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Abstract

Recent genetic studies have identified physical activity (PA)-susceptible loci in

European ancestry subjects; however, due to considerable genetic differences, these

findings are not likely extendable to East Asian populations. Therefore, the present

study aimed to identify significantly associated PA-susceptible loci using genome-

wide association studies (GWASs) with East Asian (EAS) subjects and to generalize

the findings to European (EUR) ancestries. The mRNA levels of genes located near

the genome-wide significantly associated single-nucleotide polymorphisms (SNP)

were compared under PA and control conditions. Rs74937256, located in ACSS3

(chromosome 12), which primarily functions in skeletal muscle tissues, was identified

as a genome-wide significant variant (P = 6.06 � 10�9) in EAS. Additionally, the

rs2525840, also in ACSS3 satisfied the Bonferroni corrected significance

(P = 3.77 � 10�5) in EUR. We found that rs74937256 is an expressed trait locus of

ACSS3 (P = 10�4), and ACSS3 mRNA expression significantly differs after PA, based

on PrediXcan (P = 7 � 10�8) and the gene expression omnibus database (P = 0.043).
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1 | INTRODUCTION

A moderate level of physical activity (PA) is a requisite for a healthy

lifestyle. However, PA has also been defined as a risk predictor of fatal

diseases associated with metabolic syndrome.1–7 In fact, brain-related

diseases, particularly cerebrovascular diseases, are inversely associ-

ated with PA.8–11 It is speculated that genetic pleiotropy may account

for the frequently observed associations between high baseline PA

and subsequent reduced mortality.12

Multiple studies have evaluated the importance of genetic com-

ponents in PA and have shown it to be affected by various genetic

factors. For instance, heritability estimation of leisure time exercise

was 0.013 [standard error (SE) 0.023] in Japanese populations,13 and

that of PA was 0.046 (SE 0.002) using the UK Biobank data.14 Fur-

thermore, multiple genome-wide association studies (GWASs) identi-

fied variants in APOE as associated with greater moderate-to-vigorous

PA, CADM2 for habitual PA,14 and DRD2 for sporting activities.15

Although recent studies have found a genetic predisposition for PA in
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individuals of with European (EUR) ancestry, few reports have

screened disease susceptibility loci of PA in East Asians (EAS).

Furthermore, multiple studies reported that PA have a greater

effect on brain-related diseases, including neurodegenerative diseases

or mental illnesses,9,16 compared with other health-related outcomes.

However, although cerebrovascular diseases are fatal forms of brain

diseases, there is a current dearth of data regarding whether the

genetic factors associated with PA impact these diseases.

The current study seeks to identify loci associated with PA using

the Korean Genome Epidemiology Study (KoGES), and to elucidate the

biological mechanisms underlying the roles of these loci. Additionally,

the genetic effects of PA on cerebrovascular diseases are assessed

within this population. Importantly, given that trends in genetic expres-

sion associated with PA can differ according to the PA definition, hereaf-

ter PA is defined as any bodily movement produced by skeletal muscles

that results in energy expenditure and opposes an inactive lifestyle.

2 | MATERIALS AND METHODS

2.1 | Study population

Discovery analyses were conducted using the KoGES cohort (https://nih.

go.kr/contents.es?mid=a50401010100) comprising participants residing

in Ansan (an urban area) and Ansung (a rural area) in Gyeonggi Province,

South Korea.17 It was designed to investigate the long-term follow-up of

genetic, environmental, and behavioral risk factors of common complex

diseases and causes of death in Koreans.18 The baseline survey was com-

pleted during 2001–2002. A total of 10,030 participants (4758 men and

5272 women) aged 40–69 years were recruited and followed up for

14 years. Each participant was assessed every 2 years. The number of

measurements for each subject ranged from one to eight. All participants

provided written informed consent, and the study was approved by the

ethics committee of the Korean Center for Disease Control and Institu-

tional Review Boards of the Korea University Ansan Hospital and Ajou

University School of Medicine (IRB No. E2011/001-014).

Generalization analyses were conducted using the

United Kingdom Biobank (UKB) prospective cohort (https://www.

ukbiobank.ac.uk).19 Over 500,000 participants between the ages of

40 and 69 years were recruited across the UK to collect their genetic

and phenotypic data ranging from social demographic to environmen-

tal factors. The baseline data survey began in 2006 and follow-up sur-

vey is ongoing. All participants provided electronically signed consent

upon recruitment.

2.2 | PA definition

We define PA as the daily sum of bodily movements produced by

skeletal muscles resulting in energy expenditure. In the KoGES, sub-

jects provided answers on a questionnaire regarding the number of

hours in a day spent in high-intensity level activities ranging from

labor to exercise. Among eight times measurements, the PA measure-

ment in second stage was absent. The mean age at the baseline was

52.22 (SD = 8.91) and PA levels gradually decreased throughout

follow-up, approaching 0 h at the last measurement. The subject-

specific average PA was calculated and transformed using the rank-

based inverse normalization method (Table 1).

In the UKB, the data field 22,035 indicates whether each partici-

pant met the 2017 UK PA guidelines of 150 min of moderate activity

or 75 min of vigorous (or shorter time of intense vigorous) activity,

per week, and was considered as a response variable in the current

study. Subjects belonging to the physically active group (n = 172,435)

and physically inactive group (n = 144,515) were defined as cases and

controls, respectively.

2.3 | Genotyping, quality control, and imputation

The KoGES cohort was genotyped using the Affymetrix Genome-

Wide Human SNP Array 5.0 (Santa Clara, CA, USA). SNPs were

removed if the missing genotype call rates were >0.05, minor allele

TABLE 1 Demographic summary of
response and covariates

Traits Male Female Total

Phenotype Mean ± SD N Mean ± SD N Mean ± SD N

Stage 1: PA 2.60 ± 2.07 3757 2.91 ± 1.94 4347 2.77 ± 2.01 8104

Stage 2: PA NA NA NA NA NA NA

Stage 3: PA 1.03 ± 2.19 2903 0.68 ± 1.86 3321 0.84 ± 2.03 6224

Stage 4: PA 0.20 ± 0.97 1547 0.05 ± 0.39 1415 0.13 ± 0.76 2962

Stage 5: PA 0.22 ± 0.92 1535 0.09 ± 0.44 1431 0.15 ± 0.73 2966

Stage 6: PA 0.13 ± 0.71 1410 0.02 ± 0.24 1367 0.09 ± 0.54 2777

Stage 7: PA 0.21 ± 0.79 1377 0.08 ± 0.40 1342 0.15 ± 0.63 2719

Stage 8: PA 0.14 ± 0.66 1450 0.03 ± 0.32 1355 0.09 ± 0.53 2805

PA 1.51 ± 1.62 3817 1.58 ± 1.56 4435 1.54 ± 1.59 8252

INV-PA �0.07 ± 1.03 3817 0.04 ± 0.93 4435 �0.01 ± 0.98 8252

Abbreviations: PA, average PA score measured in hours; INV-PA, Rank-based inverse-normalized

transformed PA.
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frequencies (MAFs) were <0.05, or the P-values for Hardy–Weinberg

equilibrium (HWE) were < 10�5. Subjects were excluded if they had

missing genotype call rates >0.05 or sex inconsistency was observed.

The remaining genotypes were imputed with IMPUTE220 using the

cosmopolitan reference panel from the 1000 Genome Project

(1000G) Phase 3.21 For further quality trimming, imputed SNPs were

removed if information quality was <0.5, SNP exclusion process with

missing genotype call rate was >0.03, MAF was <0.05, or HWE P-

value was <10�5. Subjects were also filtered out if SNP heterozygos-

ity was >3 � IQR, estimated genetic relationship was >0.125, or mean

difference of principal components (PCs) was >5 � IQR. The detailed

procedure is shown in Figure 1A. The final dataset comprised of 8252

subjects (comprising 3817 men and 4435 women) and their geno-

types for 2,915,187 SNPs.

The UKB data, which was used for generalization analysis, consists of

488,377 subjects for which two genotyping arrays were performed and

95% shared marker information was reported. A subset of 49,950 sub-

jects, from the 438,427 included in the UK Biobank Axiom Array, was gen-

otyped using UK Biobank Lung Exome Variant Evaluation (UK BiLEVE)

Axiom Array by Affymetrix. SNPs were removed if missing genotype call

rate was >0.03. Subjects were then filtered out if the missing rate was

>0.05, or if a sex mismatch was detected between self-reported sex and

sex estimated with X-linked SNPs. The untyped SNPs were imputed with

IMPUTE422 using UK10K, 1000G Genome phase 3, and the HRC panel,

as reference data, resulting in 93,095,623 SNPs. The detailed quality con-

trol protocol is described in Figure 1B. The remaining 316,950 subjects

and 4,300,578 SNPs were applied for our association analyses.

From the discovery analyses, a genome-wide significant SNP

located in ACSS3 was identified and considered a candidate for gener-

alization analyses using the UKB data. Due to the absence of candi-

date SNPs from discovery analyses, SNPs located in the ACSS3 region

between 81,331,594 and 81,650,533 base pairs in chromosome

12 were imputed using IMPUTE2 with the 1000G Phase 3 reference

panel. Imputed SNPs were quality controlled with INFO >0.5,

MAF <0.01, and HWE P-value <10�5. Accordingly, 580 SNPs were

considered for the generalization analyses.

All data management was conducted using PLINK,23 GCTA,24 and

ONETOOL.25

F IGURE 1 Genotype imputation and quality control of discovery and generalization datasets. (A) Discovery dataset imputation and quality
control flowchart. (B) Generalization dataset quality control flowchart.
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2.4 | Geographic genetic groups

The MDS plot was generated using the 1000G phase3, KoGES

and UKB cohort. The data for 1007 subjects (504 EAS and

503 EUR) were extracted from 1000G. Their genotypes for

1,236,948 SNPs were combined with those of KoGES and UKB

subjects, and PCs were calculated after pruning SNPs based

on r2 = 0.2.

2.5 | Genome-wide associations

The number of vigorous activity measurements differed among sub-

jects, resulting in an unstable distribution. For the discovery ana-

lyses, PA was first averaged as a daily score and then transformed

using the inverse-normalization method; the transformed PA was

considered a response variable. Thereafter, linear regression was

performed for GWAS after adjusting for the effects of age, sex, and

five PCs corresponding to the top five largest eigenvalues. GWAS

was performed using PLINK at the significance level α = 5 � 10�8,

significant SNPs were annotated using ANNOVAR.26 A regional plot

was generated using LocusZoom.27 Significant SNPs were general-

ized using the UKB data, for which the PA was coded as a binary var-

iable, and generalization analyses were conducted using logistic

regression.

2.6 | Heritability analyses

GCTA was used to estimate SNP heritability with the discovery data

by setting a 0.5 pruning level.

2.7 | Gene-based analyses

Gene-based analyses were conducted using the discovery dataset.

The SNP2GENE function in FUMA28 was used with 1000G Phase

3 EAS as a reference panel population with a total of 15,280 genes.

Significant results were further tested using the UKB release2b 10 k

European dataset.

2.8 | Differentially expressed gene analyses

For the genome-wide significant SNPs identified during the discovery

analyses, we identified the expression quantitative trait locus (eQTL)

genes using the GTEx portal,29 and differentially expressed gene (DEG)

analyses were conducted using LIMMA30 and BALLI.31 The mRNA

expression levels were predicted for each subject in the discovery data-

set using PrediXcan32 (version 7), and DEG analyses were performed

with the predicted values. We also downloaded the gene expression

omnibus (GEO) microarray dataset GSE178633 and conducted DEG ana-

lyses on this dataset. The GSE1786 dataset comprises six healthy seden-

tary men aged 68.0 ± 2.7 years. Participants were nonsmokers and free

of significant cardiovascular, metabolic, or musculoskeletal disorders, and

led a sedentary lifestyle with no participation in regular exercise more

than once weekly. Subjects were trained on a cycle ergometer thrice per

week for 12 weeks at 80% of the predetermined maximal heart rate.

2.9 | Mediation analyses

We conducted mediation analyses to determine the mediation effect

of PA on cerebrovascular disease. The cerebrovascular disease status

F IGURE 2 MDS plot of the 1000G–
KoGES-UKB combined dataset. (A) MDS
plot with principal component 1 on the x-
axis and principal component 2 on the y-
axis. (B) MDS plot with principal
component 1 on the x-axis and principal
component 3 on the y-axis. EAS, East
Asian; EUR, European.
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was available for the KoGES dataset. Subjects diagnosed with stroke,

palsy, cerebral infraction or cerebral hemorrhage was defined as cases,

while the others were defined as controls. Among the 8252 subjects

in a discovery dataset, 7930 were controls and 322 cases. The

rs74937256 and predicted ACSS3 expression levels with PrediXcan

were considered as predictor (X). Cerebrovascular disease and PA

were defined as outcome (Y) and mediators (M), respectively. Analyses

were performed using the mediation package in R, version 4.5.0,34

and mediator significance was evaluated with 1000 bootstrap

samples.

3 | RESULTS

3.1 | Descriptive statistics

The discovery dataset comprised 8252 subjects (3817 men and

4435 women) with an average age was 52 years (SD = 8.87) at

baseline, and no significant difference in average age between

men and women (51.52 ± 8.69 and 52.48 ± 9.00, respectively).

Subjects in the KoGES cohort spent 1.5 h on PA, which was not

normally distributed. Thus, the subject-specific means of repeated

measurements were considered as a response variable and was

transformed using the rank-based inverse normal transformation

method. The detailed descriptive statistics are presented in

Table 1.

3.2 | Geographic genetic groups

MDS plots were constructed based on the three PCs, corresponding

to the three largest eigenvalues as in Figure 2A,B, the two geographic

genetic groups in 1000G were distinctly separated. The KoGES cohort

and the UKB cohort were in accordance with EAS and EUR in 1000G,

respectively, indicating that there was no evidence of population

stratification.

F IGURE 3 QQ and Manhattan plots of GWAS for PA. (A) QQ plot from GWAS summary statistics with a genomic inflation value of 0.98. est.
vif. estimated genomic inflation factor. (B) Manhattan plot from GWAS summary statistics. The blue line represents the suggestive significance
level and the red line represents the genome-wide significance level.
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3.3 | Genome-wide association studies and
heritability estimation

GWASs with discovery data were conducted for inverse-

normalized PA. QQ and Manhattan plots in Figure 3A, B also show

that the GWASs were statistically valid, with a genomic inflation

factor of 0.98. One significant genome-wide region was identified.

The results for the most significant SNP, rs74937256, are summa-

rized in Table 2 (P = 6.06 � 10�9). The MAF of rs74937256 was

0.208, which is similar to that of 0.211 from the EAS population in

the gnomAD database35 and 66,407 subjects of the Korean refer-

ence panel (KRP). The coefficient of rs74937256 (0.110) implies

that subjects with minor alleles tended to spend more time per-

forming PA than the others. The regional plot in Figure 4 shows

that rs74937256 is the most significant locus, located in the ACSS3

gene region with a heritability estimate of 0.034 (SE = 0.032,

P = 0.129).

For the generalization analyses, we considered 580 SNPs located

in ACSS3. The same phenotype was not available; alternatively, the

binary trait, measuring whether subjects displayed a level above that

of the recommended moderate or vigorous level of PA, was consid-

ered. The genome-wide significant SNP rs74937256 was not general-

ized (P = 0.882). MAFs of rs74937256 were 0.060, 0.065, and 0.208

for the UKB, gnomAD EUR (non-Finnish), and KoGES, respectively.

Such differences were indicative of the influence of geographic origin

on linkage disequilibrium blocks between Korea and Europe. We

found 580 SNPs while considering SNPs in the same gene. Table 3

shows that rs2525840 satisfied the Bonferroni-corrected significance

level α = 8.62 � 10�5 (P = 3.77 � 10�5), with MAFs of 0.322, 0.427,

and 0.448 in the UKB, gnomAD EUR (non-Finnish), and KoGES

cohorts, respectively.

3.4 | Gene-based analyses

Gene-based analyses were conducted using the discovery dataset

(Figure 5A, B). The Manhattan plot in Figure 5(b) shows that CSGAL-

NACT1 satisfied the Bonferroni-corrected significance level

α = 3.27 � 10�6 (P = 3.10 � 10�6). Table 4 presents the results of

the ten most significant genes identified from the gene-based ana-

lyses. Associations with CSGALNACT1 were significant after adjusting

for multiple testing with Bonferroni correction. CSGALNACT1 is asso-

ciated with high-density lipoprotein cholesterol (HDL-C) and triglycer-

ide levels36 and participants in the development of osteoarthritis,37

which is associated with obesity. Though the remaining genes in

Table 4 were not significant at Bonferroni-corrected significance level,

they reportedly exhibit associations with indicators of PA-related phe-

notypes, including abdominal obesity.38–41 However, CSGALNACT1

did not achieve the significance level in the generalization dataset

(Table 4).

3.5 | Differentially expressed gene analyses

We conducted eQTL analyses of the genome-wide significant SNPs

using the GTEx portal. As rs74937256 was not available, rs57018719,

F IGURE 4 Regional plot of GWAS for PA. r2 with rs74937256 are represented in five colors. The most highly correlated SNPs are colored in
red and orange, green, blue, and navy in decreasing order.
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which was also genome-wide significant and closely located to

rs74937256, was considered. Rs57018719 presented the highest

R2(0.938) and D0(0.999) with rs74937256. Table 5a shows that

ACSS3 expression was significantly associated with rs57018719 in

skeletal muscle tissue (P = 7�10�8) and cultured fibroblasts

(P= 5�10�5). mRNA expression results in skeletal muscle tissue

(Table 5 b) showed that the predicted mRNA expression of ACSS3

was significantly associated with PA (P = 10�4). While conducting

DEG analyses using the publicly available dataset GSE1786, ACSS3

was found to be significantly differentially expressed (Table 6).

3.6 | Mediation analyses

Mediation analyses were conducted using the KoGES dataset to iden-

tify the mediation effect of rs74937256 and the predicted ACSS3

expression level using PrediXcan. Although the average direct effect

of PA on cerebrovascular disease was not significant in rs74937256

(with effect size �2.42 � 10�5; P = 0.988) nor was the predicted

ACSS3 expression level (effect size 0.005; P = 0.558), multiple studies

have established a theoretical basis for this relationship.8,10,11,42 The

average mediation effects of rs74937256 and the predicted ACSS3

expression level were � 6.77 � 10�4 (P = 0.044) and 9.46 � 10�4

(P = 0.008), respectively. Our results also indicate that genetic factors

in PA affect cerebrovascular disease.

4 | DISCUSSION

Multiple studies have investigated the genetic components associated with

PA. However, GWASs of PA require careful interpretation as the signifi-

cantly associated loci vary widely based the definition of PA as well as the

genetic, ancestral backgrounds of subjects. For example, in a study investi-

gating PA defined as sports performance, more than 155 genetic markers

were reported as positively associated with non-EAS athletic status,43–50

most of which were not identified in the studies of PA defined as exercise

in EAS. In parallel with the reported associations between PA and brain-

related phenotypes, we found potential mediation effects of genetic fac-

tors in the association between PA and cerebrovascular disease.

In this study, we defined the daily sum of bodily movement pro-

duced by skeletal muscles that results in energy expenditure as PA with

the aim of elucidating the genetic effects of PA in EAS non-athletes. To

this end, we conducted a GWAS of PA and found that intronic

rs74937256 in ACSS3 was significantly associated with PA, followed by

the generalization analyses on the variants in ACSS3. Combined with

the fact that the alternative variant rs57018719 affected PA in the

GWAS (BETA = �0.105) and eQTL (BETA = -0.38), it can be inferred

that rs74937256 partially regulates the expression of ACSS3. ACSS3, a

member of the acyl-coenzyme A synthetase (ACSS) family, catalyzes

fatty acid metabolism through energy storage and metabolic functions.

ACSS3 degrades ketone bodies, leading to energy production.51–53 In

summary, rs74937256, followed by ACSS3 expression, partially regu-

lates the activity of ketone body synthesis, and consequently, the levelT
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of PA. This response allows skeletal muscles to use ketone bodies as

the primary energy source,54–58 which may lead to the association

between rs74937256 and PA.

Although we present evidence of genetic factors in PA, the present

study has certain limitations. First, genome-wide significant SNPs from

EAS were not generalized from the UKB data. Distinct genetic architec-

tures among different genetic groups were reflected in the MAF patterns

and linkage disequilibrium block, and this inconsistency may account for

the unsuccessful generalization. Alternatively, different SNPs located in

ACSS3 were generalized. Further generalization may increase the

strength of our findings. Secondly, inconsistencies exist in PA definitions

and the geographical, genetic background between the discovery/

generalization dataset, PrediXcan, and GEO database. We attempted to

use the training weight data from EAS for PrediXcan; however, this was

not available for skeletal muscle tissue. Hence, our results from PrediX-

can may be biased due to genetic and ancestral differences. In addition,

the gene expression dataset from GEO contains subjects from EUR

ancestry and estimated effect sizes may differ for EAS. Further studies

are required to determine the effects related to trans-ancestral genomic

architecture. Third, our outcome was based on a self-report question-

naire prone to several biases (e.g., recall bias). Lastly, although PA is

reportedly affected by genetic and environmental factors, this study only

considered genetic factors. Therefore, further research is needed to

investigate the mechanisms underlying the gene-by-environmental inter-

actions associated with PA.

5 | CONCLUSION

The ACSS3 variant rs74937256 influences energy supply to muscles

during conditions of energy exhaustion. In the present study, probable

evidence of association was observed between rs74937256 and

PA. We identified the genome-wide association of ACSS3, which is

primarily involved in energy mechanisms characterized by ketone

body synthesis. The biological functions of ACSS3 illustrate the impor-

tance of ACSS3 in PA, these results may increase our understanding

of the biological aspects of PA. Additionally, given that PA has associ-

ations with chronic diseases or metabolic syndrome, our mediation

F IGURE 5 QQ and Manhattan plots of gene-based analyses. (A) QQ plot constructed using the summary statistics of the gene-based
analyses. (B) Manhattan plot constructed using the summary statistics of the gene-based analyses.
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analyses findings can be applied to determine genetic correlations

between PA and other diseases, and to develop personalized recom-

mendations regarding PA. Collectively, these findings broaden our

understanding of the biology of, and genetic disposition for, PA.
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TABLE 4 Top 10 significant genes identified using gene-based
analyses

CHR GENE STAT P for EAS P for UKB

8 CSGALNACT1 4.520 3.10 � 10�6 0.92

1 NR5A2 4.433 4.64 � 10�6 0.15

16 SETD6 4.421 4.90 � 10�6 0.86

16 CNOT1 4.015 2.97 � 10�5 0.70

5 PCDHGA1 3.826 6.53 � 10�5 0.01

12 CACNA2D4 3.792 7.49 � 10�5 0.84

11 TRIM66 3.778 7.91 � 10�5 0.43

5 PCDHGA2 3.660 1.26 � 10�4 0.01

5 PCDHGA3 3.604 1.57 � 10�4 0.01

5 PCDHGB1 3.604 1.57 � 10�4 0.01

TABLE 5 Differentially expressed gene (DEG) analyses using
eQTL and PrediXcan

GENE SNP BETA P TISSUE

(a) eQTL for rs57018719

ACSS3 rs57018719 �0.38 7 � 10�8 Muscle-skeletal

ACSS3 rs57018719 �0.19 7 � 10�5 Cultured fibroblasts

(b) PrediXcan for ACSS3

GENE BETA P TISSUE

ACSS3 �0.012 10�4 Muscle-Skeletal

Note: Top SNP rs74937256 was not available in GTEx portal, we

substituted it to rs57018719 which is genome-wide significant in KoGES

and the most highly correlated with rs74937256 (r2 = 0.938

and D0 = 0.999).

TABLE 6 Differentially expressed gene (DEG) analyses using
LIMMA and BALLI

GENE BETA LIMMA P BALLI P

ACSS3 18.56 0.042 0.043

Abbreviation: BETA, Beta coefficient from LIMMA.
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