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Abstract
Colorectal cancer (CRC) is the second deadliest cancer and the third-most 
common malignancy in the world. Surgery, chemotherapy, and targeted therapy 
have been widely used to treat CRC, but some patients still develop resistance to 
these treatments. Ferroptosis is a novel non-apoptotic form of cell death. It is an 
iron-dependent non-apoptotic cell death characterized by the accumulation of 
lipid reactive oxygen species and has been suggested to play a role in reversing 
resistance to anticancer drugs. This review summarizes recent advances in the 
prognostic role of ferroptosis in CRC and the mechanism of action in CRC.
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Core Tip: The prognosis of patients with advanced colorectal cancer is still poor, largely due to resistance 
to anticancer drugs. Ferroptosis is a novel form of non-apoptotic cell death, mainly characterized by 
abnormal iron metabolism and the excessive accumulation of lipid peroxidation. Studies have shown that 
ferroptosis can participate in the process of colorectal cancer (CRC) through the accumulation of lipid 
peroxides, inhibition of the System Xc

−, disruption of the glutathione/glutathione peroxidase 4 balance, 
imbalance of iron homeostasis, and mediation of the P53 pathway. Induction of ferroptosis can reverse the 
resistance of anticancer drugs and improve the prognosis of CRC patients.
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INTRODUCTION
Colorectal cancer (CRC) is a common gastrointestinal malignancy and the second-most common cause 
of cancer death. During the last decade (2010-2019), CRC mortality declined by about 2% per year but 
increased among those under 50 years old[1]. The oncogenesis and development of CRC involve 
multiple genes and steps, which is an extremely complex process.

Studies have shown that CRC cells have characteristics of strong proliferation, easy recurrence and 
easy metastasis[2], but there are few effective therapeutic targets for CRC patients[3]. At present, the 
comprehensive treatment of CRC includes surgical resection, neoadjuvant chemoradiotherapy, 
postoperative chemoradiotherapy, targeted therapy, immunotherapy and other methods, but the 
prognosis of patients with advanced CRC is still poor.

Cell death is a basic life process and can be divided into accidental cell death and regulated cell death 
(RCD). RCD can be further divided into the category of apoptosis, pyroptosis, necroptosis and 
ferroptosis[4]. Ferroptosis, first reported in 2012, is a newly defined form of RCD involving iron-
dependent, non-apoptotic cell death. The characterization methods included free iron and lipid reactive 
oxygen species (ROS), particularly lipid hydroperoxides[5], and by cytoplasmic and organelle swelling, 
chromatin condensation and mitochondrial disorder[6,7]. Studies have shown that the tumor cell 
survival is highly dependent on an abnormally activated antioxidant system.

Several therapeutic targets associated with ferroptosis have been identified in CRC (Figure 1). The 
induction of ferroptosis is also considered a promising research direction in cancer resistance.

FERROPTOSIS-RELATED INDICATORS CAN PREDICT THE PROGNOSIS OF CRC
Recently, a growing number of studies have shown that genes involved in ferroptosis are associated 
with the prognosis of CRC patients. CRC has a high recurrence rate and individual heterogeneity, so it 
is desirable to have good prognostic biomarkers that can be used to predict high-risk patients in order to 
help patients obtain appropriate treatment.

In an analytical study combining samples from eight CRC patients with the TCGA public database, 
changes in ferroptosis in CRC patients at various molecular levels, ranging from DNA, RNA and 
proteins to epigenetic modifications, were described, and four ferroptosis-related genes associated with 
the prognosis were identified: Cyclin-dependent kinase inhibitor 2A (CDKN2A), glutathione peroxidase 
4 (GPX4), arachidonic acid lipoxygenase 3 (ALOXE3) and LINC00336[8]. Another study constructed a 
clinical prediction model including GPX4, NOX1 and Acyl-CoA synthetase long-chain family member 4 
(ACSL4) that effectively reflected the prognosis, tumor progression and asthma control test respons-
iveness of CRC patients. It is also worth noting that tumors with low ferroptosis scores may infiltrate 
more CD4+ and CD8+ T cells and fewer M1 macrophages[9]. ALOX5 is considered a key ferroptosis-
related gene associated with a poor prognosis in CRC patients, and it regulates ferroptosis in cancer 
cells through lipid peroxidation[10,11]. CRC patients with an increased NOX1 expression and decreased 
BRAF status have a higher survival rate than others, and genes positively correlated with NOX1 are also 
significantly correlated with the CRC survival rate. The mechanism underlying NOX1 and BRAF 
mutations needs to be further explored[12]. A prognostic model combining genes related to oxidative 
stress and ferroptosis can distinguish CRC as hot and cold tumors. Patients in the low-risk group 
responded better to fluorouracil chemotherapy and immune checkpoint blocking therapy than those in 
the high-risk group[13].

Long non-coding RNA (lncRNA) is non-coding RNA longer than 200 nucleotides and refers to the 
major class of transcripts encoded by the genome but mostly not translated into proteins[14]. LncRNA 
plays a key role in regulating cancer proliferation, the cell cycle, metastasis and programmed death[15,
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Figure 1 Mechanisms of ferroptosis in colorectal cancer. The diagram shows several potential regulatory pathways for ferroptosis. Including Xc-system, 
lipid peroxide accumulation, sulfur transfer pathway, glutathione/glutathione peroxidase 4 lipid repair system, Nrf2-H0-1, cellular iron homeostasis, p53, etc. TFR1: 
Transferrin receptor 1; TF: Transferrin; IREB2: Iron response element-binding protein 2; PUFA: Polyunsaturated fatty acid; ACSL4: Acyl-CoA synthetase long-chain 
family member 4; LPCAT3: Lysophosphatidylcholine acyltransferase 3; PE: Phosphatidylethanolamine; LOX: Lipoxygenase; NRF2: Nuclear factor erythroid 2-related 
factor; HO-1: Haem oxygenase 1; SLC7A11: Solute carrier family 7 member 11; IMCA: Benzopyran derivative 2-imino-6-methoxy-2H-chromene-3-carbothioamide; 
SAS: Sulphasalazine; GSH: Glutathione; GSSG: Oxidized glutathione; GPX4: Glutathione peroxidase 4; RSL3: Ras-selective lethal 3; CARS: Cysteinyl-tRNA 
synthetase; ATF3: Activating transcription factor 3; YAP1: Yes-associated protein 1.

16]. The abnormal expression of lncRNA is associated with the risk of CRC, imbuing it with clinical 
potential as a stratification marker, diagnostic index and therapeutic target of CRC[17-20]. A model 
containing only four lncRNAs was able to well predict the prognosis, vein invasion and lymphatic 
metastasis in CRC patients, and it was proven that AP003555.1 and AC005841.1 induced ferroptosis by 
regulating Erastin[21]. The lncRNA model including AC016027.1, AC099850.3, ELFN1-AS1 and 
VPS9D1-AS1 was able to accurately predict the prognosis of CRC patients and showed great potential to 
guide individualized treatment[22]. Cai et al[23] summarized the details of seven ferroptosis-related 
lncRNAs to predict the prognosis of CRC patients and found that these lncRNAs were mainly enriched 
in the mitogen-activated protein kinase (MAPK) signaling pathway, mammalian target of rapamycin 
(mTOR) signaling pathway and glutathione (GSH) metabolism pathway[23]. LINC00239 increased Nrf2 
protein stability by inhibiting Nrf2 ubiquitination and decreased the antitumor activity of erastin and 
Ras-selective lethal 3 (RSL3)[24]. Circular RNA also plays an important role in ferroptosis. CircABCB10 
serves as a sponge of Mir-326 and eventually regulates ferroptosis of CRC by regulating CCL5[25].

In addition to being an independent clinical prognostic factor for CRC patients, genes associated with 
ferroptosis can also accurately predict the clinical status, including tumor occurrence and progression, 
drug resistance, somatic mutations and the immune function[26,27], which provides a new research 
direction for targeted therapy or immunotherapy.

MECHANISM OF ACTION OF FERROPTOSIS IN CRC
The accumulation of lipid peroxides is the core process of ferroptosis
The process of lipid peroxide accumulation in cells is the crucial section of ferroptosis. Polyunsaturated 
fatty acids (PUFAs) containing diallyl matrigel are prone to hydrogen deprivation, causing the 
formation of lipid peroxides and inducing ferroptosis[28]. When PUFAs are replaced by monounsat-
urated fatty acids (MUFAs) in the plasma membrane, lipid ROS accumulation is hindered, and 
ferroptosis is prevented[29]. With the process of esterification into membrane phospholipids and 
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oxidation into ferroptosis signals, free PUFAs then can be joined into the lipid signaling mediator 
syntheses[30]. Several studies have shown that phosphatidylethanolamines, a key phospholipid 
containing arachidonic acid (AA) or its derivative epinephrine (AdA), are oxidized to oxophosphatidy-
lethanolamines to induce ferroptosis[31]. Elongation of very-long-chain fatty acid protein 5 (ELOVL5) 
and fatty acid desaturase 1 are can participate in AA and AdA synthesis, which can effectively inhibit 
ferroptosis[32]. Furthermore, regulatory enzymes involved in membrane phospholipid biosynthesis of 
PUFAs, such as ACSL4[33] and lysophosphatidylcholine acyltransferase 3 (LPCAT3)[34], can also 
trigger or prevent ferroptosis. However, the effect of LPCAT3 on ferroptosis was mild compared to that 
of ASCL4[34].

Bromelain, a pineapple stem extract, potently induces cell ferroptosis and inhibits the proliferation of 
Kras mutant CRC in Kras mutant cell lines by regulating ACSL-4 Levels compared to Kras wild-type 
cells[35]. The behavers of Emodin, inhibiting ACSL4 expression, which can inhibit the proliferation and 
invasion of CRC, bring new research directions for CRC[36].

Apatinib, also known as YN968D1, as a third-line therapy can effectively improve the prognosis of 
patients with metastatic CRC[37]. ELOVL6 is a target of apatinib. By orienting the ELOVL6, Apatinib 
can promote ferroptosis with result of ACSL4 regulation, which has been verified by a co-IP assay. This 
suggests that apatinib inhibits CRC cell viability, at least in part, by targeting ELOVL6/ACSL4 
signaling, thus providing novel mechanistic support for the use of apatinib in the clinical treatment of 
CRC patients[38].

Inhibition of System Xc
− induces ferroptosis

GSH has been known as a crucial antioxidant. It can bind toxic molecules, such as free radicals and 
heavy metals, and convert them into harmless substances that are excreted[39]. GSH is also the first line 
of defense in the body to scavenge free radicals, which can effectively inhibit ferroptosis, and has a 
strong protective effect on the body[40]. System Xc

− is a heterodimer, which was constructed by a heavy-
chain subunit and a light-chain subunit (SLC7A11) that assists in the transmembrane transport of 
cystine and glutamate. Upon entry into the cell, cystine is reduced to cysteine[41], and together with 
cysteine and glycine, GSH is synthesized intracellularly. Therefore, System Xc

− plays an important role in 
maintaining GSH homeostasis.

Studies have suggested that System Xc
− may mediate ferroptosis by affecting the glutamate uptake 

and GSH synthesis[42,43]. Erastin and sulfasalazine are inhibitors of System Xc- that can lead to 
intracellular GSH deficiency and ferroptosis by affecting intracellular GSH homeostasis[44,45]. By 
regulating the expression of SLC7A11, a functional subunit of Xc

−, it can affect the activity of System Xc
− 

and the susceptibility to ferroptosis in cancer cells[46-48].
Knockdown of SLC7A11 attenuates the viability of CRC stem cells by increasing ROS levels and 

decreasing cysteine and GSH levels[49]. Talaroconvolutin A is a natural product, and studies have 
shown that, in addition to inducing ferroptosis by increasing ROS levels in cancer cells, this compound 
can also promote ferroptosis by down-regulating the SLC7A11 expression and up-regulating the 
ALOXE3 expression, becoming a new potentially powerful drug candidate for CRC therapy[50]. Copper 
overload mediated by the copper chelator elesclomol inhibits CRC both in vitro and in vivo, and one of 
its pathways may induce ferroptosis by promoting the degradation of SLC7A11[51].

The benzopyran derivative 2-imino-6-methoxy-2H-chromene-3-carbothioamide (IMCA) is considered 
to significantly inhibit the viability of CRC cells. IMCA can downregulate the expression of SLC7A11 
and reduce cysteine and GSH glycine content, which leads to the accumulation of ROS and ferroptosis. 
In contrast, the overexpression of SLC7A11 was shown to attenuate ferroptosis induced by IMCA, 
which was confirmed to be involved in the activated protein kinase/mTOR/p70S6k signaling pathway
[52].

Petunidin 3-O-[rhamnopyranosyl-(trans-p-coumaroyl)]-5-O-(β-D-glucopyranoside) is a flavonoid 
compound. CRC cell proliferation can be inhibited by down-regulating SLC7A11 to reduce ferroptosis
[53].

Resveratrol (RSV) has been shown to promote ferroptosis by down-regulating the expression of 
SLC7A11 and GPX4. Combined with bionic nanocarriers, RSV's therapeutic potential as ferroptosis 
inducing anticancer agent has been developed. The bionic nanomaterial coated the RSV-supported poly 
(ε-caprolactone) poly (ethylene glycol) nanoparticles on the erythrocyte membrane to improve the 
transmission efficiency of RSV[54].

Several ferroptosis-related genes are concentrated on System Xc
−. Activating transcription factor 3 

(ATF3) promotes ferroptosis by inhibiting System Xc
−[55]. Deficiency of CDKN2A and growth differen-

tiation factor 15 downregulates SLC7A11 expression, thereby sensitizing cells to ferroptosis[56,57].
Radiotherapy and poly-ADP-ribose polymerase inhibitors have been used in clinical trials in the 

treatment of CRC, the mechanism of which may be ionizing radiation activation of dsDNA that 
modulates ferroptosis through activation of the ATF3-SLC7A11 pathway. Triggers cGAS signaling 
mediated tumor control in cancer cell lines and mouse xenograft models[58].

The transsulfuration pathway is a regulator of ferroptosis resistance
More than 40% of the source of cysteine came from diet, and transfer to GSH via a biochemical process 
in body, which can combat the excessive deposition of peroxide. In addition to being transported into 
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cells by System Xc
−, cysteine can also be converted intracellularly by methionine via the transsulfuration 

pathway[59].
Cystathionine-β-synthase (CBS), an enzymatic component of the transsulfuration pathway, is 

significantly increased in cells resistant to Erastin-induced ferroptosis[60]. CBS has also been shown to 
be an independent regulator of ferroptosis[61,62]. Endogenous H2S, a by-product of the transsulfuration 
pathway, is closely related to tumor cell physiology and is finely regulated in a variety of cancers[63,
64]. Xc(-) transporter-related protein (xCT), a functional subunit of system Xc

−, was shown to interfere 
with xCT in colon cancer cells, resulting in an increased expression of cystathionine-γ-lyase and CBS, 
which are majority of the transsulfuration pathway. Additionally, the endogenous H2S levels can be 
significantly decreased by interfering with xCT. The correlation of xCT and transsulfuration pathway 
has been investigated that is a makeable metabolic vulnerability.

Cysteinyl-tRNA synthetase, a genetic suppressor of ferroptosis, upturns the sulfur pathway and re-
sensitizes cells to erastin, demonstrating a new mechanism for resistance to ferroptosis[65]. This implies 
that the transsulfuration pathway is a regulator of ferroptosis resistance.

Zinc oxide has outstanding desulfurization ability, and VZnO can effectively reduce the content of H2

S in CRC, effectively deplete GSH in tumor cells and ultimately lead to ferroptosis in CRC cells, 
providing an effective strategy for CRC treatment[66].

Disruption of the GSH/GPX4 lipid repair system can promote the accumulation of lipid ROS
ROS levels in the body are regulated by the antioxidant defense system, and oxidant/antioxidant 
imbalance may also contribute to ferroptosis[67]. GPX4 is an important selenoprotein that belongs to the 
GPX antioxidant defense system and is a considerable enzyme to balance the concentration of GSH and 
GS-SG. GPX4 protects membrane lipid bilayers by transferring toxic lipid hydroperoxides to nontoxic 
lipid alcohols[68]. GPX4 has been literately proved as a factor of ferroptosis promotor and can be trigger 
by ferroptosis inducers, such as Erastin and RSL3. Likewise, direct knockdown of GPX4 Leading to the 
excessive accumulation of intracellular lipid peroxidation and cell death[69]. Thus, GPX4 is consider as a 
crucial target to trigger ferroptosis[70,71].

In experiments with three different CRC cells (HCT116, LoVo and HT29), RSL3 was found to trigger 
cellular ferroptosis in a dose- and time-dependent manner due to increased ROS levels and destabil-
ization of the intracellular iron pool. In a further analysis, GPX4 inhibition was proven to be a key 
determinant of RSL3-induced ferroptosis, and overexpression of GPX4 rescued RSL3-induced 
ferroptosis[72]. Aspirin has been reported to have therapeutic benefits for CRC carrying carcinogenic 
PIK3CA. The mechanism may be that aspirin inhibits protein kinase B/mTOR signaling. The expression 
of downstream sterol regulatory elm-binding protein 1 was inhibited, and the production of MUFA fat 
by stearoyl-CoA desaturase-1 was reduced. Thus promoting RSL3-induced ferroptosis in CRC cells[73].

Serine- and arginine-rich splicing factor 9 (SRSF9) is frequently overexpressed in multiple tumor 
types and manifests as a proto-oncogene[74-76]. SFRS9 upregulates GPX4 protein, which is an obstacle 
to ferroptosis[77]. Knockdown of SFRS9 may be an effective treatment for CRC. In CRC tissues, the 
expression of SFRS9 mRNA and protein was significantly higher than that in adjacent tissues. 
Experiments in mice demonstrate that regulation of GPX4 by SRSF9 is an important mechanism driving 
CRC tumorigenesis and resistance to Erastin-induced ferroptosis. This molecular mechanism may 
provide a novel approach to improving the sensitivity of CRC to Erastin[78].

ACADSB is a member of the Acyl-CoA dehydrogenase family, and its overexpression inhibits the 
migration, invasion and proliferation of CRC cells. Studies have shown that ACADSB negatively 
regulates the expression of GSH reductase and GPX4 while increasing the concentrations of malondial-
dehyde, Fe ions and superoxide dismutase. This suggests that ACADSB may affect CRC cell migration, 
invasion and proliferation by regulating CRC cell ferroptosis[79].

ROS causes GSH accumulation through nuclear factor erythroid 2-related factor
Antioxidant proteins, such as Nrf2, are major antioxidant transcription factors that help prevent the 
accumulation of excess ROS and maintain redox homeostasis. Downregulation of Nrf2 enhances the 
sensitivity of cancer cells to ferroptosis promoters[80].

The Warburg effect is thought to be a characteristic of cancer cells, that is, cancer cells will undergo 
glycolysis beyond very high levels under aerobic conditions[81]. Inhibition of the Warburg effect 
reduces the ability of cells to proliferate. Therefore, inhibiting the Warburg effect may be a therapeutic 
strategy for cancer. In vivo and in vitro experiments in CRC showed that iron-induced ROS activated the 
expression of Nrf2 in the nucleus has the positive correlation with Warbury enzymes expression and 
CRC cell proliferation by enhancing the Warburg effect.

Heme oxygenase 1 (HO-1) is a downstream gene of Nrf2, and NGF2 protects against lipid 
peroxidation[80] and ferroptosis through the transcription of enzymes such as HO-1[82]. Ferroptosis can 
be effectively alleviated by the elimination of lipid oxidation through the Nrf2/HO-1 axis activation[83,
84].

Tagitin C, a sesquiterpene lactone[85], can induce ferroptosis in HCT116 cells and inhibit the growth 
of CRC cells. Mechanistically, Tagitinin C induces endoplasmic reticulum stress and oxidative stress as 
well as nuclear translocation of Nrf2. As a downstream gene of Nrf2, HO-1 was significantly increased 
with Tagitinin C treatment[86].
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Tagitinin C-induced ferroptosis was accompanied by a decrease in GSH levels and an increase in 
lipid peroxidation. Cetuximab combined with chemotherapy has made great progress in the treatment 
of metastatic CRC[87], but cetuximab is not effective in CRC patients with KRAS mutations[88,89].

Lysionotin (Lys), a flavonoid, has been demonstrated to successfully inhibit cell proliferation, 
migration and invasion of HCT116 and SW480 CRC cells in vitro. Lys treatment worked by increasing 
Nrf2 cells’ degradation rate to reduce the concentration of Nrf2 protein, inducing ferroptosis and ROS 
accumulation in CRC cells[90].

P38 MAPK has been investigated that participate in the regulation of Nrf2/HO-1[91,92]. It has been 
shown that cetuximab can significantly inhibit Nrf2/HO-1 signaling through p38 MAPK activation in 
KRAS-mutant CRC cell lines, thereby promoting RSL3-induced ferroptosis. This provides a research 
direction for cetuximab in the treatment of KRAS-mutant CRC[93].

Oxaliplatin is the first-line chemotherapy drug for CRC. By inhibiting the Nrf2 signaling pathway, the 
sensitivity of CRC cells to oxaliplatin can be enhanced[94,95]. Furthermore, the study found that 
oxaliplatin significantly inhibited the protein expression of Nrf2, HO-1 and NQ in the Nrf2 signaling 
pathway in a dose-dependent manner. Therefore, the anticancer effect of oxaliplatin may be enhanced 
by inhibiting the Nrf2 signaling pathway, leading to ferroptosis and oxidative stress in CRC cells[96].

Cellular iron homeostasis is a key factor in ferroptosis
The primary condition for the initiation of ferroptosis pathway is the need of iron ion. Dietary iron is 
absorbed primarily in the gut as ferric ion and delivered to the blood by transferrin (TF). In general, 
extracellular iron transport into the cell through the sequence of complexing with circulating TF, then 
binds to membrane TF receptor proten-1 (TFR1), finally to the cytoplasmic unstable iron pool. Excess 
cellular iron is stored as ferritin or transported extracellularly by ferritin[97,98]. Maintenance of cellular 
iron homeostasis prevents oxidative damage, cytotoxicity and death.

Lipid reactions can be divided into enzymatic and non-enzymatic reactions. Iron can promote the 
production of ROS through the Fenton reaction, leading to enzymatic lipid peroxidation[99,100], and 
also acts in a non-enzymatic manner as a cofactor for lipid-oxidizing lipoxygenase. Supplementation of 
exogenous iron ions can accelerate erastin-induced ferroptosis[5]. Knockout the gene encoding the TFR 
or upregulate the expression of iron storage proteins can inhibit iron overload and ferroptosis. Iron 
metabolism can be regulated by inhibition of the major transcription factors, like iron regulatory protein 
2, significantly upregulates the expression of iron metabolism-related genes, such as FTH1 and FTL, 
thereby inhibiting erastin-induced ferroptosis[101]. Iron chelators can prevent the transfer of electrons 
from iron to oxides, thus inhibiting the production of oxygen free radicals and inhibiting lipid 
peroxidation to prevent ferroptosis. Therefore, the regulation of iron metabolism and ferritin 
phagocytosis may become new targets and new pathways for regulating ferroptosis.

Hypoxia-inducible factor-2α (HIF-2α) is a master transcriptional regulator of cellular iron levels[102]. 
Activation of HIF-2α increases cellular iron in CRC, leading to an increase in lipid ROS and a decrease in 
GSH production, thus enhancing cellular sensitivity to ferroptosis[103].

There is a conserved miR-545 binding site in the 3' untranslated region of TF, and the overexpression 
of TF in CRC cells was found to induce increased levels of ROS, MDA and Fe2+, thereby promoting CRC 
cell death. This suggests that miR-545 may play an oncogenic role in CRC by regulating the iron 
accumulation in cells[104].

Dichloroacetate attenuates the stemness of CRC cells by chelating iron in lysosomes, leading to the 
up-regulation of iron concentrations and lipid peroxide levels, thus triggering ferroptosis[105].

OTUD1 is a deubiquitinase of iron-responsive element-binding protein 2 (IREB2), which is mainly 
expressed in intestinal epithelial cells. OTUD1 promotes TFR1-mediated iron transport through 
deubiquitination and stabilization of IREB2, leading to increased ROS production and ferroptosis, which 
is highly associated with a poor prognosis in CRC[106].

Dual role of p53 in mediating tumor ferroptosis
The tumor suppressor gene p53 plays a dual role in mediating ferroptosis in a variety of cancers[99]. 
Studies have found that p53 can enhance ROS-mediated ferroptosis by inhibiting SLC7A11 protein 
expression, resulting in decreased cystine import and thus reduced GSH production[46,107]. However, 
unlike in CRC, p53 can protect CRC cells from ferroptosis by stirring SLC7A11[108]. In addition, p53 can 
also inhibit CRC cell ferroptosis by blocking dipeptidyl peptidase 4 activity[97,109].

Cytoglobin (CYGB) is a regulator of ROS that plays an important role in oxygen homeostasis and acts 
as a tumor suppressor[110]. Yes-associated protein 1 (YAP1) is a key downstream target of CYGB. 
CYGB modulates cellular ferroptosis through p53-YAP1 signaling in CRC cells[111]. A novel antitumor 
compound optimized from the natural saponin biocide A has also been shown to trigger ferroptosis by 
activating p53[112].

Ginsenoside Rh4 can increase ROS accumulation, lead to the activation of ROS/p53 signaling 
pathway, and induce ferroptosis to inhibit the proliferation of cancer cells[113]. Cullin-9 can bind p53 to 
ubiquitinized heteroribo nucleoprotein C for degradation through whole genome sequencing and 
external differential expression analysis. Cullin-9 overexpression increases resistance to erastin-induced 
ferroptosis and is a novel and important regulator of CRC ferroptosis[114].
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INDUCTION OF FERROPTOSIS REVERSES RESISTANCE TO ANTICANCER DRUGS
Oxaliplatin prolongs the median disease-free survival and overall survival in patients with advanced 
CRC, but clinical data suggest that < 40% of patients with advanced CRC benefit from it[115,116]. This 
may be related to oxaliplatin resistance, and recent studies have shown that induction of ferroptosis can 
significantly reverse oxaliplatin resistance in CRC cells.

Ferroptosis in CRC cells may be inhibited through the KIF20A/NUAK1/PP1β/GPX4 pathway, which 
may underlie CRC resistance to oxaliplatin[117]. Deletion of cysteine desulfurase (NFS1) can 
significantly enhance the sensitivity of CRC cells to oxaliplatin. The mechanism may involve NFS1 
deficiency synergizing with oxaliplatin to induce PANoptosis (apoptosis, necroptosis, pyroptosis and 
ferroptosis), thus increasing the intracellular ROS levels. This also demonstrated that ferroptosis is 
involved in the oxaliplatin resistance pathway[118]. Obesity is strongly associated with a poor prognosis 
in patients with advanced CRC, and adipose-derived exosomes reduce susceptibility to ferroptosis in 
CRC, thereby promoting chemoresistance to oxaliplatin[119].

Combination with chemotherapy with monoclonal antibodies against anti-epidermal growth factor 
receptor or vascular endothelial growth factor has advanced in the treatment of metastatic CRC. 
However, inherent resistance to downstream KRAS mutations, so the effect of combination 
chemotherapy is often less optimistic. β-elemene has broad-spectrum anticancer effects, and it has been 
demonstrated that combined treatment of β-elemene and cetuximab can induce ferroptosis and inhibit 
epithelial-mesenchymal transition, thereby improving resistance to KRAS-mutated CRC cells[120].

FAM98A is a microtubule-associated protein involved in cell proliferation and migration. Increased 
expression of FAM98A can inhibit ferroptosis and promote CRC resistance to 5-fluorouracil (5-FU)
[121]. Similarly, PYCR is an oncogene that desensitizes CRC cells to 5-FU cytotoxicity by promoting 
ferroptosis in CRC cells[122].

In addition, Andrographis Paniculata may also exert a sensitizing effect on CRC treatment by 
activating ferroptosis[123,124]. Andrographis Paniculata-mediated sensitivity to 5-FU-based 
chemotherapy in CRC is primarily mediated through activation of ferroptosis and inhibition of the β-
catenin/Wnt signaling pathway[123].

NANOTECHNOLOGY PROMOTES FERROPTOSIS IN CRC CELLS
Although increasing iron concentration promotes ferroptosis in tumor cells has been demonstrated 
experimentally, direct administration of Fe2+ is not feasible in the clinic due to the protective effect of cell 
membranes and the defense mechanism of the tumor immune microenvironment (TME). Nano-drug 
delivery system (nano-DDSs) has unique physical and chemical properties of nanomaterials, which can 
not only enhance drug solubility and improve drug circulation time in the body, but also achieve 
targeted delivery and controlled release of drugs[125]. Therefore, the use of novel nanodelivery systems 
to improve the efficiency of iron release has great prospects in CRC targeted therapy.

Nano DDS can directly drive the death of iron in tumor cells, and iron-based nanoparticles can be 
catabolized by acid lysosomes of tumor cells to release Fe2+ and iron 3+[126]. Iron-based nanoparticles 
induce ferroptosis by catalyzing the Fenton reaction, but because of their low reactive oxygen 
production, they are often used in conjunction with other treatments. Liang et al[127] synthesized ultra-
small single crystal Fe nanoparticles (bcc-USINPs) that are highly active in the tumor microenvironment 
and can effectively induce tumor cell ferroptosis and immunogenetic cell death at very low concen-
trations[127].

In addition to acting directly on cancer cells, nanotechnology also works by acting on key 
components of TME. Due to TME's weak acidity, abundant angiogenesis and hypoxia conditions, the 
effectiveness of conventional cytotoxic therapy delivery is limited, while active targeting of 
nanoparticles may be more useful[128].

Sodium persulfate (NaSO) is a novel chemodynamic therapy (CDT) that can produce •SO and Na, 
which can cause ferroptosis in cells. Ir780-iodide (IR780) is a phototherapy agent that produces ROS in 
conjunction with NaSO's CDT to overcome CRC chemotherapeutic resistance. Co-assembly of NaSO 
and IR780 on the nano platform improved the stability of NaSO and solubility of IR780, significantly 
enhancing the anti-tumor effect on CRC cell lines[129]. A novel composite nanomaterial PPy@Fe3O4 has 
been demonstrated to regulate the nuclear factor-kappaB signaling pathway and then then inhibit the 
proliferation, migration and invasion of CRC cells in vitro. Interestingly, Fer-1, an ferroptosis inhibitor, 
reversed changes in transfer-related proteins induced by nanoparticle therapy[130].

CONCLUSION
Ferroptosis, a newly discovered type of RCD mediated by iron-dependent lipid ROS accumulation, 
plays a role in a variety of diseases of the gastrointestinal tract. Many ferroptosis-related genes have 
been confirmed to be associated with the prognosis of CRC, and various models have been confirmed to 
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Table 1 Key molecular targets and inducers involved in the regulation of colorectal cancer ferroptosis

Target Ferroptosis inducers Ref.

Bromelain [35]

Apatinib [37]

ACSL4

Emodin [36]

Erastin [42]

SAS [44,45]

Talaroconvolutin A [50]

Copper chelator elesclomol [51]

IMCA [52]

Pt3R5G [53]

SLC7A11

RSV [54]

CARS [65]Transsulfuration pathway

VZnO [66]

Erastin [67]

RSL3 [67]

GPX4

ACADSB [79]

Cetuximab [87]

Lys [90]

Nrf2/HO-1

Oxaliplatin [94,95]

HIF-2α [102]

miR-545 [104]

Dichloroacetate [105]

Cellular iron homeostasis

IREB2 [106]

Ginsenoside Rh4 [113]P53

Cullin-9 [114]

ACSL4: Acyl-CoA synthetase long-chain family member 4; SLC7A11: Solute carrier family 7 member 11; SAS: Sulphasalazine; IMCA: Benzopyran 
derivative 2-imino-6-methoxy-2H-chromene-3-carbothioamide; Pt3R5G: Petunidin 3-O-[rhamnopyranosyl-(trans-p-coumaroyl)]-5-O-(β-D-
glucopyranoside); RSV: Resveratrol; CARS: Cysteinyl-tRNA synthetase; RSL3: Ras-selective lethal 3; Nrf2: Nuclear factor erythroid 2-related factor; HO-1: 
Haem oxygenase 1; Lys: Lysionotin; IREB2: Iron response element-binding protein 2; GPX4: Glutathione peroxidase 4; HIF-2α: Hypoxia-inducible factor-2α.

be able to stratify CRC patients well and facilitate the early identification of high-risk patients. Iron 
metabolism and the accumulation of lipid peroxides are the core processes in ferroptosis. As mentioned 
above, GPX4, SLC7A11, ACSL4 and p53 act as key regulators in ferroptosis-related CRC mediation 
(Table 1). Induction of ferroptosis can reverse the resistance of anticancer drugs or exert a synergistic 
effect with other anticancer drugs to enhance the sensitivity of antitumor drugs and improve the 
prognosis of CRC patients. Furthermore, in colon cancer, copper chelators have also been shown to 
facilitate CRC cell death by promoting the degradation of SLC7A11. The mechanism underlying 
ferroptosis and the relationship between key regulators and other RCDs, such as autophagy and 
apoptosis, should be explored in future research.

In animal studies, the underlying mechanism of ferroptosis is complex, involving multiple targeted 
enzyme systems and metabolic networks. However, the actual clinical situation is more complicated, 
which requires the combination of gene mutation, epigenetic modification, metabolomics, etc. The 
absorption, transport, storage and metabolism of iron in the body is a very complex process, and how to 
define the therapeutic iron concentration needs to be carefully considered. In practice, increasing iron 
concentration to promote ferroptosis in tumor cells seems difficult to achieve due to the presence of 
defense mechanisms in the TME. At present, many studies have mentioned the promotion of ferroptosis 
in CRC cells through nanotechnology, and nano-DDSs seems to be able to effectively help solve this 
problem due to the advantages of targeted delivery and controlled release. In fact, ferroptosis seems to 
be a double-edged sword in the treatment of gastrointestinal diseases. The role of ferroptosis in different 
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gastrointestinal diseases is different, and the pros and cons of ferroptosis treatment need to be evaluated 
more carefully.

At present, research on the mechanism underlying ferroptosis in the colorectum is still in its infancy, 
and other ferroptosis pathways or related targets, such as the ferroptosis suppressor protein 
1/CoQ/nicotinamide adenine dinucleotide phosphate pathway, still need to be further explored. In the 
future, ferroptosis genes related to the prognosis of CRC also need to be verified. The mechanism 
underlying ferroptosis and tumor escape in CRC is also worth further in-depth study in order to 
promote the development of new and effective therapeutic strategies.
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