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What are Machine learning and Deep Learning? 

When a patient presents to the ED, clinicians often turn 

to medical imaging to better understand their condition. 

Traditionally, imaging is collected from the patient and 

interpreted by a radiologist remotely. However, scanning 

devices are increasingly equipped with analytical 

software that can provide quantitative assessments at 

the patient’s bedside. These assessments often rely on 

machine learning algorithms as a means of interpreting 

medical images. 

A machine learning (ML) algorithm is able to utilize 

presented data to adapt and learn without following 

explicit instructions. ML is a branch of artificial 

intelligence (AI) and has garnered a great deal of 

attention over the past decade, due in large part to 

substantial advancements in data processing and 

improvements in model performance. ML has proven to 

be a powerful method for interpreting complex data. 

Clinicians may understand all the information necessary 

to classify a patient’s condition, but seldom can they 

derive an equation that communicates precisely what 

information is relevant and irrelevant. ML excels at this 

task and permits scientists to develop solutions without 

knowing how to explicitly code the answer. In the most 

common form of ML, called supervised learning, 

scientists provide data inputs (called features) and 

corresponding class labels. The machine learning 

algorithm then determines what input features are 

relevant to predict the class labels, thus generating a 

model that can take in novel features and provide a 

predicted class label as output. 

One of the most successful methods for solving medical 

imaging problems is a subfield of machine learning called 

deep learning (DL). Deep learning was inspired by the 

complex neural architecture of the human brain, which is 

organized into interconnected layers of neurons and can 

solve incredibly complex problems. In the primate visual 

cortex, simple photoreceptor input is passed through 

convolutional layers in the ventral visual stream of the 

brain. Each successive layer produces increasingly 

complex representations of the photoreceptor input, 

which permits humans to classify the objects and 

interpret the scenes they see. Similarly, deep learning 

algorithms simulate the ventral visual stream by passing 

image information through multiple layers of a 

convolutional neural network (CNN). These networks  

process simple pixel information, form new complex 

representations, and pass those representations on to 

subsequent layers for eventual image classification [1].  

To train a CNN to classify images, pixel values are 

passed into the initial layer of neurons which are 

activated by the information (Figure 1). The activations 

are then fed forward into additional hidden layers which 

further process the data. The features generated by this 

process are fed through a final activation function, which 

provides a classification label in the output layer. To 

improve model accuracy, algorithm predictions are 

compared to provided labels. A cost function assesses 

the difference between model predictions and actual 

values, awarding a proportional penalty to the model. 

The goal of the training process is to minimize the cost or 

penalty awarded to the model. Using an optimization 

technique called gradient descent, the response weight 

of each individual neuron in the network is iteratively 

tuned such that the final classifications better match the 

expected output, thus reducing the penalty assessed by 

the cost function. After training on a corpus of images, a 

novel image can be fed into the algorithm and a 

predicted classification will be output. 

Over the past several years there have been huge 

advances in the use of ML and DL algorithms to address 

a number of challenges clinically. DL algorithms have 

been extensively used within the field of radiology where 

they are used to perform numerous tasks, including 

segmentation of anatomical structures or local lesions, 

detection of probable tumors, and classification of lung 

and breast nodules [2,3]. A prominent example of how 

DL is rapidly changing the field of radiology can be seen 

in chest X-ray advancements. In 2017, with the release 

of the world's largest publicly available chest X-ray 

dataset (over 100,000 frontal-view X-ray images) by 

Stanford and the NIH [4], P. Rajpurkar et al. developed a 

DL system called CheXNet that could automatically 

detect and classify 14 different diseases on chest X-ray 

[5,6]. While there are some concerns surrounding the 

validity of human to algorithm comparisons [7], their 

system was able to achieve a comparable detection rate 

to expert radiologists for most diseases and 

demonstrated the promise of DL systems within medical 

imaging [8]. 
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Challenges to greater adoption of DL in POCUS 

The example above demonstrates the potential of ML 

systems to improve clinical care for patients as well as 

assist radiologists with their clinical workload. However, 

despite rapid advancements in many medical imaging 

modalities, similar applications of ML algorithms to point 

of care ultrasound (POCUS) have been slower to arrive. 

This discrepancy is present for a number of reasons. 

First, unlike POCUS imaging modalities such as chest X-

ray, CT, and MRI, have standardized imaging protocols. 

Hospital image archiving infrastructure was designed to 

store and save imaging data for later use. As a result of 

the persistent imaging infrastructure for these modalities 

large, organized imaging datasets have been developed 

that can be more readily interrogated by DL algorithms.  

In contrast, images and video acquired at the bedside 

using POCUS are often used for immediate physician 

support and not always permanently archived for later 

analysis. Additionally, the point of care setting inherently 

introduces variability in data quality even when collected 

by the same sonographer. Variation in sonographer skill 

level, image acquisition order, and technique further 

complicates ultrasound datasets. Even in well-performed 

scans, imaging distortion and artifacts are often an 

inescapable reality for POCUS. This results in ultrasound 

images containing a great deal of “noise” or randomness 

in the data. Variability is further compounded when 

combining images from different scanner manufacturers 

or academic centers into a single dataset. Additionally, 

ultrasound images often lack global reference structures, 

making it difficult to determine exactly where on a 

patient’s body an image was collected. Finally, as an 

imaging modality, POCUS is relatively new compared to 

chest X-ray, CT, and MRI, only achieving widespread use 

in hospitals in the 1990s [9]. Taken together, these 

reasons explain why there are relatively few DL 

applications for POCUS compared to other imaging 

modalities. 

Nonetheless, the last few years have seen an explosion 

of novel DL applications within POCUS. DL is uniquely 

suited for analysis of POCUS because it is able to 

generate high-level abstractions from a wide array of raw 

imaging data of varying quality. This ability to “cut through 

the noise” and draw abstractions and note otherwise 

missed patterns has been one factor leading to greater 

use of DL within POCUS. Increased interest in DL has 

come in part due to unique computational approaches to 

address the obstacles previously mentioned. Both 

traditional machine learning techniques (i.e. random 

Forest classifiers, support vector machines) and deep 

learning methods (i.e recurrent neural networks (RNN), 

auto-encoders), have been employed on ultrasound 

datasets with good success. Additionally, researchers 

have utilized innovative techniques such as transfer 

Figure 1. Example convolutional neural network for ultrasound. Here we present a simplified network architecture for 

a model designed to detect the presence or absence of B-lines in a lung ultrasound image. The model takes in raw 

data, in this case pixels from the lung ultrasound image. Neurons in the input layer, represented here by circles, are 

activated to varying degrees by the pixels. These activations are passed forward through several convolutions in the 

hidden layers. Final activation values are fed into the activation function in the output layer. The output is a binary 

classification: either presence or absence of B-lines. 



FEB 2022 vol. 07 Kidney | POCUS J | 80 

learning to circumvent some issues related to limited and 

inconsistent datasets. Transfer learning is the process of 

initializing a  DL model with weights derived from another 

training task and fine-tuning the model to perform a new 

task with the goal of reducing the number of trials 

necessary to learn a similar task [10,11]. For instance, a 

model trained to accurately identify and segment straight 

lines may be retrained on a carotid ultrasound dataset in 

order to identify and segment the arterial wall. This 

approach has the benefit of generally requiring fewer 

class labels in the training set in order to develop a 

successful algorithm.  

DL algorithms have the potential to further increase the 

utility and adoption of POCUS. Many important uses of 

ML applied to POCUS are outside the scope of this 

review, but also include DL algorithms applied to enable 

novice sonographers in acquiring the best image [12] and 

as educational tools for medical students and residents 

providing procedural training on needle guidance for 

epidural anesthesia [13]. Herein we will discuss potential 

and emerging clinical uses of ML approaches applied to 

POCUS.  

Current Clinical Applications of ML within Ultrasound 

Here we will briefly highlight some of the clinical ML 

algorithms that have been developed for POCUS. To 

date, there are relatively few real-time ML algorithms 

available in POCUS (Table 1). With the exception of a 

few commercially available models, the majority of ML 

algorithms were developed for US applications using 

datasets captured from retrospective studies. One barrier 

to greater adoption of ML models within POCUS is the 

need to implement software in real-time on the ultrasound 

device hardware itself. Adoption of ML in POCUS is 

challenging not only because software and hardware 

must be integrated to enable real time applications, but 

also because most recently developed ML models lack 

sufficient clinical validation and FDA approval to be used 

in the clinical setting. While this regulatory milestone may 

seem distant, it has already been achieved for similar 

medical imaging applications. In 2018 the FDA approved 

a retinal imaging device with onboard artificial intelligence 

that could make diagnostic decisions, a first of its kind 

innovation [14]. As researchers continue to develop ML 

models for ultrasound, it is important to note that given 

adequate implementation, many of these models can be 

adapted for POCUS devices in the near future. 

As mentioned before, the majority of new ML algorithms 

within US have been applied using DL architectures. 

Some of the most significant advances in DL applied to 

POCUS have taken place within echocardiography. Here, 

a number of models have been developed for a wide 

number of classification, segmentation, and detection 

tasks. A frequently used DL application involving both 

segmentation and biometric measurements has been the 

rapid determination of cardiac ejection fraction (EF). In 

order to accurately determine EF using 

echocardiography, determination of cardiac cycles–

namely, end-diastole and end-systole–is necessary. 

Some groups such as Dezaki et al. have successfully 

used ML models to accurately determine cardiac cycles 

[15] and a number of other groups have also successfully 

trained DL models to segment various chambers of the 

heart using recurrent neural networks (RNN) and CNNs 

[16–18]. Furthermore, the automation of EF and cardiac 

volumes using ML has been shown to have excellent 

agreement between automated and manual approaches, 

with increased efficiency and reproducibility of 

measurements [19,20]. 

There has also been significant interest in applying ML 

algorithms to lung ultrasound. Lung ultrasound has 

gained increased use in the POC setting due to the wide 

number of clinically useful assessments it provides [21]. 

The quantitative assessment of B-line score (BLS) has 

become an important tool for assessing pulmonary 

congestion using POCUS [22]. B-lines are hyperechoic 

reverberation artifacts arising from the pleural surface 

that extend to the bottom of the screen without fading and 

move in tandem with lung sliding. Total BLS can be used 

to determine fluid overload (FO) severity score and a 

number of studies have demonstrated that BLS 

accurately quantifies pulmonary congestion 

outperforming the physical exam and chest x-ray [23–25]. 

Additionally, in the point of care setting, rapid assessment 

of a patient’s volume status can be a crucial tool in 

guiding clinical interventions. Yet, widespread use of this 

technique is limited partly due to the tedious nature of the 

assessment. 

A number of groups, including our own, have developed 

DL models using CNN to automatically quantify B-line 

scores from POC lung ultrasound video clips. Recently, 

B. Christiana et al. developed a supervised CNN trained 

on 400 lung ultrasound clips to calculate total BLS in 

emergency department patients. They achieved a binary 

classification (B-lines present versus absent) sensitivity 

and specificity of 93% and 96% compared to an expert 

interpreter. In multiclass classification of B-line severity 

their DL model achieved a linear weighted kappa of 0.65 

vs an interrater reliability of 0.87 [26]. Our own group has 

developed a DL model that uses a transformer block 

architecture CNN trained on 91 hemodialysis patients 

with ESRD to calculate total BLS and severity level. In 

preliminary results, our DL model demonstrated a binary 

classification (presence versus absence of B-lines) 

accuracy of 87.3% and a total BLS classification (scored 

0-4) accuracy of 60.5% [27].  

Point of care lung ultrasound has also shown great 
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Authors Application Model Performance 

Dezaki et al. Cadiac: cycle phase 
determination (ED vs 
ES) 

Residual RNNs 

(ResNet + LSTM) 

R² score = 0.66 

Error ED = 3.7 

Error ES = 4.1 

Smistad et al. Cardiac: LV 
segmentation 

CNN (U-Net [64]) DSC = 0.86 ± 0.06 

S. Chen et al. Cardiac: plane 
detection, LV 
detection, LV 
segmentation 

PSPNet + temporal affine network 
(TAN) 

DSC = 0.91 

Knackstedt et al. Cardiac: EF AutoLV ICC = 0.70-0.83 

Thavendiranathan 
et al. 

Cardiac: LV volume & 
EF 

Probabilistic contouring algorithm 
composed of a Bayesian framework, 
hierarchical K-means clustering, and 
probabilistic boosting tree. 

Correlation with cardiac magnetic 
resonance measurements: 

ED volume = 0.90 

ES volume =  0.96 

EF = 0.98 

F. Dominika et al. Cardiac: EF LVivo EF (DiA Imaging Analysis) Performance relative to calculated EF via 
3D echocardiography: 

Pearson correlation =  0.92 (95% CI 0.87-
0.95) 

Mean difference = 0.61% (95% CI -0.68-
1.89%) 

Nafee et al. Extremities: DVT Ensemble classifier Concordance statistic = 0.69 

Tanno et al. Extremities: DVT CNN F1 score = 90% 

H. Chen et al. Fetal: plane detection 
(FASP, FFASP, 
FFVSP) 

Transferred RNN (T-RNN): CNN + 
LSTM 

Accuracy: 

FASP = 0.91 

FFASP = 0.87 

FFVSP = 0.87 

Jang et al. Fetal: abdominal 
circumference 

CNN + U-Net Accuracy = 87.1% 

Gao et al. Fetal: anatomy 
classification 

T-CNN Accuracy = 91.5% 

Ravishankar et al. Kidney: segmentation Ensemble classifier with gradient 
boosting 

DSC = 0.83 

Wu et al. Kidney: segmentation Cascaded DenseNet Mean intersection over union = 0.83 

C. Chen et al. Kidney: CKD 
detection 

Support vector machines 5 stages: 

Accuracy = 70% 

Kuo et al. Kidney: CKD 
detection 

ResNet 5 stages: 

Accuracy = 85.6% 

Table 1. Discussed studies on the application of machine learning in ultrasound. Due to differences in study design, 
inter-study performance cannot be compared. Refer to original studies for details of study design. Acronyms: ED - end 
diastolic; ES - end systolic; RNN - recurrent neural network; LSTM - long short-term memory network; CNN - 
convolutional neural network; DSC - Dice score coefficient; EF - ejection fraction; LV - left ventricle; FASP - fetal 
abdominal standard plane; FFASP - fetal face axial standard plane; FFVSP - fetal four-chamber view standard plane; 
CKD - chronic kidney disease; DVT - deep venous thrombosis; ICC - interclass correlation coefficient; CI - confidence 
interval. (con’t next page…)  
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promise in the accurate diagnosing of community 

acquired pneumonia (CAP). It has demonstrated 

excellent diagnostic capabilities when performed by a 

trained sonographer compared to both clinical 

assessment and chest X-ray, while also avoiding 

unnecessary radiation exposure in vulnerable patients 

such as pediatric populations [28–30]. However, lung 

ultrasound is not included in the diagnostic workup for 

CAP partly because of inter-operator variability of lung 

ultrasound and training. DL approaches aimed at 

reducing these barriers are another emerging trend. In 

2018, Correa et al. developed a neural network trained on 

1450 CAP-positive ultrasound frames from a hospitalized 

pediatric population in Peru. The algorithm was 

successful in correctly identifying pneumonia infiltrates 

with 90.9% sensitivity and 100% specificity [31].  

More recently, amidst the 2020 COVID-19 pandemic, 

there has been increased attention paid to increasing the 

diagnostic ability of clinicians to detect the presence of 

the novel coronavirus in patients. To this end, Born et al. 

developed a deep CNN trained on over 1100 COVID-19 

confirmed lung ultrasound images to achieve a detection 

sensitivity of 0.96 and specificity of 0.79 and F1-score of 

0.92 in a 5-fold cross validation [32]. The authors provide 

an open-access web service (POCOVIDScreen) that 

deploys the predictive model, allowing clinicians to both 

perform predictions on ultrasound lung images and 

upload their captured images to add to the database. 

Use of POCUS within nephrology has also increased in 

use over the past several years. In patients with chronic 

kidney disease (CKD), volume overload plays an 

important role in the disease pathology by complicating 

cardiovascular pathophysiology leading to increased 

cardiovascular morbidity and overall mortality [33,34]. For 

patients with end-stage renal disease (ESRD) on 

hemodialysis, it has also been shown that the extent of 

volume overload correlates with adverse cardiovascular 

events [35]. Therefore, for the nephrologist, close 

monitoring of their patient’s overall volume status is 

important in the clinical management of patients. Thus, 

POC lung ultrasound (and BLS quantification) has also 

become an important tool in the nephrologist’s arsenal. 

However, other ML advancements within renal ultrasound 

include the accurate segmentation of the kidneys, 

yielding rapid and accurate measurement of renal 

dimensions in patients by groups such as Ravishankar et 

al. and Wu et al. [36,37], as well as the detection of 

various stages of CKD by groups such as Chen et al. and 

Authors Application Model Performance 

Christiana et al. Lung: B-line score Custom shallow CNN (10 layers) Presence vs absence: 

Sensitivity = 93% 

Specificity = 96% 

  

Severity (0-4): 

Kappa = 0.65 

Sonko et al. Lung: B-line score Autoencoder + CNN Presence vs absence: 

Accuracy = 87.3% 

  

Score (0-4): 

Accuracy = 60.5% 

Correa et al. Lung: pneumonia Custom feedforward neural network 
(3 layers) 

Sensitivity = 91% 

Specificity = 100% 

Born et al. Lung: COVID 
detection 

CNN (VGG-16) Sensitivity = 0.96 

Specificity = 0.79 

J. Short et al. Lung: auto 

mated B-line counting 

Auto B-lines (GE Healthcare Venue 
Go) 

Correlation with expert interpretation: 

ICC = 0.794 (95% CI 0.736-0.840) 

Table 1 (con’t…). Discussed studies on the application of machine learning in ultrasound. Due to differences in study 
design, inter-study performance cannot be compared. Refer to original studies for details of study design. Acronyms: 
ED - end diastolic; ES - end systolic; RNN - recurrent neural network; LSTM - long short-term memory network; CNN - 
convolutional neural network; DSC - Dice score coefficient; EF - ejection fraction; LV - left ventricle; FASP - fetal 
abdominal standard plane; FFASP - fetal face axial standard plane; FFVSP - fetal four-chamber view standard plane; 
CKD - chronic kidney disease; DVT - deep venous thrombosis; ICC - interclass correlation coefficient; CI - confidence 
interval.  
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Kuo et al. [38,39]. 

Fetal measurement is another widely used application in 

POCUS. In the emergency room, rapid and accurate 

assessment of fetal parameters such as crown-rump 

length and classification of the abdominal standard plane, 

are important to avoid misdiagnosis and guide 

appropriate interventions [40]. Several groups have 

developed deep learning models for fetal exams. In a two

-step process, Jang et al. first developed a CNN to 

identify the abdominal standard plane and then trained a 

model to segment and estimate fetal abdominal 

circumference from fetal ultrasound images [41,42]. Gao 

et al.  developed a CNN that categorized abdominal 

freehand sweep images into four categories: fetal 

abdomen, heart, skull, or other. They trained two models, 

one using only obstetric ultrasound images and a second 

that employed transfer learning, using a pretrained 

ImageNet model and fine-tuning it on obstetric ultrasound 

images. Transfer learning improved  classification 

accuracy in all categories of fetal anatomical structures 

compared to their non-transfer learning approach [43]. 

The final clinical application of ML for POCUS discussed 

here is deep-venous thrombosis (DVT) screening. 

POCUS is an important tool for physicians treating 

potential DVT patients within the emergency room as well 

as in the inpatient setting. POCUS can guide clinical 

decision-making for patients at risk for, or suspected of 

having, a pulmonary embolism [44]. During the exam, the 

deep veins of the lower extremity are compressed along 

their course and areas of low compressibility suggest 

potential thrombus formation at that location. Recently, 

Nafee et al. sought to evaluate the performance of two 

ML models they developed versus a validated DVT 

scoring system in acutely ill patients. Their study 

demonstrated that both of their ML apporaches 

outperformed the validated manual scoring system in 

predicting venous thromboembolism (VTE)  (c-statistic: 

ML methods = 0.69 and 0.68, manual scoring system = 

0.59) [45].  

Other models such as that by Tanno et al. have aimed to 

increase classification accuracy of DVT scans by 

automatically detecting the extent of vein compressibility 

in DVT scans [46]. Researchers proposed a dual-task 

CNN to predict vein compressibility with an F1 score of 

90% when evaluated on 1150 5–10 s compression image 

sequences from 115 healthy volunteers resulting in a 

data set size of approximately 200k labelled images. As 

further development continues, these advancements may 

greatly increase the accessibility and clinical usage of this 

already impactful diagnostic study. 

Commercially Available products utilizing ML 

Of note, companies such as Mindray and GE have 

utilized ML and DL based algorithms in commercially 

available echocardiography products to perform 

automated tasks such as automated EF calculation, LV 

border identification, and chamber length calculations 

(Mindray North America, Mahwah NJ; GE Healthcare, 

Chicago IL). Newer devices entering the market are now 

often branded with “AI enabled” capabilities, such as left 

ventricular outflow tract (LVOT) plane identification and 

Doppler placement (see: GE Venue and Mindray). These 

tools are beginning to make their way into newer POCUS 

devices as well. Companies like Butterfly Network, Bay 

Labs, and Clarius have released POCUS probes that 

contain AI-enabled cardiac algorithms for automated EF 

estimation as well as cardiac chamber segmentation (i.e. 

Butterfly Network’s IQ probe).  

There is also commercial interest and new adoption of 

automated B-line counting algorithms within POCUS. 

Notably, GE has incorporated an auto B-line counter 

within their new suite of GE Venue Go POCUS devices. 

Their model uses computer vision and DL approaches, 

including a proprietary CNN, to automatically detect and 

count B-lines in lung ultrasound scans. A study by J. 

Short et al. found that automatic counting of lung B-lines 

was consistent with visual counting, as performed by 

experts in the field and both systems showed a high intra- 

and interobserver reliability [47]. Other device 

manufacturers such as Mindray have similarly developed 

their own automatic B-line counting algorithms using a 

mixture of traditional computer vision systems and DL 

approaches. 

Interestingly, the clinical ML software market has grown 

to now support firms whose business models almost 

entirely center around developing novel algorithms for 

clinical use intended for device manufacturers. DiA 

Imaging Analysis Ltd. is one notable firm in this category. 

They partner with ultrasound device manufacturers and 

large academic medical centers to develop AI-enabled 

solutions for ultrasound. Currently, as mentioned 

previously, much of the development for these solutions 

has focused on POC echocardiography, but additional 

interest has been shown in the development of AI-

enabled abdominal algorithms as well.  The company has 

additionally partnered with GE to offer the first AI-based 

solution for automated EF analysis on handheld 

ultrasound through the “LVivo EF” on GE’s Vscan Extend, 

which has been shown to yield similar EF values as 3D 

echocardiography [48]. As interest in DL applications 

within POCUS continues to blossom, it is likely that 

additional firms similar to DiA will emerge, outsourcing 

much of the ML innovation once developed in-house by 

ultrasound device manufacturers to specialized image 

analysis companies. 

Future Steps & Upcoming Advancements 
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The dynamic and real-time nature of POCUS provides a 

major advantage over other imaging modalities such as 

CT and MRI. Yet, this also represents a major challenge 

for researchers developing ML algorithms for POCUS. A 

trained sonographer will rarely examine a single image 

frame to make a clinical assessment of a patient; rather, 

data from multiple frames are assessed simultaneously 

together to inform the clinician of a proper course of 

action. Within the broader context of deep learning, a 

known issue is that most state-of-the-art architectures are 

optimized for single image classification and that 

impressive performance does not necessarily generalize 

to video-type data, such as POCUS.  

A variety of methods have been applied to try to 

generalize methods used for image classification to video 

classification. Perhaps the most direct implementation of 

this has been the use of 3D CNNs (as opposed to the 2D 

ones used for single image classification). For example, 

Hara et al. extended the state-of-the-art ResNet 

architecture to 3D by adjusting the original 3x3 kernels to 

3x3x3 [49]. However, introducing 3D convolutions leads 

to significantly increased computational overhead and 

increases network complexity, hence yielding longer 

training times and increased likelihood of overfitting 

models [50]. Progress on this front has been made by 

mixing 2D and 3D convolutions and using R(2+1)D 

convolutions (wherein 3D convolutions are factorized into 

spatial and temporal convolutions) [51,52]. Such 

architectures show great promise for application in 

POCUS, but the complexity of such networks leads to 

requirements for large amounts of data, which are often 

unavailable. 

Another approach, first proposed by Simonyan et al., 

involves processing video data as two separate streams: 

a spatial and temporal stream [53]. The spatial stream is 

designed to classify still video frames and typically 

consists of a 3D CNN or a conventional 2D CNN which 

sequentially processes frames. The temporal stream is 

meant to capture inter-frame changes and is created by 

combining optical flow data from several frames. 

Generally, these two-stream CNNs outperform both 

conventional 2D and 3D CNNs for video classification. 

Howard et al. applied such a two-stream CNN to 

automatically determine the scan view from 

echocardiography data. Such two-stream CNNs can 

potentially lower the computational overhead for POCUS 

analysis and classification [54].  

A major area of interest in our group and others has been 

the application of attention-gated networks to DL 

ultrasound. Attention mechanisms attempt to better mimic 

human perception by using surrounding local information 

in the data to contextualize a specific target. Attention 

models have been heavily used for natural language 

processing (NLP) tasks, where integrating information 

from potentially distant parts of a sentence is necessary 

to accurately translate a given word [55]. Here, 

transformer block architectures have been used with 

success [56]. Attention mechanisms were first used by 

Mnih et al. in a recurrent neural network (RNN) for image 

classification [57], but has since been applied to a variety 

of ultrasound image analysis including in fetal ultrasound 

scan plane detection [58]. Attention models could prove 

useful in a variety of POCUS models including B-line 

score (BLS) determination from lung ultrasound. Accurate 

determination of BLS often depends on assessing 

adjacent frames rather than relying on a single frame. 

Attention models have the additional advantage of giving 

insight into which video time frames and what image 

content the algorithm is attending to for deriving its 

classification, thereby potentially improving 

interpretability. 

Additionally, researchers have developed alternative 

approaches to identifying optimal network architectures 

through neural architecture search. Generally, network 

architectures are designed by data scientists using some 

a priori hypothesis of underlying data structure. This time-

consuming task leaves the entirety of alternative network 

architectures largely unexplored. To address this issue, 

scientists and Google’s AI division developed a neural 

architecture search, where machine learning techniques 

are used to optimize the network architecture while 

training the network itself [59,60]. This approach has 

been successful for improving the architecture of 

conventional (image-classification) CNNs and is now 

being applied to video CNNs. Piergiovanni et al. designed 

EvaNet, wherein they used an evolutionary algorithm to 

explore different layer types and combinations that could 

optimally represent the relationships between spatial and 

temporal aspects of videos [61]. Ryoo et al. designed 

AssembleNet, a network composed of multiple sub-

network blocks that interprets input videos as multiple 

input streams sampled at different levels of temporal 

resolution [62]. AssembleNet is able to optimize the 

connectivity between both the sub-network blocks as well 

as the connectivity between the multiple variable-

resolution streams. Such techniques are already being 

applied for medical image analysis. For example, Yan et 

al. developed MS-NAS (Multi-Scale Neural Architecture 

Search for Medical Image Segmentation) and applied it to 

outperform several state-of-the-art algorithms used for 

segmentation of CT images [63]. Given the temporal 

dynamics and acquisition complexities of ultrasound data, 

a priori hypotheses are unlikely to arrive at efficient 

network structures. Neural architecture search 

techniques, such as MS-NAS, will permit data-driven 

approaches to developing optimized algorithms that can 

address the broad range of ultrasound image processing 
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problems faced by clinicians. 

Conclusion 

In conclusion, we have introduced the concepts of 

machine learning and deep learning, reviewed current 

applications of these powerful tools in POCUS, discussed 

available commercial products utilizing machine learning, 

and explored promising future directions for machine 

learning on POCUS research. The utility of POCUS is 

largely derived from its capability for real-time inference 

and portability. While these factors present initial hurdles 

to the early adoption of machine learning in POCUS, they 

may also serve as the modalities greatest assets. 

Machine learning demands increasingly large datasets, 

sometimes needing millions of training images. POCUS is 

uniquely positioned to provide large datasets of video 

frames that could potentially be used for real-time 

algorithm training. Additionally, the portability of POCUS 

has the potential to provide a platform for rolling out 

machine learning applications in medical imaging to the 

entire world. 
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