 (5) −0.0053 (5)
C11 0.0147 (7) 0.0140 (6) 0.0186 (7) −0.0033 (5) −0.0016 (5) −0.0077 (6)
C12 0.0152 (7) 0.0118 (6) 0.0206 (8) −0.0023 (5) −0.0009 (6) −0.0055 (6)
C13 0.0116 (6) 0.0118 (6) 0.0159 (7) −0.0019 (5) −0.0022 (5) −0.0026 (5)
C14 0.0137 (7) 0.0162 (7) 0.0181 (8) −0.0016 (6) −0.0033 (6) −0.0012 (6)
C15 0.0175 (7) 0.0188 (7) 0.0166 (7) −0.0013 (6) −0.0058 (6) −0.0023 (6)
C16 0.0175 (7) 0.0212 (8) 0.0164 (7) −0.0011 (6) −0.0043 (6) −0.0077 (6)
C17 0.0152 (7) 0.0162 (7) 0.0180 (7) −0.0006 (6) −0.0036 (6) −0.0072 (6)
C18 0.0104 (6) 0.0135 (6) 0.0145 (7) −0.0021 (5) −0.0016 (5) −0.0041 (5)

Geometric parameters (Å, º)

I1—Cu1 2.5734 (2) C7—C8 1.369 (3)
I1—Cu1i 2.6487 (2) C7—H7 0.9500
Cu1—N2 2.0900 (14) C8—C9 1.422 (2)
Cu1—N1 2.0930 (13) C8—H8 0.9500
Cu1—I1i 2.6487 (2) C9—C10 1.488 (2)
Cu1—Cu1i 2.9520 (4) C10—C11 1.409 (2)
N1—C9 1.330 (2) C11—C12 1.367 (2)
N1—C1 1.367 (2) C11—H11 0.9500
N2—C10 1.3354 (19) C12—C13 1.409 (2)
N2—C18 1.369 (2) C12—H12 0.9500
C1—C2 1.414 (2) C13—C14 1.415 (2)
C1—C6 1.421 (2) C13—C18 1.423 (2)
C2—C3 1.374 (2) C14—C15 1.369 (2)
C2—H2 0.9500 C14—H14 0.9500
C3—C4 1.415 (3) C15—C16 1.418 (2)
C3—H3 0.9500 C15—H15 0.9500
C4—C5 1.365 (3) C16—C17 1.372 (2)
C4—H4 0.9500 C16—H16 0.9500
C5—C6 1.418 (2) C17—C18 1.418 (2)
C5—H5 0.9500 C17—H17 0.9500
C6—C7 1.406 (3)
Cu1—I1—Cu1i 68.829 (8) C8—C7—H7 119.9
N2—Cu1—N1 79.28 (5) C6—C7—H7 119.9
N2—Cu1—I1 122.14 (4) C7—C8—C9 118.99 (16)
N1—Cu1—I1 122.34 (4) C7—C8—H8 120.5
N2—Cu1—I1i 110.91 (4) C9—C8—H8 120.5
N1—Cu1—I1i 106.99 (4) N1—C9—C8 122.17 (15)
I1—Cu1—I1i 111.171 (8) N1—C9—C10 116.58 (13)
N2—Cu1—Cu1i 141.62 (4) C8—C9—C10 121.24 (15)
N1—Cu1—Cu1i 136.76 (4) N2—C10—C11 122.82 (15)
I1—Cu1—Cu1i 56.791 (7) N2—C10—C9 115.92 (14)
I1i—Cu1—Cu1i 54.380 (7) C11—C10—C9 121.26 (14)
C9—N1—C1 119.18 (14) C12—C11—C10 119.63 (14)
C9—N1—Cu1 113.35 (11) C12—C11—H11 120.2
C1—N1—Cu1 126.92 (11) C10—C11—H11 120.2
C10—N2—C18 118.23 (14) C11—C12—C13 119.38 (15)
C10—N2—Cu1 113.89 (11) C11—C12—H12 120.3
C18—N2—Cu1 127.82 (10) C13—C12—H12 120.3
N1—C1—C2 118.85 (15) C12—C13—C14 122.40 (15)
N1—C1—C6 121.75 (15) C12—C13—C18 117.93 (15)
C2—C1—C6 119.33 (16) C14—C13—C18 119.67 (14)
C3—C2—C1 119.82 (17) C15—C14—C13 120.22 (16)
C3—C2—H2 120.1 C15—C14—H14 119.9
C1—C2—H2 120.1 C13—C14—H14 119.9
C2—C3—C4 120.78 (18) C14—C15—C16 120.11 (16)
C2—C3—H3 119.6 C14—C15—H15 119.9
C4—C3—H3 119.6 C16—C15—H15 119.9
C5—C4—C3 120.43 (17) C17—C16—C15 121.04 (15)
C5—C4—H4 119.8 C17—C16—H16 119.5
C3—C4—H4 119.8 C15—C16—H16 119.5
C4—C5—C6 120.13 (17) C16—C17—C18 119.85 (15)
C4—C5—H5 119.9 C16—C17—H17 120.1
C6—C5—H5 119.9 C18—C17—H17 120.1
C7—C6—C5 122.99 (16) N2—C18—C17 118.90 (14)
C7—C6—C1 117.63 (16) N2—C18—C13 122.00 (14)
C5—C6—C1 119.34 (17) C17—C18—C13 119.10 (15)
C8—C7—C6 120.15 (15)
C9—N1—C1—C2 −173.05 (15) C18—N2—C10—C9 −179.42 (13)
Cu1—N1—C1—C2 16.1 (2) Cu1—N2—C10—C9 3.07 (17)
C9—N1—C1—C6 3.8 (2) N1—C9—C10—N2 4.8 (2)
Cu1—N1—C1—C6 −166.98 (11) C8—C9—C10—N2 −175.83 (14)
N1—C1—C2—C3 178.35 (16) N1—C9—C10—C11 −174.64 (14)
C6—C1—C2—C3 1.4 (3) C8—C9—C10—C11 4.7 (2)
C1—C2—C3—C4 2.0 (3) N2—C10—C11—C12 0.9 (2)
C2—C3—C4—C5 −2.6 (3) C9—C10—C11—C12 −179.63 (15)
C3—C4—C5—C6 −0.4 (3) C10—C11—C12—C13 −1.0 (2)
C4—C5—C6—C7 −174.13 (17) C11—C12—C13—C14 179.90 (16)
C4—C5—C6—C1 3.8 (3) C11—C12—C13—C18 0.2 (2)
N1—C1—C6—C7 −3.1 (2) C12—C13—C14—C15 179.67 (15)
C2—C1—C6—C7 173.76 (16) C18—C13—C14—C15 −0.7 (2)
N1—C1—C6—C5 178.82 (15) C13—C14—C15—C16 0.2 (3)
C2—C1—C6—C5 −4.3 (2) C14—C15—C16—C17 0.3 (3)
C5—C6—C7—C8 177.99 (17) C15—C16—C17—C18 −0.3 (3)
C1—C6—C7—C8 0.0 (2) C10—N2—C18—C17 179.51 (14)
C6—C7—C8—C9 2.2 (3) Cu1—N2—C18—C17 −3.4 (2)
C1—N1—C9—C8 −1.5 (2) C10—N2—C18—C13 −0.9 (2)
Cu1—N1—C9—C8 170.55 (12) Cu1—N2—C18—C13 176.23 (11)
C1—N1—C9—C10 177.85 (13) C16—C17—C18—N2 179.42 (15)
Cu1—N1—C9—C10 −10.14 (17) C16—C17—C18—C13 −0.2 (2)
C7—C8—C9—N1 −1.6 (3) C12—C13—C18—N2 0.7 (2)
C7—C8—C9—C10 179.14 (15) C14—C13—C18—N2 −178.92 (15)
C18—N2—C10—C11 0.1 (2) C12—C13—C18—C17 −179.65 (15)
Cu1—N2—C10—C11 −177.45 (12) C14—C13—C18—C17 0.7 (2)

Symmetry code: (i) −x+1, −y, −z+1.

Funding Statement

Funding for this research was provided by: Ministry of Science and Higher Education of the Russian Federation (subject No. 122011300061-3). This work was supported by the RUDN University Strategic Academic Leadership Program: Russian Foundation for Basic Research (grant No. 21-53-54001).

References

  1. Artemjev, A. A., Novikov, A. P., Burkin, G. M., Sapronov, A. A., Kubasov, A. S., Nenajdenko, V. G., Khrustalev, V. N., Borisov, A. V., Kirichuk, A. A., Kritchenkov, A. S., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2022). Int. J. Mol. Sci. 23, 6372. [DOI] [PMC free article] [PubMed]
  2. Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Delgado-Rebollo, M., García-Morales, C., Maya, C., Prieto, A., Echavarren, A. M. & Pérez, P. J. (2019). J. Organomet. Chem. 898, 120856.
  5. Ferraro, V., Castro, J., Trave, E. & Bortoluzzi, M. (2022). J. Organomet. Chem. 957, 122171.
  6. Fong, C. W. (2016). Free Radical Biol. Med. 95, 216–229. [DOI] [PubMed]
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  9. Novikov, A. P., Volkov, M. A., Safonov, A. V., Grigoriev, M. S. & Abkhalimov, E. V. (2021). Crystals, 11, 1417.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  12. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  13. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  14. Starosta, R., Komarnicka, U. K., Nagaj, J., Stokowa-Sołtys, K. & Bykowska, A. (2012). Acta Cryst. E68, m756–m757. [DOI] [PMC free article] [PubMed]
  15. Sun, X. M., Ning, W. H., Liu, J. L., Liu, S. X., Guo, P. C. & Ren, X. M. (2013). Chin. J. Inorg. Chem. 29, 2176–2182.
  16. Vatsadze, S. Z., Dolganov, A. V., Yakimanskii, A. V., Goikhman, M. Y., Podeshvo, I. V., Lyssenko, K. A., Maksimov, A. L. & Magdesieva, T. V. (2010). Russ. Chem. Bull. 59, 724–732.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023000634/dj2055sup1.cif

e-79-00132-sup1.cif (654.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023000634/dj2055Isup2.hkl

e-79-00132-Isup2.hkl (434.6KB, hkl)

CCDC reference: 2237760

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES