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1  |  INTRODUC TION

Urbanization is expanding rapidly worldwide and threatening bio-
diversity. In 2020, 56% of the world's population (4.4 billion peo-
ple) lived in urban areas, with this number projected to increase to 
68% (over 6 billion people) by 2050 (The World Bank, 2022; United 
Nations, 2018). Accordingly, urban areas will have to expand rapidly 

to accommodate these numbers, with much of this projected ex-
pansion occurring in Africa (United Nations, 2018). In urban areas, 
biodiversity faces many challenges such as habitat loss, fragmenta-
tion, human– wildlife conflicts, and pollution (Ditchkoff et al., 2006). 
Species in urban areas suffer fatalities such as road- kill (Kent 
et al., 2021), eradication as pests, exposure to chemicals and other 
pollutants (Ditchkoff et al., 2006), and predation by introduced 
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Abstract
With increasing urbanization, particularly in developing countries, it is important to 
understand how local biota will respond to such landscape changes. Bats comprise 
one of the most diverse groups of mammals in urban areas, and many species are 
threatened by habitat destruction and land use change. Yet, in Africa, the response of 
bats to urban areas is relatively understudied. Therefore, we collated data on urban 
presence, phylogenetic relationship, and ecological traits of 54 insectivorous bats in 
Africa from available literature to test if their response to urbanization was phyloge-
netically and/or ecologically driven. Ancestral state reconstruction of urban tolerance, 
defined by functional group and presence observed in urban areas, suggests that an-
cestral African bat species could adapt to urban landscapes, and significant phyloge-
netic signal for urban tolerance indicates that this ability is evolutionarily conserved 
and mediated by pre- adaptations. Specifically, traits of high wing loading and aspect 
ratio, and flexible roosting strategies, enable occupancy of urban areas. Therefore, 
our results identify the traits that predict which bat species will likely occur in urban 
areas, and which vulnerable bat clades conservation efforts should focus on to reduce 
loss of both functional and phylogenetic diversity in Africa. We, additionally, highlight 
several gaps in research that should be investigated in future studies to provide better 
monitoring of the impact urbanization will have on African bats.
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species	 such	 as	 domestic	 cats	 (Marzluff	 &	 Ewing,	 2008). On the 
other	hand,	some	species	thrive	in	urban	landscapes.	For	instance,	
scavengers benefit from the build- up of garbage (O'Connor, 1993), 
opportunistic insectivorous bats hunt large and predictable swarms 
of insects near urban waterbodies and street lights (Naidoo 
et al., 2011; Schoeman, 2016; Stone et al., 2015), and some large 
mammals find shelter and refuge from natural predators in urban 
structures	 (Bateman	 &	 Fleming,	 2012;	 Marzluff	 &	 Ewing,	 2008). 
Thus, urbanization can be beneficial for certain taxa and maintain, 
or even increase, biodiversity (Lee et al., 2021; McKinney, 2008). 
Understanding the way individual species respond to urban areas is 
important for sustainable urban development and conservation of 
resident species, particularly in biodiversity- rich regions.

Bats (order Chiroptera) are often overlooked as part of urban 
wildlife	(Voigt	&	Kingston,	2016). However, bats make up a fifth of 
all mammal species and are often the most diverse mammal group in 
urban	areas	(Jung	&	Threlfall,	2016). Insectivorous bats are ecologi-
cally important worldwide, particularly in the control of disease and 
insect pests (Kunz et al., 2011). However, many species are threat-
ened (IUCN, 2021; Racey, 2009), with urbanization causing habitat 
destruction and fragmentation that is detrimental to bat populations 
(Mickleburgh et al., 2002). While some bat species largely avoid 
urban areas, other species are abundant and take advantage of 
the	novel	foraging	and	roosting	sites	in	urban	areas	(Avila-	Flores	&	
Fenton,	2005;	 Jung	&	Threlfall,	2016; Schoeman, 2016). Based on 
their response to urban areas, insectivorous bats can be classified 
into three groups: urban exploiters, urban adapters, or urban avoid-
ers	(Jung	&	Kalko,	2011; McKinney, 2002). Urban exploiters are spe-
cies that are almost dependent on urban resources and can become 
abundant in urban areas, urban adapters are common in suburban 
areas and readily use urban resources but are not reliant on them, 
and urban avoiders hardly occur in urban areas, unable to use urban 
resources (McKinney, 2002). In bats, these classifications often de-
pend on the functional grouping of species and their use of urban 
resources	(Avila-	Flores	&	Fenton,	2005;	Jung	&	Kalko,	2011).

Insectivorous bats are divided into three functional groups: 
open-	air,	 narrow-	edge,	 and	 narrow-	space	 bats	 (Denzinger	 &	
Schnitzler, 2013). Species are adapted to each of these environ-
ments via specialized wing morphology and echolocation for lo-
comotion as well as optimal prey detection and capture (Aldridge 
&	Rautenbach,	1987;	Schnitzler	&	Kalko,	2001). Open- air foragers 
have wings with high aspect ratios, high wing loading, and pointed 
wing tips that enable fast flight over long distances, and echolo-
cation with low frequencies and long duration that are optimal to 
detect prey in open spaces without background clutter (Denzinger 
&	Schnitzler,	2013). Narrow- edge space foragers have intermediate 
aspect ratios and wing loading with rounded tips which favor flexible 
foraging at the edge of vegetation and open spaces. Their echoloca-
tion characteristics enable narrow- edge space bats to detect prey in 
the vicinity of clutter, but where there is enough space that prey and 
background	signals	do	not	overlap	 (Denzinger	&	Schnitzler,	2013). 
The wings of narrow space foragers have low aspect ratios and 
wing loading with very rounded tips enabling agile flight in narrow 

spaces, with echolocation well adapted to detect echoes of in-
sects	against	the	cluttered	background's	interference	(Denzinger	&	
Schnitzler, 2013). Urban landscapes tend to benefit open- air bats be-
cause ephemeral food resources and roosts are spread across wide, 
open	spaces	(Avila-	Flores	&	Fenton,	2005;	Jung	&	Threlfall,	2018). 
Moreover, in urban areas, roosts on roofs of houses and buildings, 
and crevices in buildings are readily utilized by bats that have flex-
ible roosting requirements, whereas cave reliant bat species are 
typically excluded (Bergeson et al., 2015;	 Jung	 &	 Threlfall,	 2016; 
Schoeman, 2016). Thus, in combination, functional traits and roost-
ing ecology of insectivorous bats may determine their tolerance of 
urbanization	(Jung	&	Threlfall,	2018).

Bat families generally have distinct functional traits, and 
hence,	 likelihood	 of	 presence	 in	 urban	 habitats	 (Denzinger	 &	
Schnitzler, 2013;	Jung	&	Threlfall,	2016).	For	instance,	Molossidae,	
the free- tailed bats, are open- air foragers with flexible roost pref-
erences in crevices, tombs, and houses, whereas Rhinolophidae, 
the horseshoe bats, are narrow space bats that are obligate cave 
roosters	(Denzinger	&	Schnitzler,	2013). Consequently, Molossidae 
are frequently found foraging and roosting in urban areas (Avila- 
Flores	&	Fenton,	2005), whereas Rhinolophidae are often conspicu-
ously	absent	(Jung	&	Threlfall,	2018; Schoeman, 2016;	Schoeman	&	
Waddington, 2011). Although many family groups generally fit into 
one	of	these	functional	groups	(see	Denzinger	&	Schnitzler,	2013), 
some families such as Vespertilionidae are more variable, with 
different	 species	 belonging	 to	 various	 functional	 groups	 (Jung	 &	
Threlfall, 2016; Monadjem et al., 2020). Therefore, responses to ur-
banization may be underpinned by phylogenetic history (measured 
by phylogenetic signal) where closely related species are significantly 
more likely to respond similarly to urban areas than distantly related 
species	(Blomberg	&	Garland,	2002).	Jung	and	Threlfall	(2018) sug-
gested that phylogenetic relationships may play some role in urban 
tolerance of bats but indicated the need for further studies to con-
firm this. Phylogenetic conservatism may hinder evolutionary ad-
aptations that enhance the ability of species to utilize resources in 
urban habitats (Ackerly, 2009). Pre- adaptations, traits evolved to 
previous conditions that serve as an advantage in the novel envi-
ronment	 (Blomberg	&	Garland,	2002), often mediate the success-
ful invasion into novel environments (Bock, 1959), and subsequent 
rapid adaptive evolution allows persistence in the new environment 
(Jenkins	&	Keller,	2011; Sultan et al., 2012;	Whitney	&	Gabler,	2008). 
How these processes contribute to urban success of bats has rarely 
been studied, yet is key to predicting extinction risks and formulat-
ing effective conservation measures.

In this light, we asked what role evolutionary history played in 
current patterns of urban tolerance of African insectivorous bats. 
Africa is a fast- developing continent where 20% of its 320 bat 
species are listed as threatened (ACR., 2018; IUCN, 2021; United 
Nations, 2014), yet it is markedly understudied compared to other 
continents (Collins et al., 2021; Magle et al., 2012). We tested the 
phylogenetic signal of urban tolerance (in terms of urban avoider, 
adapter, or exploiter status) in African bat species, and reconstructed 
the ancestral state of urban tolerance. If successful urban exploiters 
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were pre- adapted for urban areas, we predicted significant phylo-
genetic signal in urban tolerance, with the reconstructed ancestral 
node in the urban exploiter state. We also tested for evidence of 
co- evolution between urban presence and the functional traits and 
roosting ecology of bat species. Previous studies found that high 
wing aspect ratio, low peak echolocation frequency, and high roost 
specificity were important traits in urban exploiters in other regions 
(Jung	&	Threlfall,	2018; Wolf et al., 2022). Thus, we predicted signif-
icant correlations between urban presence and echolocation, wing 
morphology, and roost specificity for African species.

2  |  METHODS

2.1  |  Data collection

We compiled a list of all mainland African insectivorous bat species 
using ACR (2018), Kingdon (2013), and Monadjem et al. (2020). We 
collected aspect ratio, wing loading, peak echolocation frequency, 
roost ecology, and functional group data for each of these spe-
cies from these sources and other available literature (ACR., 2018; 
Aldridge	&	Rautenbach,	1987; Kingdon, 2013; Monadjem et al., 2020; 
Norberg	 &	 Rayner,	 1987; Salsamendi et al., 2005). Available eco-
logical	trait	data	and	presence	in	the	phylogenetic	super-	tree	(Jones	
et al., 2005) reduced our data set from an initial 219 species to 54 spe-
cies for statistical analyses [data available: https://doi.org/10.5061/
dryad.k3j9k d5b9]. We then determined whether these species 
were present in urban (including suburban or peri- urban) areas 
within their range (personal communication P. Webala, I. Tanshi and 
M.C. Schoeman; and Ancillotto et al., 2015; Andreani et al., 2019; 
Dekker et al., 2013;	 Fenton	et	 al.,	2002; Geldenhuys et al., 2013; 
Hoye	&	Spence,	2004;	Jacobs	&	Barclay,	2009; Kurek et al., 2020; 
Lane et al., 2022; Legakis et al., 2000; O'Malley et al., 2020; Roswag 
et al., 2019; Schoeman, 2016;	Schoeman	&	Waddington,	2011; Taylor 
et al., 1999; Wojtaszyn et al., 2013) and recorded this information 
as presence (1) or absence (0) in urban areas. We categorized roost 
specificity for each species as: utilizing 1 roost type = high, 2 roost 
types =	medium,	and	≥3	roost	types	= low. Each of the following was 
considered a different roost “type”: caves and mines, tree crevices 
(behind bark and tree holes), foliage, rock crevices, exposed outer 
walls of houses/buildings, roofs of houses/buildings, and road cul-
verts. Roost specificity was classified regardless of the surrounding 
habitat type (e.g., open vs. narrow space) or landscape (e.g., highly 
urbanized vs. more rural areas) where the roost was found.

We categorized bats into urban exploiters, adapters, or avoiders 
after	 Jung	 and	Kalko	 (2011) and Schoeman (2016) based on wing 
morphology and roost habits. Urban exploiters are open- air bats 
with high wing loading and aspect ratios and highly flexible roost 
habits that readily use anthropogenic resources; urban adapters are 
narrow- edge space bats with intermediate wing loading and aspect 
ratios, and fairly flexible roosting habits; and urban avoiders are 
narrow- space bats with restricted roosting requirements, such as 
obligate	cave	roosters	(Jung	&	Kalko,	2011; Schoeman, 2016).

2.2  |  Phylogenetic analyses

We	used	 the	 super-	tree	by	 Jones	et	 al.	 (2005) and pruned it to 
54 bat species for which we had ecological data in the geiger 
(Harmon et al., 2008)	and	ape	(Paradis	&	Schliep,	2019) packages 
of R statistical software version 4.1.0 (R Core Team, 2021). We 
used the “fix.poly” function in RRphylo (Castiglione et al., 2021) 
to resolve polytomies of this tree for all subsequent phylogenetic 
analyses.

To test phylogenetic signals and reconstruct ancestral states, 
the model of evolution for the trait in question must be known. 
Therefore, we first determined the model of evolution of urban 
tolerance among states of “urban exploiter,” “urban avoider,” and 
“urban adapter” in the pruned phylogeny, using the “fitDiscrete” 
function in the geiger package. We compared the fit of the three 
models of evolution for urban tolerance using weighted Akaike's 
information criterion (AIC). Discrete characters can evolve under 
three models of evolution that govern the rate at which a trait is 
likely to evolve along the branches of the tree: equal rates (ER; the 
trait evolves at a uniform rate across the tree regardless of which 
states it is changing between), all- rates- different (ARD; the trait 
evolves at different rates across the tree regardless of which states 
it is changing between), and symmetric models (SYM; the rate of 
evolution varies across the tree but the rate of change between 
two states is symmetrical in that the forward and backward rates 
of evolution between those two particular states are equal). The 
best fitting model based on weighted AIC comparison was then 
used as the model of evolution to test phylogenetic signal and re-
construct ancestral states.

We measured the degree of phylogenetic signal using the same 
function “fitDiscrete” in geiger, with the tree transformation of 
Pagel's lambda (λ). This provides a value for Pagel's λ between 1 and 
0, where 1 = strong phylogenetic signal and 0 = no phylogenetic 
signal. Included in the output is the estimated AIC value for the 
tree. We tested the fit of this lambda value against a lambda value 
of 0 for urban tolerance evolution on the tree by creating a tree 
of lambda = 0 and comparing the weighted AIC values calculated 
in each. We reconstructed the ancestral state of urban tolerance 
with stochastic character mapping of the joint posterior probabili-
ties of the internal nodes of the tree (Bollback, 2006; Huelsenbeck 
et al., 2003) using the packages phytools (Revell, 2012) and ape. We 
ran 1000 simulations and plotted the average probabilities for each 
node in any given state as a pie chart at each node onto the phylo-
genetic tree.

Finally,	 we	 tested	which	 traits	 –		 echolocation,	wing	 loading,	
aspect ratio, or roost specificity –  significantly predicted the 
presence/absence of bat species in urban areas. Roost specificity 
was coded as dummy variables. We fit the phylogenetic general-
ized linear model (PGLM) developed by Ives and Garland (2010) 
using	the	package	Phylolm	(Ho	&	Ané,	2014) in R. PGLM takes the 
strength of the phylogenetic correlation in the binary dependent 
variable into account to calculate the regression coefficients of the 
independent variables for both continuous and discrete multistate 
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traits. The output provides regression coefficient estimates with 
their standard errors, Wald's Z- values, and associated p- values. 
Parametric bootstrapping provided confidence intervals for the 
estimates. We used an alpha value of .05 to determine significance 
of parameters. The model phylogenetic signal (α = .02) was low. 
A standard GLM run in the R base package yielded slightly dif-
ferent results, indicating that the phylogeny affects result even 
at this low α. We, therefore, report results of the PGLM. We also 
estimated the phylogenetic signal of the dependent variable using 
the same function (without independent variables) as well as the 
delta	estimate	 (Fritz	&	Purvis,	2010) using “phylo.d” in the caper 
package (Orme, 2012). We estimated the phylogenetic signal of 
the continuous traits with “phylo.sig” in Phytools and the phyloge-
netic signal of roost specificity (categorical data) with “fitDiscrete” 
as above.

3  |  RESULTS

Among 54 bat species, there were 30 absent (55%) and 24 present in 
urban areas; 23 (43%) were classified as urban avoiders, 19 (35%) as 
adapters and 12 (22%) as exploiters.

Urban tolerance in these African bat species evolved under a 
“symmetrical” evolutionary model. Here, the rates of change be-
tween two states of urban tolerance are not constrained to be equal 
to the rate of change between any other two states of urban toler-
ance, but the reverse (forward or backward) change between the 

same two states is equal (Figure 1). All transition rates were low, but 
the highest rate of switching occurred between urban avoider and 
urban adapter states implying transitions between these two states 
were most common within the phylogeny (Figure 1).

Pagel's λ for urban tolerance = 0.78, indicating that there is a 
significant phylogenetic signal in the manner urban tolerance is dis-
tributed across African bat species, further supported by the signif-
icant AIC value of 0.99 for this model. The reconstructed ancestral 
state of urban tolerance was 48% likely “urban adapter” (root node 
state: urban adapter = 0.48, urban avoider = 0.45, and urban ex-
ploiter = 0.07 [Figure 2]). The “urban avoider” state was also ances-
tral, whereas “urban exploiter” is the most derived state, evolving 
once early in Molossidae and, more recently, once in Vespertilionidae 
and once in Emballonuridae (Figure 2).

The PGLM of urban presence among African bat species showed 
that wing loading, aspect ratio, and roost specificity significantly 
predicted urban presence (Table 1). High wing aspect ratio sig-
nificantly increases the chance of species presence in urban areas 
(β =	1.02 ± 0.45,	Z = 2.25, p = .025). Similarly, low wing loading sig-
nificantly decreases the chance of species presence in urban areas 
(β =	−0.42 ± 0.15,	Z =	−2.78,	p = .005) (Table 1). High roost spec-
ificity significantly decreases the chance of species presence in 
urban areas (β =	−2.01 ± 0.87,	Z =	−2.30,	p = .021) (Table 1). Aspect 
ratio, wing loading, and echolocation also displayed strong phylo-
genetic signals within Chiroptera (λ = 0.97, λ = 0.98, and λ = 0.83 
respectively), however, roost specificity and urban presence did not 
(λ = 0.18 and λ = 0.34, respectively; Table 2).

F I G U R E  1 Evolutionary	changes	between	states	of	urban	tolerance	represented	by	the	“symmetrical”	model	(SYM).	Transitions	among	
states (avoider, adapter, or exploiter) are shown for the trait “urban tolerance.” Transitions are represented by double- ended arrows (change 
can occur in either direction between states). Values indicate the rates of change between each pair of states, under a model where the rate 
between each pair is allowed to be different, but the rate of switching forward or backward between pairs of states is equal. The weighted 
AIC value for this model = 84% support compared to “equal rates” (2%) and “all- rates different” (14%) models.
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4  |  DISCUSSION

This study is the first to investigate the evolutionary drivers of 
urban tolerance in African bats. We found significant phylogenetic 

signal in urban tolerance among insectivorous African bat species, 
and the ancestral state aligned with both urban adapters and urban 
avoiders. Therefore, the ancestral bat of these African species was 
likely a narrow- edge space forager with traits to successfully utilize 

F I G U R E  2 Phylogenetic	tree	of	African	bats	with	known	states	of	urban	tolerance	at	the	tips	and	calculated	posterior	probabilities	
for states of internal nodes. The lambda value for urban tolerance on this tree = 0.78. The probabilities of the ancestral node in each 
state = 0.48 for urban adapter, 0.45 for urban avoider, and 0.07 for urban exploiter. States of urban tolerance are color coded (urban 
exploiter = green, urban adapter = blue, and urban avoider = red). Superfamily groups are indicated on the right (after ACR, 2018).

Estimate 
(β)

Standard 
error

Lower 
CI

Upper 
CI Z- score p- Value

Intercept −1.25 2.86 −1.38 −1.00 −0.44 .662

Aspect ratio 1.02 0.45 0.54 1.51 2.25 .025*

Wing loading −0.42 0.15 −0.70 −0.17 −2.78 .005*

Echolocation −0.02 0.01 −0.04 −0.01 −1.69 .091

Medium roost specificity −0.56 0.72 −0.98 0.24 −0.78 .434

High roost specificity −2.01 0.87 −2.48 −1.41 −2.30 .021*

Note: Confidence intervals were calculated by parametric bootstrapping based on the model 
α = .02. Significant parameter estimates are indicated with asterisks (*).

TA B L E  1 Regression	coefficient	
estimates with associated standard 
errors and significances for the 
phylogenetic generalized linear model 
“Urban	presence ~ wing	loading + aspect	
ratio + echolocation + roost	specificity.”
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urban landscape features if they had existed. Urban adapter and 
exploiter states evolved prior to urbanization, although exploiters 
evolved much later than adapters in the phylogeny –  specifically in 
the Molossidae family which diverged relatively recently from the 
other families in this phylogeny. Thus, states indicative of success 
in urban areas are driven by factors that pre- date urbanization, but 
extant bats did not evolve from an ancestral species that possessed 
characteristics to exploit urban areas. Transition rates between dif-
ferent states of urban tolerance in bats were low, indicating infre-
quent state changes and trait conservatism within the phylogeny 
(Bell et al., 2017). These low rates are probably the reason for the 
significant phylogenetic signal for urban tolerance among extant 
bat species. These results indicate that bat species are most likely 
to inhabit environments they are well suited to rather than undergo 
rapid adaptive evolution (Ackerly, 2009). Therefore, tolerance of 
urban areas is mediated by pre- adaptations that evolved in non- 
urban environmental conditions and were present in the common 
ancestor of these bats (Ackerly, 2009;	Blomberg	&	Garland,	2002). 
Similarly, in birds, urban tolerance is characterized by a suite of prea-
dapted traits –  such as short flight distances (Møller, 2009) and high- 
frequency	songs	 (Hu	&	Cardoso,	2009) –  and urban exploiters are 
mostly from particular clades (Sol et al., 2017). These results suggest 
that increased urbanization spread may be linked to marked loss of 
phylogenetic diversity in local assemblages (Callaghan et al., 2021; 
Sol et al., 2017).

On the other hand, we found that the urban exploiter state re-
cently appeared in two clades –  Emballonuridae and Vespertilionidae. 
Generally, long lifespans and generation times, like those of bats, 
decrease	adaptation	rates	(Jones	et	al.,	2003). However, it is possi-
ble that in established urban populations, rapid evolution can work 
in tandem with pre- adaptations to promote persistence of these 
populations	 (Jenkins	&	Keller,	2011; Yeh, 2004). Moreover, strong 
novel selection pressure may act on mechanisms of phenotypic or 
behavioral plasticity such that populations rapidly shift the way 
they use resources in the environment, without genotypic or evo-
lutionary change (Charmantier et al., 2008;	Garland	&	Kelly,	2006). 
For	example,	some	urban	fruit	bat	populations	have	adjusted	their	
diets (Egert- Berg et al., 2021), and some urban birds can alter their 
song	frequency	(Slabbekoorn	&	den	Boer-	Visser,	2006) in response 
to noise in urban areas. In insectivorous bats, echolocation peak 

frequency and bandwidth may display plasticity as bats can adjust 
these to prevent masking from acoustic interference altitudinally, 
geographically, and in response to some anthropogenic noises 
(Bunkley et al., 2015; Gillam et al., 2009;	Jiang	et	al.,	2015). Thus, the 
role of adaptive phenotypic plasticity in insectivorous bats should be 
further investigated as an avenue of adapting to urbanization.

In support of our predictions, wing morphology and roost 
specificity best predicted the presence of bats in urban areas. 
Specifically, bats pre- adapted for urban areas have high wing load-
ing and aspect ratio, and low- to- medium roost specificity. Bats with 
intermediate- to- high wing loading and aspect ratios are highly mo-
bile, with good dispersal abilities and moderate- to- fast flight speeds 
(Arita	 &	 Fenton,	 1997;	 Denzinger	 &	 Schnitzler,	 2013;	 Norberg	 &	
Rayner, 1987). These traits are beneficial in urban environments be-
cause	resources	are	distributed	patchily	across	the	landscape	(Jung	
&	Kalko,	2011;	Jung	&	Threlfall,	2018; Piano et al., 2017). Moreover, 
in urban areas, artificial night lighting is ubiquitous, and provides 
an important source of concentrated insect prey for narrow- edge 
space and open- air species (Gaisler et al., 2006; Schoeman, 2016; 
Tomassini et al., 2014), whereas slow- flying bats with low aspect 
ratio and wing loadings avoid lit areas and instead rely on vegetated 
habitats (Hourigan et al., 2006;	Jung	&	Kalko,	2010; Rydell, 1992). 
These traits also display strong phylogenetic signals and therefore, 
allow conclusions on species responses to urban areas based on 
evolutionary history. Our results support those of a global meta- 
analysis	 (Jung	&	 Threlfall,	2018) that found high aspect ratio and 
flexible roosting strategies promote urban tolerance. Although we 
found that high wing loading was also a significant driver of urban 
tolerance,	 the	 global	 analysis	 included	 few	 African	 species	 (Jung	
&	Threlfall,	2018). Similarly, Wolf et al. (2022) suggest that flexible 
roosting strategies were important for urban tolerance, in addition 
to low echolocation peak frequency and broad bandwidth duration. 
Overall, it appears that high mobility and flexible roost habits are the 
most important predictors of urban tolerance and can be used to 
determine	species-	specific	responses	to	urban	areas	for	bats	(Jung	
&	Kalko,	2011;	Jung	&	Threlfall,	2018).

Some African bat species with traits that favor wide disper-
sal, such as the open- air Nyctalus species, Tadarida fulminans, and 
Taphozous nudiventris, were absent from urban environments. 
Although this may be due to the lack of records of these species in 
African urban areas, roost specificity (e.g., T. fulminans) or dietary 
requirements	may	prevent	species	from	occupying	urban	areas	(Jung	
&	 Threlfall,	2018; Palacio, 2019). Roosts are crucial resources for 
bats, and often limiting in natural habitats (Mickleburgh et al., 2002; 
Zukal et al., 2017). Urban areas provide various roost types including 
roofs of houses, crevices in the walls of buildings, attics, and the 
eaves of houses (Monadjem et al., 2020;	Russo	&	Ancillotto,	2015; 
Voigt	&	Kingston,	2016). Bat species that select roosts in buildings 
over natural roosts gain significant reproductive benefits and pro-
tection	from	predation	(Fuentes-	Montemayor	et	al.,	2014;	Johnson	
et al., 2019;	 Lausen	&	Barclay,	2006; O'Malley et al., 2020; Voigt 
et al., 2016). However, obligate cave roosting bats and other species 
with specific roosting habits are unlikely to find suitable roosts in 

TA B L E  2 Phylogenetic	signal	of	the	functional	traits,	roost	
specificity, urban presence, and urban tolerance classifications.

Pagel's λ Delta (δ)

Urban presence 0.34 0.38

Aspect ratio 0.97

Wing loading 0.98

Echolocation 0.83

Roost specificity 0.18

Urban tolerance 0.78

Note: Pagel's λ was calculated for categorical and continuous data, and 
the delta variable was additionally calculated for the binary variable.
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urban	areas	(Russo	&	Ancillotto,	2015). This corroborates previous 
findings that roosting ecology determines the presence of bat spe-
cies in urban areas (Duchamp et al., 2004;	 Jung	&	Threlfall,	2018; 
Wolf et al., 2022).	Furthermore,	roost	specificity	exhibited	little	phy-
logenetic signal, and its importance in determining which species 
inhabit urban areas may explain why urban presence had relatively 
low phylogenetic signal. Because relatively little is known about the 
roosting or dietary ecology of many African bat species (Monadjem 
et al., 2020), more research on roost and diet requirements is an im-
portant step to identify species vulnerable to urbanization.

Although more than 50% of bat species in this study appeared to 
be sensitive to urbanization, only 12 were classified as urban exploit-
ers. Molossidae were almost all urban exploiters, but Rhinolophoidea 
species were phylogenetically constrained to, almost exclusively, 
avoid urban landscapes. This closely aligns with locomotion and 
roosting ecology –  Molossidae are adapted for open space, with flex-
ible roosting strategies, whereas Rhinolophoidea are narrow space 
bats with low wing loading and aspect ratios, high echolocation fre-
quencies, and are mainly obligate cave roosters. The only Molossidae 
species absent from urban areas (T. fulminans) has very high wing 
loading coupled with high roost specificity (Monadjem et al., 2020). 
Vespertilionidae and Miniopteridae species are predominantly urban 
adapters, with urban avoiders and exploiters more derived in several 
genera. Notably, urban avoidance is highly prevalent in Cistugo and 
Laephotis genera and can probably be attributed to roost specificity 
and the rarity of these species (Monadjem et al., 2020). On the other 
hand, Nycticeinops schlieffenii possesses no obvious advantageous 
traits	for	urban	areas	yet	can	inhabit	cities	(Hoye	&	Spence,	2004). 
The emballonurid T. nudiventris is a widely distributed open- air bat 
with medium- to- high wing loading and flexible roost requirements, 
yet there is no evidence that this species is an urban resident, sug-
gesting that advantageous pre- adaptations are not a guarantee for 
success in urban landscapes (Moiron et al., 2015). Alternatively, 
available observational data may be limited or incomplete –  urban-
ization may not have affected local populations of this species (for 
instance, if this species does not have high population density near 
a city) or this species may have been missed in censuses of urban 
areas. These results indicate that phylogenetic grouping can be used 
to designate where conservation efforts should be focused, but that 
complete species inventories in urban and non- urban regions across 
Africa are vital to determine what is known about urban tolerance 
in bats.

Our study highlights major gaps in the knowledge of bats in 
Africa, particularly their interaction with urbanization. The limited 
number of species for which both ecological and phylogenetic data 
were available indicates the need for further baseline research on 
African bats, especially in the Northern and Western regions of the 
continent. Moreover, there is limited information on presence/ab-
sence of bat species in urban areas, with remarkably few focused 
urban studies in Africa, which mostly focused on one region (Durban, 
South Africa; Schoeman, 2016;	 Schoeman	 &	 Waddington,	 2011; 
Taylor et al., 1999). Unfortunately, published studies do not report 
the relevant levels of urbanization. These data are important to 

compare	with	levels	of	urbanization	in	Africa.	Future	studies	should	
utilize data reported in a standardized manner (Wolf et al., 2022), 
controlling for the level of urbanization, surrounding micro- habitats, 
and broadscale land use.

Our results show that resident urban bat species are pre- adapted 
to successfully occupy urban environments. African bat species that 
are found in urban landscapes belong to particular phylogenetic 
groups and exhibit particular ecological traits including high mobil-
ity and flexible roosting strategies. Consequently, urbanization will 
probably reduce both functional and phylogenetic diversity of local 
bat faunas (McKinney, 2006; Morelli et al., 2016; Schoeman, 2016; 
Sol et al., 2017, 2020). This homogenization of bat diversity may lead 
to loss of key ecosystem services such as pest and disease control 
(Kalda et al., 2015; Kunz et al., 2011). Narrow space- adapted species 
with high roost specificity are the most vulnerable to effects of ur-
banization in Africa. Therefore, conservation efforts and urban plan-
ning should focus on preserving suitable roost and foraging habitats 
for these species (McKinney, 2006; Morelli et al., 2016). Because 
bats of the African continent remain relatively understudied (Voigt 
&	Kingston,	2016), more ecological and evolutionary data, partic-
ularly at fine geographic scales, are necessary to ensure that such 
conservation efforts are successful in urban landscapes across the 
continent.
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