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Abstract

Metabolite biosensors based on metabolite-responsive transcription factors are key synthetic 

biology components for sensing and precisely controlling cellular metabolism. Biosensors are 

often designed under laboratory conditions but are deployed in applications where cellular 

growth rate differs drastically from its initial characterization. Here we asked how growth rate 

impacts the minimum and maximum biosensor outputs and the dynamic range, which are key 

metrics of biosensor performance. Using LacI, TetR, and FadR-based biosensors in Escherichia 
coli as models, we find that the dynamic range of different biosensors have different growth 

rate dependencies. We developed a kinetic model to explore how tuning biosensor parameters 

impact the dynamic range growth rate dependence. Our modeling and experimental results 

revealed that the effects to dynamic range and its growth rate dependence are often coupled, 

and the metabolite transport mechanisms shape the dynamic range-growth rate response. This 

work provides systematic understanding on biosensor’s performance under different growth rates, 

which will be useful for predicting biosensor’s behavior in broad synthetic biology and metabolic 

engineering applications.
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Introduction

Metabolite-responsive transcription factor (MRTF)-based biosensors have broad applications 

in synthetic biology and metabolic engineering, ranging from metabolic detection1–4 

screening and selecting for high-metabolite-producing strains5–7, dynamic metabolic 

control8–13, to strain functional evolution14,15. Nature has evolved various MRTFs that can 

be harnessed to create biosensors for a wide range of metabolites16–20. Protein engineering 

and directed evolution of MRTF have further expanded the range of compounds which can 

be detected21–23. Additionally, promoters regulated by MRTFs can be engineered to tune 

sensitivity and dynamic range24,25, enabling precise control of biosensor’s performance26,27. 

These biosensors can be further layered to create complex circuits28,29, which require a 

well-defined performance for correct operation30.

Most MRTF-based biosensors were designed and tested in well-defined laboratory 

conditions using rich growth media. These biosensors were often characterized using 

fluorescent proteins whose expression has little burden to growth and other cellular 

processes. However, during applications, biosensors are often deployed in different growth 

environments and used to control burdensome genes that affect cell growth rate. Changes 

in cell growth rate has been shown to impact several cellular parameters including plasmid 

copy numbers31, ribosome concentration and mass fraction32, transcription factor abundance 

and concentration33, gene expression rate34,35, and average cellular volume36,37. Biosensor 

operation relies on these shared cellular resources, so changes in cell growth rate will 

unavoidably affect the expression of MRTF and its regulated genes. Additionally, cell 

growth dilutes all molecular components as the volume of the cell increases (Fig. 1A), 

so faster growth may lead to a net reduction in the concentration of molecules needed for 

biosensor operation34,38. Thus, when cell growth rate changes, it may significantly alter a 

sensor’s behavior, leading to undesirable performance. For example, in two-stage dynamic 

metabolic control, engineered microbial cells need to shift from a high-growth phase to a 

low-growth production phase12. Biosensors used in two-stage dynamic metabolic control 

have to be optimized to perform under both growth conditions39,40.

Many MRTF-based biosensors use a repressed-repressor architecture41,42. In this 

architecture, the MRTF represses gene expression from its cognate promoter in the absence 

of its target metabolite, but its expression repression activity is antagonized by the presence 

of a specific intracellular metabolite (Fig. 1A). The output of a biosensor is the steady-state 

expression level of the controlled gene at a particular target metabolite concentration (Fig. 

1B). A sensor’s behavior can be characterized by its minimum output in the absence of 

target metabolite, its maximum output under a saturating concentration of extracellular 

target metabolite, and its dynamic range (DR) which is defined as the ratio of the maximal 

increase in biosensor output relative to the its minimum output (Fig. 1B)26. In real 

applications, it is often desirable to keep a low minimum output to prevent unwanted gene 

expression in the absence of target metabolite43, a high maximum output to reach high 

signal-to-noise ratios44, and a large DR. Previous studies have shown how TF-repressed 

gene expression varies under different cell growth rates34, yet, little is known about 

how growth rate affects a biosensor’s behavior. Experimentally characterizing biosensor’s 

behavior under a wide range of growth rates, for example by growing the biosensor in 
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medium with different nutrient conditions both with and without the target metabolite, is 

labor intensive. Thus, it would be beneficial to develop quantitative models to understand 

how biosensor operation is impacted by growth rate to avoid undesirable sensor performance 

due to the change of growth rate.

In this work, we use three repressed-repressor type of biosensors to explore the effect of 

growth rate to sensor behavior. Interestingly, we found that while all sensors displayed 

both decreasing minimum and maximum outputs, the DR could have either a positive or 

negative growth rate dependence. By integrating experimental data with kinetic modeling, 

we provide a mathematical framework to reveal biosensor’s behavior under changing growth 

conditions. We show how different parameters of the biosensor promoter and TF expression 

can lead to either a positive or negative dynamic range-growth rate (DR-μ) dependence. 

Additionally, our results show how growth rate-dependent membrane transport mechanisms 

of the target metabolite shape the overall DR-μ dependence. Our model and experimental 

results demonstrate a coupling between DR and sensitivity of DR to changes in growth 

rate for most biosensor designs, which implies a trade-off between high DR and low 

sensitivity objectives. Altogether our work provides a framework for tuning or predicting 

a biosensor’s behavior under varying growth conditions, which will be useful for a wide 

range of biosensor applications in synthetic biology.

Results

Growth Rate Dependence of Biosensor Dynamic Range

To study the relationship between sensor DR and cell growth rate of MRTF-based 

biosensors, we first tested three TF-promoter systems with a repressed-repressor 

architecture, TetR-Ptet (Fig. 2A), LacI-PLacUV5
42 (Fig. 2B), and FadR-PAR (Fig. 

2C)45–47 that sense extracellular chemicals anhydrotetracycline (aTc), isopropyl β-D-1-

thiogalactopyranoside (IPTG), and fatty acid (FA), respectively. All these three sensors 

have been commonly used for various applications42,45. For each biosensor, we used a red 

fluorescent protein (RFP) as a reporter. Each biosensor construct was cloned into plasmids 

with the stringently regulated SC101 origin of replication to reduce copy number variation 

due to changes in growth rate31,48. Additionally, for the FA-sensor, native regulations of the 

fadR and fadD genes were removed, and fadE was knocked-out to prevent FA from being 

used as a carbon source for growth through β-oxidation47. Thus, all three target metabolites 

are primarily non-metabolizable activators of the biosensor output gene.

To manipulate cellular growth rate, biosensor cells were grown in minimal medium 

supplemented with different commonly-used carbon sources49 including acetate, pyruvate, 

glycerol, sorbitol, succinate, glycerol with amino acids, and xylose. These differing media 

conditions supported a range of growth rates from 0.24–0.51 h−1 (see Supplemental Table 

S3 for a summary of media conditions and growth rates). To quantify the effect of growth 

rate on DR, sensor minimum and maximum outputs were measured under exponential 

growth phase under different media conditions either without or with high concentrations 

of the target metabolites, respectively. The target metabolite concentrations used for aTc 

(1000 nM)42, IPTG (1 mM)26, and FA (4 mM)45 were previously shown to saturate the 

output of these biosensors. Our results show that both minimum and maximum outputs 
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decreased with increasing growth rate for all three sensors (Fig. 2D, 2E, 2F). At a saturated 

target metabolite concentration (i.e. maximum output) a sensor’s promoter is equivalent to 

a strong constitutive promoter, while in the absence of the target metabolite (i.e. minimum 

output), a sensor’s promoter is equivalent to a repressor repressed promoter. Previous studies 

have shown that protein concentration under the control of either a constitutive promoter 

or a repressor controlled promoter decreases with increasing growth rates34. Thus, our 

observations are consistent with previous studies. Additionally, we observe that cell growth 

rates in maximum output are always lower than in minimum output (Fig. 2D, 2E, 2F), 

suggesting growth burden from activation of these sensors, even when they were only used 

to express an RFP reporter protein. These observations clearly demonstrated the influence 

of cell growth rate to sensor output as well as the effect of sensor’s function to cell growth, 

which cannot be ignored during biotechnology applications50,51.

We next calculated the DR of each biosensor under different growth rates. Interestingly, 

the aTc and IPTG sensors displayed an increasing DR with increasing growth rate (Fig. 

2G, 2H), while the FA sensor showed a decreased DR with increasing growth rate. Our 

results showed that for aTc and IPTG sensors, although both the minimum and maximum 

outputs decreased with growth rate, the minimum output decreased more rapidly than the 

maximum output, thus leading to a relative increase in the ratio of the two, as quantified 

by the DR. In contrast, the FA strain has a negative DR trend with increasing growth 

rate (Fig. 2I) because the maximum output decreased more rapidly than the minimum 

output for this system. One major difference between the aTc/IPTG biosensors, and the FA 

biosensors is that FA transport requires the protein FadD to enter the intracellular space, 

whereas aTc and IPTG can diffuse into the cell (Fig. 2A, 2B, 2C). The concentration of 

these transport proteins is growth-dependent, particularly since FadD is expressed from a 

constitutive promoter34, which may contribute to the rapid decline in maximum biosensor 

output at higher growth rates. Thus, these results suggest that although all three biosensors 

have the same general architecture, their DR-μ dependency are different and may be a 

tunable property of biosensors.

To gain further insights into the different DR-μ dependencies, we developed a kinetic 

model to describe the intracellular concentration of the biosensor’s output protein (G) 

and the intracellular concentrations of TF repressor (R) and target metabolite (MIn) at 

different growth rates. The volumetric production rate of each species is balanced by 

dilution due to cellular volume expansion during cell growth. Additionally, transport of the 

target metabolite across cell membrane via either passive transport by diffusion or enzyme-

facilitated active transport were also considered. For active transport, the concentration of 

protein transporters can also be affected by dilution due to cell growth. For a detailed 

description of the model, see Supplemental Note 1.1.

In the absence of the target metabolite, an analytical solution can be derived to describe the 

minimum output (Gmin) at steady state (see Supplemental Note 1.2 for details):
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Gmin = 1
μ bG + aG

1 + bR
KGμ

(1)

where μ represents cell growth rate. Parameters bG, aG, and KG are intrinsic to the biosensor 

and describe the basal expression level, the strength of activated expression, and the 

MRTF-promoter dissociation constant, respectively (Fig. 1B). bR describes the constitutive 

expression rate of MRTF. While the production rate of the MRTF is constant with growth, 

the total concentration of MRTF (R = bR / μ) is decreasing due to dilution by cell growth 

(see Supplemental Note 1.1 and 1.2 for details). Because both the biosensor output protein 

(G) and its repressor (R) are being diluted by growth, we calculate the dependence of Gmin 

on μ to understand the combined effect:

d
dμ Gmin = −1

μ2 bG + aG

1 + bR
KGμ

2 (2)

The dependence of Gmin on μ is negative for all parameter values. Thus, Gmin always 

decreases with growth rate, and is consistent with our experimental observation for all three 

biosensors (Fig. 2D, 2E, 2F). The dependence of maximum output and DR on growth rate 

depend on sensor parameters and are not monotonic. A biosensor’s DR can be described as:

DR = aGbR
KGμ

Min

aG + bG + bGbR
KGμ KR + MIn + bRKR

KGμ
(3)

where KR represents the dissociation constant between the target metabolite and MRTF. 

Finally, Min describes the intracellular target metabolite concentration which can also be 

a function of the growth rate, depending on the target metabolite’s transport kinetics. To 

understand how the model parameters affect the DR-μ dependency, we next calculate the 

derivative of DR with respect to growth rate μ (dDR/dμ):

d
dμ DR

= aGbR
KG

Min
bGKRbR2

KG2μ2 − aG + bG KR + Min + KR
dMin

dμ aG + bG + bGbR
KGμ μ + bR

KG

μ2 aG + bG + bGbR
KGμ

2
KR + Min + bRKR

KGμ
2

(4)

Our modeling result suggests that depending on the parameter values of a biosensor and its 

intracellular target metabolite concentration, dDR/dμ can be either positive (increasing with 

growth rate) or negative (decreasing with growth rate), depending on the sign of S:
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S = Min
bGKRbR2

KG2μ2 − aG + bG KR + Min

+ KR
dMin

dμ aG + bG + bGbR
KGμ μ + bR

KG

(5)

Tuning DR-μ Dependence Through TF Expression

To understand how sensor parameters affect the growth dependence of Gmin, Gmax, and of 

the biosensor’s DR (i.e. dDR/dμ), we first targeted to the aTc-inducible sensor and tuned 

the production rate of the MRTF repressor TetR (i.e. bR). According to our model, both 

Gmin and Gmax should decrease with increasing bR at a fixed growth rate, regardless of 

other parameters (see Equation (1) and (S12)). Experimentally, we placed TetR under the 

control of a constitutive promoter and a library of RBS with different strengths to vary 

the TetR production rate (Fig. 3A), while not changing the promoter or RBS sequence of 

the biosensor output gene. When growing the library of cells at a fixed growth rate (in 

glycerol minimal medium), both Gmin and Gmaxdecreased with increasing TetR levels for 

3.7- and 1.2-fold change across the library, respectively (Fig. 3B, 3C), which matches our 

analytical model predictions (Fig. 3E, 3F). Our model also shows that Gmin is sensitive 

to changes in TetR production rate at low levels of TetR, while it becomes less sensitive 

at higher TetR levels (Fig. 3E), which matches our observation of high sensitivity in 

Gmin to TetR expression when TetR is low (Fig. 3B). We further observe that under our 

experimental parameter regime, Gmin is more sensitive to changes in TetR production rate 

than Gmax (Fig. 3B, 3C), thus affecting DR mostly by lowering the leaky expression level 

and leading to an increasing DR (Fig. 3D), consistent with model prediction (Fig. 3G). 

Additionally, we fit our model to the experimentally measured TetR expression, Gmin and 

Gmax (see Supplemental Note 2.2 for details). From the fitted model, we calculated the DR 

and observed a good agreement between the model and the observed DR-TetR expression 

trend (R2 = 0.49). Overall, these experimental observations are qualitatively consistent with 

numerical simulations with increasing bR values and with model fitting, thus validating our 

model.

We next measured how Gmin, Gmax, and DR change with growth rate under different TetR 

production rate (Fig. 4A). According to Equation (2), as bR increases, the dependence 

of Gmin on μ is expected to be less negative. Experimentally, we indeed observed a less 

negative slope on the Gmin- μ plot with a higher TetR expression (Fig. 4B). This result 

indicates that when TetR production is insufficient (low TetR production), leaky expression 

becomes worse at lower growth rates, while a high TetR production rate can make the 

sensor less leaky across a wide growth rate range. The dependence of Gmax on growth 

rate was negative and had similar slope for low and medium TetR production rates and a 

reduced slope at high TetR production rates (Fig. 4C). This result indicates that at high 

TetR expression, maximal induction may not be achieved at lower growth rates. Finally, 

Equation (5) predicts that lowering the TetR production rate bR should reduce the DR-μ 
dependence, changing it towards a negative regime. Our experimental results indeed showed 

a less positive dDR/dμ value at a lower TetR production rate (Fig. 4D). Overall, our result 

Hartline and Zhang Page 6

ACS Synth Biol. Author manuscript; available in PMC 2023 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



showed that for the aTc biosensor, a high TetR production rate provides high DR, however at 

a cost of higher growth dependence.

Metabolite Transport Affects DR-μ Dependence

Our experimental results on the aTc sensor showed that DR increased with both growth 

rate and TetR production rate. We next examine which parameter space can simultaneously 

support these trends and whether such trends can inform us on the parameters of the target 

metabolite transport mechanism. An extracellular target metabolite can enter or exit a cell 

via either passive transport (metabolite concentration gradient related) or protein-facilitated 

active transport (growth rate related), or a combination of both mechanisms. If passive 

transport is the only mechanism, the intracellular target metabolite concentration is mostly 

determined by extracellular target metabolite concentration and has little influence from 

growth rate. In this case, our mathematical analysis indicates that sensor DR cannot increase 

with both growth rate and MRTF production rate (see Supplemental Note 1.3). On the 

other hand, DR can increase with growth rate and MRTF production rate if intracellular 

aTc concentrations are also increasing with growth rate (see Supplemental Note 1.3). One 

way this could occur is when aTc membrane transport involves proteins whose steady 

state concentration is regulated by growth rate via cell dilution. Indeed, previous studies 

demonstrated that aTc can be exported by the AcrAB-TolC multi-drug efflux pump52, and 

demonstrate that the expression of acrAB is elevated at lower growth rates53. Together, 

this may lead to reduced aTc concentrations at low growth rates due to elevated efflux. To 

elucidate this mechanism, we incorporated both passive transport and active export to our 

model (Fig. 5A) and explored the parameter space that provides positive dependence of DR 

on both growth rate and TetR production rate. When active export is incorporated in the 

model, intracellular target metabolite becomes growth-dependent, which causes the gradient-

dependent passive export to also be growth-dependent (Fig. S1A). Both passive and active 

transport rates were varied over 4-orders of magnitude to explore a large parameter space, 

starting from parameter settings where the target metabolite’s passive and active export 

rates are equal and considering different target metabolite concentration regimes (Min » 

KM,ex, Min = KM,ex, or Min « KM,ex, Fig. S1A). Our parameter space covers three modes 

of target metabolite export, where metabolite export is primarily through the active pathway, 

the passive pathway, or a mix of both active and passive pathways (Fig 5B). Modeling 

results show that sensor DR increased as passive transport rate increased and active export 

decreased (Fig. 5C). This is because intracellular target metabolite concentration is high 

when the passive transport rate is higher than the active export rate (Fig. S1B). Interestingly, 

when active export rate is similar to or higher than passive transport rate, DR is more likely 

to positively correlate with growth (Fig. 5D). And when active export rate is lower than 

passive transport rate, DR is more likely to positively correlate with TetR production rate 

(Fig. 5E). As a result, DR can positively correlate with both cell growth and TetR production 

rate only when active export rate is similar to passive import (Fig. 5F). Our modeling 

results further show that dMin/dμ strongly increases when active export rate is similar to 

passive import (Fig. S1C), which is a necessary condition to observe simultaneous positive 

correlation for DR with cell growth and TetR production rate (see Supplemental Note 1.3). 

Thus, the aTc biosensor used in our experiments likely fall into this parameter range.
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In contrast to the aTc sensor, many chemicals cannot diffuse across cell membrane passively, 

but solely rely to protein transporters and enzyme conversion to turn on the sensor. For 

example, the FA sensor requires a membrane-associated acyl-CoA synthase to convert 

extracellular FA into intracellular acyl-CoA, which binds to FadR, the MRTF, to turn on 

reporter expression. Thus, to understand the FA sensor, we modified our model to include 

both enzyme-based import and export mechanisms without passive transport (Fig. 6A). 

Similar to the aTc model, DR increases when the active import rate is higher than export 

rate (Fig. 6B), leading to higher intracellular target metabolite (acyl-CoA) concentration 

(Fig. 6C). In contrast to aTc-type of sensors, the DR of FA-type of sensors has a negative 

dependence on cell growth when import rate is higher than export rate, which should 

occur under most cases since faster target metabolite import is necessary for high biosensor 

induction (Fig. 6D). Thus, these modeling results are consistent with our experimental 

results. Additionally, when import is higher than export, the intracellular target metabolite 

growth dependence (dMin/dμ) is strongly negative (Fig. 6E) indicating a large potential drop 

in the maximum biosensor output at higher growth rates, which is also consistent with 

experiments.

DR and DR-μ Are Sensitive to Similar Parameters

Thus far, our modeling and experimental results have shown good qualitative agreement 

and have predicted the effects of bR and transport mechanisms on both DR and DR-μ 
dependence. In order to gain a deeper understanding of the other parameters effects on DR 

and DR-μ dependence, we conducted a global parameter sensitivity analysis, for a transport 

mechanism with both passive and active transport (Supplemental Note 3). Our results show 

that both the DR (Fig. S2A) and dDR/dμ (Fig. S2B) are most sensitive to parameters 

intrinsic to the biosensor (aG, bG, and KG), the MRTF expression level, and parameters in 

MRTF-metabolite interaction (bR, ksr, ksf). The similarity in parameter sets which strongly 

affect DR and dDR/dμ suggest both are tightly coupled. These results are consistent with our 

observation of the TetR system where increasing TetR production rate tuned both the DR 

and the DR-μ dependence in the same direction.

Discussion

Change in cellular growth rate often affects the performance of biosensors and cause 

problems when using biosensors in a different nutrient or environment54. In this work, 

we characterized the growth-rate dependent behavior of three commonly-used MRTF-based 

biosensors through changing the growth medium of the biosensors. Our results show that 

DR of the aTc-TetR and IPTG-LacI sensors have positive correlations with cell growth rate. 

In industrial-scale bioreactor settings where growth rates are typically lower than that in rich 

medium of lab settings, these sensors will have lower DRs and leakier expression before 

induction (Fig. 2D, 2E)55,56. Thus, these sensors may not be suitable for controlling toxic 

genes or burdensome pathways whose leaky expression can cause undesirable mutations to 

deactivate the strain’s function. In contrast, DR of the FA-FadR biosensor has a negative 

correlation with cell growth rates. A higher DR at lower growth rate can benefit the sensor’s 

application, although its leaky expression was also high at lower growth rate (Fig. 2F).
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In this work we used a simplified kinetic model for understanding the DR-μ dependency. 

The core modeling approach expands upon previous phenomenological models which were 

successful in capturing design constraints between various tunable molecular interactions 

and biosensor dose-response parameters26. We extended these phenological models with 

kinetic interactions between TF and intracellular target metabolite, as well as metabolite 

transport, which have been shown to capture key dynamic features of bacterial response 

to external metabolites47. Many of the model parameters are related to key biological 

processes that can be tuned experimentally to optimize a sensor’s performance, such as the 

TF-operator interactions57,58 and the presence of exporters59,60. Our model captures new 

design constraints for tuning DR across growth rates. For example, while the DR can be 

increased by reducing the minimum output through a stronger binding of the MRTF to 

the biosensor promoter, our model predicts this can result in a reduction of the maximum 

output at some growth rates, because there is a limit to how much the sensor promoter 

can be activated by the intracellular target metabolite. Thus, once model parameters are 

characterized at a single growth rate, the model can be used to predict the change in DR 

under different medium compositions by measuring the growth rate, allowing engineers to 

check for a potential loss of sensor performance without the need for lengthy experimental 

re-characterization of the biosensor at different growth rates or under different growth 

mediums. Additionally, while our results focus on biosensor’s with a repressed-repressor 

architecture, previous phenomenological models26 can be similarly extended following our 

procedures to identify growth-dependent design constraints for other biosensor architectures, 

such as the commonly used activated-activator architecture.

Importantly, our model also highlights some fundamental couplings in biosensor’s 

performance across varying growth rates, which are important when engineering a MRTF-

based sensor. For both types of sensors explored in this study, strategies in increasing the DR 

always led to stronger growth rate dependence of DR (regardless of whether the dependence 

is positive or negative), thus making the DR more sensitive to changes in growth (Fig. 4D, 

Fig. 5, Fig. 6). Therefore, there is a trade-off between high DR and low DR-μ sensitivity, 

which is important in applications when the value of the DR itself is critical. As an example, 

MRTF-based biosensors used for high-throughput screening usually require high DRs to 

reduce the identification of false-positive and false-negative strains25,61. However, a sensor 

with too high of a DR also has high DR-μ sensitivity, which will lead to a high false-hit 

rate when screening under different conditions. Thus, reducing DR in exchange for a less 

sensitive DR-μ dependence may present a better strategy in sensor design.

Additionally, our model suggests that transport of the target metabolite plays important 

roles in the growth rate dependence of DR. Different biosensors with similar underlying 

parameters can show different DR-μ dependencies. For biosensors where the target 

metabolite’s transport is controlled by passive diffusion and active export (e.g. aTc), 

there is a narrow parameter region where increasing TF expression can improve DR 

while also maintaining a positive DR-μ dependence (Fig. 5E). In contrast, for biosensors 

where intracellular target metabolite levels are controlled solely by enzymes (e.g. FA), 

the metabolite-μ dependence is negative over a large parameters space, so DR cannot be 

improved by increasing TF levels without leading to a more negative DR-μ dependence 
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under these conditions. Thus, our model highlights metabolite transport or production as an 

important consideration for understanding the impact of growth on a sensor’s DR.

MRTF-based biosensors are key components of synthetic biology systems and enable a 

diverse range of sensing applications. These applications require sensors with robust and 

predictable operation under a wide range of nutrient conditions and growth environments. 

Our work has uncovered new design considerations and trade-offs for metabolite biosensors 

under changing growth conditions, which will be found useful for a wide range of metabolic 

engineering and synthetic biology applications.

Methods

Materials.

Phusion polymerase, restriction enzymes, and T4 ligase were purchased from Thermo Fisher 

Scientific (Waltham, MA, U.S.A.). DNA primers were synthesized by Integrated DNA 

Technologies (Coralville, IA, U.S.A.). DNA plasmid miniprep kits were purchased from 

iNtRON Biotechnology (Burlington, MA, U.S.A). All other reagents were purchased from 

Sigma-Aldrich (St. Louis, MO, U.S.A.)

Plasmids and Strains.

E. coli MDS42pdu62 was used to clone and isolate plasmids. E. coli MG1655 was used 

to host biosensor plasmids. All plasmids were constructed through PCR amplification and 

standard Golden-Gate DNA assembly techniques. Plasmids were transformed into electro-

competent strains by electroporation and selected on LB agar plates with corresponding 

antibiotics (ampicillin, 100 mg/L; kanamycin, 50 mg/L; streptomycin 100 mg/L). Plasmids 

(Table S4), strains (Table S5), and sequences of constructed plasmids are given in the 

supplementary information (Supplemental Note 5).

FA biosensor construction.

The FA-FadR biosensor was created in E. coli strain MG1655 by modifying a previous 

FA sensor47. These modifications include the deletion of fadE, replacement of fadD’s 

native promoter with a constitutive promoter Ppro4 to deactivate the positive feedback 

loop in FA transport47, and deletion of the negative autoregulation of FadR63. These 

genome modifications were performed using CRISPR-Cas9 following previous methods64,65 

using pTargetF plasmids as listed in Table S4. The sequence of Ppro4 was taken from 

a library of insulated constitutive promoters66 and constructed from PCR of overlapping 

primers. Deletion of the negative autoregulation of FadR was done by replacing fadR’s 

native promoter with the constitutive PfadRm1 (Supplemental Note 5.1). Additionally, the 

constitutively controlled fadR was cloned to the pA6a BglBrick plasmid, resulting in 

plasmid pAfadRm1a-fadR (Supplemental Note 5.1 for full sequence).

TetR RBS library construction.

A library of plasmids with varying TetR RBS strength (namely pSk-PTet-rfp-PJ23110-

RBSLibrary-tetR) was constructed by introducing a terminator, followed by the constitutive 

Bba_J23110 promoter, followed by an RBS 3’ of pTetR promoter and 5’ of the TetR 

Hartline and Zhang Page 10

ACS Synth Biol. Author manuscript; available in PMC 2023 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



coding sequence on a pS2k-rfp plasmid. Terminator and promoter were constructed from 

overlapping primers. The RBS library was then introduced by primers with degenerate 

nucleotide sequences. To evaluate the RBS strength, we constructed another plasmid 

library, namely pSk-PJ23110-RBSLibrary-rfp, by replacing the tetR gene of pSk-PJ23110-

RBSLibrary-tetR with rfp. This library was constructed by individually amplifying the 

promoter, RBS sequence and first 30 codons of the TetR coding sequence from aTc-

biosensor-TetR-RBS-library members which had characterized minimum and maximum 

outputs. These sequences were then individually cloned 5’ of rfp and introduced to a 

BglBrick backbone with SC101 origin and kanamycin resistance. The final constructed 

sequences are shown in Supplemental Note 5.1. A list of the tested RBS sequences is given 

in Supplemental Table S6.

Cell Growth and Induction Conditions.

Cells were cultivated in different growth media following previous protocols67,68. 

Specifically, single colonies from an overnight Luria-Bertani (LB) plate were cultivated for 

3–5 hours in LB medium (225 rpm, 37 °C) supplemented with appropriate antibiotic. Cells 

were then washed twice by centrifugation (4500 rcf, 3 minutes) into M9 minimal medium 

supplemented with 1% (w/v) glycerol and diluted to OD600 ~0.04 and grown overnight. 

Overnight cultures were again washed in M9 media without supplemented carbon. To 

achieve different growth rates, washed cells were transferred to M9 media supplemented 

with the following nutrient sources: 75 mM sodium acetate, 20 mM sodium pyruvate, 1% 

Glycerol, 20 mM sorbitol, 15 mM sodium succinate, 1% glycerol + 7 amino acids (0.8 mM 

Glycine, 0.2 mM Histidine, 0.4 mM isoleucine, 0.8 mM leucine, 0.4 mM lysine, 0.2 mM 

methionine, 0.4 mM phenylalanine), 20 mM xylose. For the FadR-based biosensor only, 

media was supplemented with 0.5% Tergitol NP-40 and the following nutrient sources were 

used: 75 mM sodium acetate, 1% glycerol, 1% glycerol+7 amino acids, and 0.4% glucose. 

A summary of growth rates achieved for each media condition is given in Supplemental 

Table S3. To induce biosensor activity, 1000 nM anhydrotetracycline (aTc), 1 mM isopropyl 

β-D-1-thiogalactopyranoside (IPTG), and 4 mM of sodium oleate, were added to the media 

for the aTc, IPTG, and FA sensors, respectively.

Biosensor Growth Rate, Minimum, Maximum, and Dynamic Range Assays.

Cells growing in different carbon sources, with or without the target metabolite were 

diluted to OD600 at ~0.0007. Exponentially growing cells were transferred to a Falcon 

96-Well Imaging Microplate (Corning, NY, U.S.A.). An Infinite F200PRO plate reader 

(TECAN, Männedorf, Switzerland) was used to take automated OD600 and red fluorescence 

measurements (Excitation: 584±9 nm, Emission: 620±20 nm) every 15 minutes with 

constant shaking at 37°C. Following previously established procedures for calculating 

growth rate67,68 and biosensor output26, growth rate was calculated as the slope of natural 

log(OD600) from OD600 0.1 to 0.4. RFP values were normalized by the OD600, and 

the minimum and maximum RFP/OD values were calculated as the average of RFP/OD 

measurements over the same OD600 range (0.1–0.4). The dynamic range was calculated 

from the minimum and maximum outputs measured from the same biological replicate 

(colony).
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TetR RBS library characterization.

Colonies of freshly transformed aTc-biosensor-TetR-RBS-library members were picked and 

grown following the cell growth and induction methods in M9 media supplemented with 1% 

glycerol. The minimum, maximum, and dynamic range of several colonies were measured, 

and colonies with different dynamic range were chosen for further characterization. The 

RBS sequence was determined by Sanger sequencing to confirm uniqueness of tested library 

members and duplicate members were combined. The minimum, maximum, and DR of the 

sequence verified library members were then re-measured with biological triplicates in 1% 

glycerol medium. To get the TetR expression level, TetR expression library members were 

individually constructed, and then also grown in M9 with 1% glycerol, and the growth rate 

and steady state RFP/OD were measured by plate reader. A summary of the RBS sequences 

characterized, and their TetR expression level, minimum and maximum outputs is provided 

in Supplemental Table S6.

Dynamic Range Modeling and Simulations.

Details of the model development and parameterizations are given in Supplemental Note 2.1. 

Kinetic model simulations were performed using MATLAB 2020b ode15s (The Mathworks, 

Natick, MA, U.S.A.) from initial conditions where the concentration each species is zero. 

Simulations were run for 109 seconds to reach steady state, and the end point of each 

simulation was used as the model output. To obtain the model minimum and maximum 

outputs, the model was run with either 0 μM or 4000 μM external target metabolite (Mex), 

respectively. dDR/dbR was calculated directly from the simulations using Equation (S21), 

dDR/dμ was calculated numerically using a 5-point central difference formula by running 5 

simulations at nearby μ (equally spaced on the range μ ± 0.0039).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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IPTG isopropyl β-D-1-thiogalactopyranoside

MRTF metabolite-responsive transcription factor
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Figure 1. Molecular components contributing to the operation of a metabolite-responsive 
transcription factor (MRTF)-based biosensor.
(A) Schematic of general components contributing to overall biosensor response. 

Extracellular metabolite enters the cell, becoming intracellular metabolite. Intracellular 

metabolite represses the DNA-binding activity of the MRTF. The MRTF represses the 

biosensor’s promoter, which controls the expression of a reporter protein. All components 

are universally affected by growth rate through dilution as the cell volume expands. 

B) Minimum output, maximum output, and dynamic range (DR) are critical parameters 

characterizing the dose-response curve of a MRTF-based biosensor.
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Figure 2. Minimum output, maximum output, and dynamic range of PTet, PLacUV5, and PAR 
biosensors at different growth rates.
(A-C) Schematic of cellular interactions for the (A) TetR-based biosensor, (B) LacI-based 

biosensor and (C) FadR-based biosensor. (D-F) Minimum (top) and maximum (bottom) 

output of the biosensor at different growth rates for (D) TetR, (E) LacI, and (F) FadR-based 

biosensors. (G-I) Calculated dynamic range of biosensor at different growth rates for (G) 

TetR, (H) LacI, and (I) FadR-based biosensors. Error bars are S.D. of biological replicates, 

n=3. Dashed line: Line of best fit.

Hartline and Zhang Page 18

ACS Synth Biol. Author manuscript; available in PMC 2023 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Tuning biosensor DR through changing TetR expression level at a constant growth rate.
(A) Schematic of the TetR gene used to tune TetR expression level (bR). The TetR level was 

varied by using a library of TetR genes with different RBS strength. (B-D) Experimentally 

measured (B) minimum biosensor output, Gmin, (C) maximum biosensor output, Gmax, and 

(D) dynamic range of TetR RBS library members with varying TetR expression levels. Error 

bars represent S.D., n=3. RBS sequences and their corresponding TetR expression levels, 

Gmin, Gmax, and DR are given in Supplemental Table S6. Solid line is fit of model to the 

experimental data (details in Supplemental Note 2.2) (E-F) Numerical model simulations of 

(E) minimum output, (F) maximum output, and (G) DR for different values of bR. Parameter 

values and ranges are given in Supplemental Table S1.
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Figure 4. The growth rate dependence of DR for TetR-based biosensors with varying TetR 
production rates.
(A) Three tetR genes with different RBS strength to produce TetR at low (yellow), medium 

(green), and high (purple) levels. (B) Minimum biosensor output at varying growth rate for 

each library member (left) and the dependence of minimum output on growth rate (right). 

(C) Maximum biosensor output at varying growth rate for each library member (left) and 

the dependence of the maximum output on growth rate (right). (D) DR at varying growth 

rate for each library member (left) and the dependence of DR on growth rate (right). 

dGmin/dμ and dGmax/dμ are normalized to the average Gmin and Gmax, respectively, from 

all data. Error bars of individual data points are S.D., n=3. Error bars for Gmin, Gmax, and 

DR-μ dependence are standard error of the slope. A Student’s t-test was conducted between 

each pair of growth rate dependence data, stars indicate significant difference (N.S., not 

significant; * p < 0.05; ** p < 0.01; *** p < 0.001).
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Figure 5. Modeling the impact of passive and active transport mechanism on DR-growth rate 
dependence for aTc-type biosensors.
(A) Diagram of transport reactions including passive import of metabolite by diffusion 

and active export facilitated by a protein transporter. (B) Ratio of active to passive export 

rates, (C) Calculated DR, (D) dDR/dμ, (E) dDR/dbR, and (F) Parameter region where both 

dDR/dμ and dDR/dbR are increasing, under different parameter space. The parameters kdiff 

and kcat,ex were increased to increase passive and active transport rate, respectively. KM,ex 

was varied to represent three scenarios where its value is either greater, similar, or smaller 

than the intracellular target metabolite concentration (Min). See Supplemental Fig. S1 and 

Supplemental Note 2.1 for details. Parameters values are given in Supplemental Table S1.
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Figure 6. Modeling the impact of active transport mechanism on GR-growth rate dependence for 
FA-type biosensors.
(A) Diagram of transport reactions. Target metabolite transport only occurs by protein-

facilitated active mechanisms. (B) Model simulated DR under different import and export 

rates. All other parameters are held constant and are given in Supplemental Table S1. 

(C) Intracellular target metabolite concentration (Min), (D) DR-μ dependence, and (E) 

Intracellular metabolite-μ dependence, under different parameter space.
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