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1  |  INTRODUC TION

Most birds build a nest for reproduction, and its basic function is 
to protect the eggs, chicks, and incubating and brooding parent 
(Hansell, 2000). Nests may provide an optimal microclimate, reducing 
heat loss, and protecting the contents from predators, ectoparasites, 

and pathogens (Clark & Mason,  1985; Mainwaring et al.,  2014; 
Mennerat et al., 2009). However, nest building appears to be costly 
for the parents (Mainwaring & Hartley, 2013), due to the time and 
energy expended in flying and collecting materials and in construct-
ing the nest itself (Bailey et al., 2016; Nudds & Bryant, 2000). Thus, 
there may be a trade-off between nest quality and the costs of nest 
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Abstract
In many bird species, reproductive success is dependent on nest quality. However, 
detailed data on nest composition are scarce, and quantitative analyses have gener-
ally used only rough categories, without species identification. Bryophytes dominate 
the nests of many passerine bird species, but little is known about whether birds have 
preferences for certain species. In this study, we determined the bryophyte species 
composition in nests of blue tits Cyanistes caeruleus and great tits Parus major in a for-
est near Oslo, Norway. We also sampled the abundance of the bryophyte species in 
plots on the forest floor surrounding a subset of the great tit nests. Blue tits and great 
tits both used 15 bryophyte species as nest materials, mainly the same pleurocarpous 
species but in different proportions. The tits preferred highly branched bryophyte 
species, i.e., Pleurozium schreberi, Rhytidiadelphus squarrosus, and Sanionia uncinata but 
avoided common forest floor bryophyte species that are sparsely branched. Great tits 
clearly collected bryophyte species selectively. We also found that bryophyte species 
content in great tit nests in the same nest box in different years was very similar. Our 
results also indicated that the great tits collected bryophyte nest materials close to 
their nests, mostly within 5 m, supporting the view that collecting nest materials is 
costly. We review several hypotheses to explain why the tits prefer certain species 
of bryophytes as nest materials. These include handling costs and their suitability as 
structural materials. We recommend field experiments to test specific hypotheses 
and to study whether preferences are heritable.
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construction (Mainwaring et al., 2014; Mainwaring & Hartley, 2013). 
In many species, such as titmice Paridae, only the female builds the 
nest, and she usually puts on body mass during the nest-building 
period to prepare for egg laying. This makes her particularly vul-
nerable to avian raptors (Slagsvold & Dale, 1996). Because of these 
costs, the nest and nest-building activity may function as sexual sig-
nals of individual quality (extended phenotype), which in turn may 
affect parental investment (García-Navas et al.,  2015; Järvinen & 
Brommer, 2020) and hence avian evolution (Fang et al., 2018).

The general structure of bird nests comprises shape, size, com-
position, and lining (Perez et al., 2020). Different bird species use 
a variety of materials that may differ from one part of the nest to 
another (Hansell,  2000). Although nests of particular species are 
usually identifiable by humans (Aasen & Slagsvold, 2020; Dickinson 
et al., 2022; Hansell, 2000), nest design is a trait that varies consider-
ably, particularly among but also within species (Biddle et al., 2018; 
Breen et al., 2016; Briggs & Deeming, 2021; Mainwaring et al., 2014). 
The most typical differences among species may be heritable (Aasen 
& Slagsvold, 2020) but studies of lining materials and nest depth in 
blue tits Cyanistes caeruleus have shown low heritability (Järvinen 
et al., 2017; O'Neill et al., 2018).

The plant materials used by birds have generally only been di-
vided into rough categories, such as grass, ferns, lichens, and mosses 
(e.g., Biddle et al., 2018; Briggs et al., 2019; Britt & Deeming, 2011; 
Deeming & Mainwaring,  2015; Dickinson et al.,  2022) rather than 
identified to species. The choice of nest materials may be import-
ant for reproduction and for the risk of nest and adult predation, 
and may thus have great evolutionary potential to respond to se-
lective pressures (Perez et al., 2020). We should therefore utilize 
the extra information available by identifying the specific items 
used (e.g., Briggs & Deeming,  2021, Briggs & Deeming,  2016; 
Camacho-Alpízar et al., 2021;Glądalski et al., 2021 ; Wesołowski & 
Wierzcholska, 2018).

The availability of nest materials in the immediate surround-
ings of a nest site may influence nest composition. Already in se-
lecting a suitable nest site, the availability of nest material may be 
one of the important factors for the birds (Mainwaring et al., 2014). 
Prevailing evidence suggests that birds construct their nests oppor-
tunistically using nest material in proportion to availability (Briggs & 
Deeming, 2021; Lambrechts et al., 2017). However, because of the 
importance of the materials used, one would expect birds to be se-
lective. Indeed, some evidence exists that birds select specific plant 
materials for their nests, in particular aromatic plants that may give 
protection against parasitic organisms (Petit et al., 2002), and that 
they use specific bryophytes for this purpose (Glądalski et al., 2021; 
Wesołowski & Wierzcholska, 2018).

Bryophytes (mosses and liverworts) are one of the main material 
types used in nests of passerine birds (Breil & Moyle, 1976; Briggs 
et al., 2019; Briggs & Deeming, 2021; Glime, 2017a). In the present 
study, we determined the bryophyte species composition in nests of 
two common cavity-nesting birds, the blue tit and the great tit Parus 
major. Both species use large amounts of bryophytes in their nests, 
but usually only a few dominant species (Alambiaga et al., 2020; Britt 

& Deeming, 2011; Glądalski et al., 2016). The bryophytes used by the 
two tits may be fairly similar (Glądalski et al., 2021), or in other cases 
quite different (Wesołowski & Wierzcholska, 2018). In general, blue 
tits forage is higher above the ground than great tits (Slagsvold & 
Wiebe, 2007; Suhonen et al., 1994), which may affect where they 
collect bryophytes. Blue tits seem to have a stronger preference 
for epiphytic bryophytes, whereas great tits have a stronger prefer-
ence for ground-living or epigeic bryophytes (Glądalski et al., 2021; 
Henze, 1962; Wesołowski & Wierzcholska, 2018).

Two studies in Poland showed that both blue and great tits col-
lected bryophytes selectively (Glądalski et al., 2021; Wesołowski & 
Wierzcholska, 2018). However, in both cases, only bryophytes grow-
ing within 10 m of the tit nest sites were included, and only species 
identity was recorded, not their relative abundance in the local area. 
We used a similar study design but improved it by quantifying the 
amounts of the various bryophytic species found both in a number 
of great tit nests and in plots on the ground doubling the distance to 
within 20 m of each great tit nest site.

We addressed four questions. First, we asked whether the spe-
cies composition of blue tits and great tits nest differed, and if so 
whether blue tits collected more epiphytic bryophytes than great 
tits, while great tits collected more ground-living (epigeic) species. 
The design also allowed a more detailed comparison of the amounts 
of each bryophyte species found in the great tit nests and their 
abundances in the surrounding sample plots. Second, we therefore 
tested whether bryophyte choice was random. Third, we compared 
the species composition of bryophytes in the same nest box (used 
by great tits) between different years, with the prediction that the 
content would be more similar between the same boxes than be-
tween different boxes, given that the bryophyte abundances within 
a local forest area remain relatively stable between years without 
disturbance (Rydgren et al., 2004). Finally, we analyzed the probable 
distances from the nest site at which great tits had collected bryo-
phytes predicting that they would fly as short distances as possible to 
reduce time and energy building nest (Mainwaring & Hartley, 2013).

2  |  MATERIAL S AND METHODS

2.1  |  Study area and study species

The study area of ca. 72 ha (altitude 150–200 m) consists of mixed 
coniferous and deciduous forest in Sørkedalen valley (59°59′ N, 
10°38′ E) near Oslo, Norway. It is situated in the southern boreal 
zone and the slightly suboceanic section (Moen, 1999). Mean annual 
precipitation for the normal period 1991–2020 at Blindern 7 km fur-
ther SE is 837 mm, with the peak in autumn, and mean temperatures 
for the same normal period are 6.2°C in April, 11.4°C in May and 
15.3°C in June (https://sekli​ma.met.no/).

The study area contained approximately 300 nest boxes with an 
entrance diameter of 32 mm, attached to tree trunks about 1.5 m 
above the ground and about 50 m apart. The tits most commonly 
using the nest boxes were blue tits (Figure  1) and great tits, with 

https://seklima.met.no/
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about 40 nests of each. Both species are short-lived, hole-nesting 
passerines, which defend a resource territory for breeding. The fe-
male builds the nest and incubates alone, but both parents feed the 
young.

2.2  |  Data collection

In spring 1997, we analyzed the bryophyte content of 34 great tit 
and 35 blue tit nests. We also analyzed bryophyte abundances in a 
total of 167 plots on the forest floor around nine of the trees with 
active nests (see below). Eight of the nests were included in the data 
set comparing blue tit and great tit nests in 1997, together with eight 
nests from the same nest boxes sampled in the subsequent year 
(1998). Sample number nine consisted of a great tit nest in a nest 
box analyzed for a pilot study in 1996 and a nest in the same nest 
box in 1998. We treated the 18 nests as independent samples. The 
tits were not ringed, but great tits are relatively short-lived (Hõrak 
& Lebreton, 1998). Nest boxes were abundant in the study area and 
female great tits are known to move some distance between nest 
sites from 1 year to the next (Harvey et al., 1979).

We analyzed bryophytes in the nests when the nest lining was 
completed or when egg laying had started. Any egg(s) were laid aside 
and the nest was carefully removed from the box. The nests were 
then gently pried open in several places and from several angles, 
while care was taken not to destroy the nest, to visually estimate the 
proportion of each bryophyte species as a percentage of the total 
volume of bryophytes but later re-calculated as a percentage of the 
whole nest. The nest and the eggs were then carefully returned to 
the nest box. There was no indication that this procedure caused 
any desertion.

Species abundances of bryophytes on the ground surrounding 
the nine nest boxes where great tits bred in both years were re-
corded as percentage cover in 2 × 2 m2 plots. We used restricted ran-
dom sampling to place 20 plots around each of the nine nest boxes 

within a circular area with a radius of 20 m from the nest box. The 
plots therefore covered 6.4% of the circle area. The circle of 1256 m2 
was divided into four quadrants, each with four sectors with a length 
of 5 m (Figure 2). In every quadrant, we placed one plot randomly in 
each sector and one plot randomly within the quadrant, giving five 
plots in each quadrant and 20 plots around each nest box. Thirteen 
of the plots were devoid of bryophytes, and the data set therefore 
consisted of 167 plots along with the 18 great tit nests. Assuming 
that bryophyte abundances were the same in both years, we only 
sampled the plots once.

2.3  |  Bryophyte nomenclature

The nomenclature of the bryophytes followed Frisvoll et al. (1995). 
Bryophytes were identified to species, except for Brachythecium, 
Bryum, Dicranum, Hypnum, Pohlia, Plagiomnium, Plagiothecium, 
Polytrichum, Sphagnum, and Thuidium, which were determined to 
genus. These are also referred to as species in the rest of the text. 
Liverworts were not included in the study as they were found in very 
small quantities in the pilot study in 1996.

2.4  |  Statistical analysis

We used R version 4.0.2. (R Development Core Team, 2020) for all 
statistical analyses. The statistical tests are two-tailed unless other-
wise specified, with an α-level of 0.05.

To examine whether there were differences in bryophyte spe-
cies composition between nests of blue tits (n = 35) and great tits 
(n = 34), we first extracted the gradient structure in the data sets 
by using two ordination methods in parallel, detrended correspon-
dence analysis (DCA; Hill & Gauch Jr., 1980), and global nonmet-
ric multidimensional scaling (GNMDS; Minchin,  1987), to confirm 
that structure axes were obtained (Økland,  1999). The DCA and 
GNMDS ordinations were relatively similar for the two first axes 
(Appendix S1). Therefore, we used the results of the DCA ordina-
tions for all subsequent statistical analyses. The same ordination 
methods were used to examine whether bryophyte species com-
position differed between great tit nests (n  =  18) and the epigeic 
bryophyte vegetation surrounding the nests (n = 167). The similarity 
of the DCA and GNMDS axes confirmed that the two first axes were 
structure axes (Appendix S1), and the results of the DCA ordination 
(distances between nests and plots along the two first axes) were 
therefore used in further analyses (see below).

We used the vegan package version 2.5–3 (Oksanen et al., 2019) 
for all ordination analyses. Prior to ordination, bryophyte species 
with a frequency below the median frequency were downweighted 
in proportion to their frequency (Eilertsen et al.,  1990). We also 
weighted each matrix element with a power function (van Son & 
Halvorsen,  2014) to obtain a scale with a range, i.e., the ratio be-
tween the highest and lowest value, of 10:1 by using the weighting 
parameter w = 0.500 (Rydgren, 1993).

F I G U R E  1 Blue tit nest with nine eggs photographed in the 
incubation period. The nest has a base layer of moss with a nest cup 
lined with hairs. Photo credits: Tore Slagsvold.
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To examine whether blue tit and great tit nests differed in bryo-
phyte species composition, we used GLM with identity link and 
Gaussian error to test whether the positions of the nests differed 
along the two first DCA ordination axes. We also tested whether 
the two tits differed in the number of bryophyte species they used 
in their nests using GLM with log link and Poisson errors. To test 
whether bryophyte species abundance differed between blue tit 
and great tit nests, we used GLM with identity link and Gaussian 
errors.

To test whether bryophyte species abundance differed between 
great tit nests and vegetation plots, we used GLMM with identity 
link and Gaussian errors (Bates et al., 2015). We included the nest 
box as a random factor to account for the spatial distribution of 
plots. Because bryophyte abundance was expressed as percentage 
cover, i.e., as strictly bounded but nonbinomial data, we logit trans-
formed it (Warton & Hui, 2011) before the statistical analyses, and 
only species with a frequency higher than 3% in each data set were 
analyzed.

To examine whether great tits exhibited preferences or collected 
bryophyte species purely opportunistically, we used a randomiza-
tion test. First, we calculated the observed mean M0 for all the DCA 
distances between the nests (n  =  153). Next, 9999 random sub-
samples with 153 observations were drawn from the sample of all the 
local DCA distances between the tit nests and the respective plots 
(n = 334), and the mean M1 was calculated for each before we calcu-
lated the P-value. In the randomization test, the P-value for the test 
against one-tailed alternative hypotheses was obtained by counting 
the number s of sub-samples for which M1 < M0: p = .0001× (1 + s).

To examine whether great tits collected bryophytes near their 
nests, we conducted three tests based on distances between nests 

and plots along the first two axes in the DCA ordination. The first 
two of these were randomization tests. In the first test, we first 
calculated the observed mean M0 for the DCA distances between 
the nine nests built in the same nest boxes but in different years. 
Next, 9999 random sub-samples with nine observations were drawn 
from the sample of all other DCA distances (n = 144) between the 
nests, and the mean M1 was calculated for each. In the second test, 
we first calculated the observed mean M0 for the 334 local DCA 
distances between nests and plots within the circles around the 
trees with nest boxes. Next, 9999 random sub-samples with 334 
observations were drawn from the sample of all the other DCA dis-
tances between nests and vegetation sample plots (n = 2672), and 
the mean M1 was calculated for each. In both randomization tests, 
the p-value for the test against one-tailed alternative hypotheses 
was obtained by counting the number s of sub-samples for which 
M1 < M0: p = .0001× (1 + s).

In the third test, we used GLMM with identity link and Gaussian 
error to analyze the probable distances from the nest site at which 
great tits had collected bryophytes using the local DCA distances 
between nests and plots as the response variable, and the dis-
tance from the nest boxes (four levels, i.e., the different sectors), 
year (three levels) and their interaction as main factors. The nest 
box was included as a random factor to account for the spatial de-
pendency of the plots. We started with the full model and pared it 
down using p-values until we reached the minimal adequate model 
(Crawley, 2013).

3  |  RESULTS

3.1  |  Bryophyte species composition in the tit 
nests

Both blue and great tits used bryophyte material abundantly when 
building their nests: bryophytes made up 90% of blue tit nests and 
85% of great tit nests (median values, see Figure 3). Bryophytes were 

F I G U R E  2 Schematic illustration of the vegetation analysis 
conducted around each nest box containing an active great tit 
nest. In each quadrant (a–d), there were five 2 m × 2 m2 plots, one 
randomly placed within each sector (1, 2, 3, 4), and one randomly 
placed in the whole quadrant. The radius of the circle was 20 m and 
the total area of the 20 plots was 80 m2, covering 6.4% of the total 
area of the circle (= 1256 m2).

(a)

(c) (d)

(b)

F I G U R E  3 Boxplot of the abundance of bryophytes used in blue 
tit nests (n = 35) and great tits (n = 34). The horizontal line in each 
box is the median value, the box shows the interquartile range, and 
the dots are outliers beyond the whiskers.
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always used together with nonbryophyte material, such as feathers 
and grasses for blue tits and hair for great tits. The two species used 
the same number of bryophyte species (p =  .91), with a median of 
four (Figure 4).

The bryophyte species composition of nests built by blue tits and 
great tits was fairly similar (Figure 5). The positions of the two spe-
cies' nests along the two first DCA ordination axes did not differ sig-
nificantly (DCA axis 1, p = .23; DCA axis 2, p = .73). The bryophytes 
most frequently used by both bird species were the pleurocarpous 
taxa Brachythecium spp., Hylocomium splendens, Pleurozium schreberi, 
Rhytidiadelphus squarrosus, Sanionia uncinata, and the acrocarpous 
Dicranum spp. (Table 1). Both tits used a total of 15 species, but about 
one-third of these were used so rarely, or in such small amounts, that 
this can probably be regarded as incidental usage (Table 1).

3.2  |  Bryophytes in great tit nests and on the 
ground in the surrounding areas

We studied the abundance of bryophyte species in 18 great tit nests 
and in a total of 167 vegetation plots in surrounding areas. A total of 
26 bryophyte species were found, 16 in the tit nests and 24 species 
in the plots. Two bryophyte species were recorded in tit nests only 
(in one nest each). Ten species were found in the plots only. Four 
of these were common and occurred in more than 7% of the plots. 
The median number of bryophyte species was four in great tit nests 
and five in the plots. Of the 17 species found in more than 3% of the 
total number of samples, three species showed significantly higher 
abundance in the tit nests than in the plots, i.e., Pleurozium schre-
beri, Rhytidiadelphus squarrosus, and Sanionia uncinata, and three 
species showed significantly lower abundance, i.e., Dicranum spp., 
Plagiomnium spp., and Plagiothecium spp. (Figure 6). For 11 species, 

there was no significant difference in abundance between nests and 
plots.

The choice of bryophytes by great tits was not purely opportu-
nistic, but showed a preference for certain bryophyte species, as re-
vealed by the significantly shorter DCA distances between the nests 
than between the nests and the respective local plots (m0 = 1.08, 
n = 153, vs. m1 = 1.48, n = 334; p < .001). This means that there was 
far more similarity between the nests than between the nests and 
the epigeic bryophyte community in the surroundings.

Great tits seemed primarily to use bryophytes found close to 
the nest (Figure 7). First, the DCA distance was almost significantly 
shorter for nests built in the same box but in different years than for 
nests from different boxes (m0 = 0.82, n = 9, vs. m1 = 1.09, n = 144; 
p =  .067). Second, the bryophyte species composition of the nests 
was significantly more similar to that of the respective local plots 
than to that of more distant plots (plots surrounding the other nests), 
as revealed by the much shorter DCA distances (m0 = 1.48, n = 334, 
vs. m1 = 1.67, n = 2672; p < .001). Third, the bryophyte species com-
position of plots in the sector nearest to a nest box (radius of 5 m 
from the tree with the box) was significantly more similar to the 
bryophyte species composition of the nests (shorter DCA distances) 
than the species composition of the more distant sectors (p = .002).

4  |  DISCUSSION

Our main findings were that the use of bryophytes as nest materials 
was quite similar in blue tits and great tits, and that great tits col-
lected bryophyte species selectively and not at random in propor-
tion to availability within their territory. Finally, great tits probably 
collected most of the bryophytes within a distance of only 5 m from 
the nest.

F I G U R E  4 Boxplot of the number of bryophyte species used 
in blue tit nests (n = 35) and great tits (n = 34). The horizontal line 
in each box is the median value, the box shows the interquartile 
range, and the whiskers show the range of the data.
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F I G U R E  5 DCA ordination of the bryophyte species 
composition of blue and great tit nests.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

DCA axis 1 (S.D. units)

D
C

A
 a

xi
s 

2 
(S

.D
. u

ni
ts

)

Great tit (n=34)
Blue tit (n=35)



6 of 12  |     RYDGREN et al.

4.1  |  Blue tits and great tits used similar 
species of bryophytes

Blue tit and great tit nests contained about the same number 
of bryophyte species, generally the same species and in similar 
abundances. Pleurocarpous mosses dominated. These have highly 
branched, interwoven stems (Shaw et al., 2003). This seems to be a 
common pattern in nest building by the two tit species (Wesołowski 
& Wierzcholska, 2018). The use of a few dominant bryophyte spe-
cies in the nest is also common in other birds that use large quantities 
of bryophytes such as the prothonotary warbler, Protonotaria citrea 
(Blem & Blem,  1994), pied flycatcher, Ficedula hypoleuca (Briggs & 
Deeming, 2016), and many other species (Glime, 2017b).

In general, blue tits forage higher above the ground than great tits, 
which spend much time on the ground (Slagsvold & Wiebe, 2007). 
This seems to be reflected in their use of nest materials; blue tits 
use more epiphytic bryophytes collected from tree trunks, and great 
tits mainly use epigeic species (Glądalski et al., 2021; Henze, 1962; 
Wesołowski & Wierzcholska, 2018). Thus, the nest materials used 
by the two species will probably reflect the comparative availabil-
ity of epiphytic and epigeic bryophytes in their territories. This may 

explain why there were noticeable differences between the two 
tit species in Białowieża National Park in Poland (Wesołowski & 
Wierzcholska,  2018). Our results, with only small differences be-
tween the two tits, are similar to those from urban parks and decidu-
ous forest in Łódź, Central Poland (Glądalski et al. (2021). The results 
may be typical of habitats with poor bryophyte epiphytic flora such 
as our study site in Norway, and probably many other boreal areas.

4.2  |  Selective choice of bryophytes by great tits

Our results show that the great tits are selective in their use of 
bryophytes as nest materials. First, there was closer similarity in 
bryophyte species composition across all the great tit nests than in 
the epigeic bryophyte species composition across the sample plots 
surrounding the tit nests. This was largely because the great tits 
showed a disproportionally strong preference for the pleurocarpous 
mosses Pleurozium schreberi, Rhytidiadelphus squarrosus, and Sanionia 
uncinata, and a disproportionally weak preference for the acrocar-
pous Dicranum, and pleurocarpous Plagiomnium, and Plagiothecium 
species. Our results add to recent research from Poland showing 

Great tit Blue tit

Growth form Freq. Mean Range Freq. Mean Range

Brachythecium spp. P 44 4 0–18 54 24 0–85

Cirriphyllum 
piliferum

P 12 6 0–15 17 20 0–60

Climacium 
dendroides

P 3 1 0–1 – – –

Dicranum spp. A 24 2 0–11 43 5 0–36

Hylocomium 
umbratum

P 9 9 0–20 3 20 0–20

Hylocomium 
splendens

P 47 10 0–45 37 26 0–81

Hypnum spp. P 3 1 0–1 6 2 0–2

Leucodon sciuroides P – – – 3 55 0–55

Plagiomnium spp. P – – – 9 1 0–1

Plagiothecium spp. P 6 3 0–5 20 1 0–2

Pleurozium schreberi P 82 24 0–80 66 28 0–83

Polytrichum spp. A 15 2 0–4 3 1 0–1

Ptilium 
crista-castrensis

P 15 17 0–80 17 21 0–87

Rhytidiadelphus 
loreus

P 6 26 0–50 6 28 0–55

Rhytidiadelphus 
squarrosus

P 76 45 0–89 57 32 0–85

Sanionia uncinata P 41 24 0–94 40 24 0–94

Sphagnum spp. S 3 1 0–1 – – –

Note: Growth form—A, Acrocarpous, P, Pleurocarpous; S, Spagnum; Freq.—percentage of nests 
where the bryophyte species occurred; n = 34 for the great tit and n = 35 for the blue tit; Mean—
arithmetic mean of the abundance of each bryophyte species, calculated from the nests in which 
the species was present; Range—range of values.

TA B L E  1 Occurrence of bryophyte 
species in nests of blue tits and great tits 
built in 1997.
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that great tits (and blue tits) are skilled “bryologists” with strong 
preferences for certain species (Glądalski et al., 2021; Wesołowski 
& Wierzcholska, 2018).

Usually, blue tits and great tits build the nest cup on a thick 
foundation of bryophytes. This supports the nest, and may also 
insulate its contents and absorb water, avoiding moisture in the 
nest cup (Biddle et al., 2019; Deeming et al., 2020; Wesołowski & 
Wierzcholska,  2018). However, it is not evident what makes cer-
tain species of bryophytes more suitable than others. There are 
several possible hypotheses (cf. Deeming & Mainwaring,  2015; 
Glime,  2017b). One hypothesis assumes that variation in the mi-
crohabitats in which the bryophytes are found affects how difficult 
they are to reach (Glądalski et al., 2021). Some species may grow in 
more exposed sites than others, possibly affecting the risk of preda-
tion. During nest building, females may be particularly vulnerable to 
predation by avian raptors, as has been shown for pied flycatchers 
Ficedula hypoleuca in our study area (Slagsvold & Dale, 1996).

A second hypothesis assumes that the time it takes to col-
lect different bryophytes varies, for instance depending on how 
difficult it is to pick up bundles of suitable sizes (Wesołowski & 
Wierzcholska, 2018). Longer handling times may increase the risk 
of predation by avian raptors, particularly when collecting items 
on the ground (Slagsvold & Dale, 1996). This may account for dif-
ferences between the tit species in bryophyte use (Wesołowski & 
Wierzcholska, 2018), assuming that the blue tit avoids spending time 
on the ground where it has less foraging experience than the great 
tit. However, constraints related to predation risk can hardly be a 
general explanation because epigeic bryophytes were not chosen at 
random, at least not by great tits.

A third hypothesis is that great tits prefer bryophyte species 
with a higher water-absorbing capacity. Nest materials differ in 
their absorbing capacity, and nests consisting of large quantities of 
bryophytes generally absorb much water and dry out slowly (Biddle 

et al., 2019; Slagsvold, 1989). However, the bryophyte species dif-
fer in their water storage capacities and evaporation rates (Busby 
et al.,  1978; Elumeeva et al.,  2011; Michel et al.,  2012; Proctor 
et al., 2007), but so far, there is no indication that our studied tit spe-
cies select bryophytes based on differences in water-absorbing ca-
pacity between the bryophytes (Wesołowski & Wierzcholska, 2018). 
A fourth hypothesis is that the different structural properties of 
bryophyte species result in varying insulation properties (e.g., 
Deeming & Mainwaring, 2015). Bryophytes are important as insu-
lators in birds' nests (Deeming et al., 2020), but their suitability may 
differ, but to our knowledge, this has so far not been examined. Tits 
generally line the nest cup with a thick layer of materials with excel-
lent insulation properties (fur, hair, and feathers), but the bryophyte 
layer under the nest cup and in the nest wall may be important, for 
instance for maintaining air gaps (Glądalski et al., 2021).

A fifth hypothesis is that preferences are related to the suit-
ability of bryophytes as structural materials, both to construct a 
nest with the desired form and to avoid early collapse of the nest 
cup as the nestlings become older and more active (Wesołowski 
& Wierzcholska,  2018). Pleurocarpous mosses with their highly 
branched and interwoven stems are probably better building mate-
rials than acrocarpous mosses, which show little or no branching. 
A sixth hypothesis is that preferences may be related to potential 
food sources, as shown for the Japanese tit (Parus minor), which has 
higher fledging success with bryophyte nest material containing 
moths (Glime, 2017a; Hamao et al., 2016). A seventh hypothesis is 
that tits avoid unbranched bryophytes because ectoparasites like 
hen fleas, reducing the birds´ breeding success (Heeb et al., 2000), 
may hide more readily in such substrates.

Finally, the eighth hypothesis (e.g., Clark & Mason,  1988; 
Wimberger, 1984) is that birds use green plants in their nests that 
contain secondary compounds that deter avian ectoparasites. 
Originally, this nest protection hypothesis concerned vascular plants 

F I G U R E  6 Six bryophyte species 
showing significantly higher (left) 
or lower (right) abundance (cover) 
in great tit nests (n = 18) than in 
the vegetation (veg) in surrounding 
areas. Higher: Pleu sch = Pleurozium 
schreberi; Rhyt_squ = Rhytidiadelphus 
squarrosus; Sani_unc = Sanionia uncinate. 
Lower: Dicr_spp = Dicranum spp.; 
Plag_spp = Plagiomnium spp.; Plgt_
spp = Plagiothecium spp.
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that were not part of the nest structure properly (Wimberger, 1984). 
However, birds' preferences for specific bryophyte species may be 
related to their production of secondary metabolites with antimi-
crobial, antifungal, or antibacterial bioactivity (Horn et al.,  2021; 
Klavina et al.,  2015), which may reduce populations of pathogens 
and ectoparasites in the nest environment. Little is known about 
how the presence of different bryophytes in a nest, influences living 
conditions for pathogens and parasites. A recent study of a gener-
alist hummingbird species by Fontúrbel et al. (2020) does, however, 
support the hypothesis. In our study, two of the bryophytes strongly 
preferred by great tits, Pleurozium schreberi and Rhytidiadelphus 
squarrosus, have shown antimicrobial, antifungal, or cytotoxic ef-
fects (Nikolajeva et al., 2012; Veljić et al., 2008; Wolski et al., 2021). 
However, more research is still needed on the relationships be-
tween bryophytes and the pathogens and parasites in bird nests 
(Glime, 2017b).

4.3  |  Great tits collected bryophytes close 
to their nests

First, we found great similarity between bryophyte species compo-
sition in great tit nests in the same nest box, and thus within the 
same local microhabitat, across years. This indicates that great tits 
fly short distances when collecting nest material and as predicted, 
given the assumption that the abundance of different bryophyte 
species within a local forest area is rather similar in years without 
disturbances (Rydgren et al., 2004). Next, we compared the bryo-
phytes found in great tit nests with the epigeic bryophytes growing 
in the plots located within 20 m of each tit nest. These results indi-
cated that most of the materials were collected within close range 
and probably within only 5 m. Thus, the tits seemed to minimize the 
time and energy spent collecting by flying as short a distance as pos-
sible but at the same time seeking specific bryophytes. Our results 
are consistent with the general view that nest building in birds is 
costly (Mainwaring & Hartley, 2013), which was supported by sup-
plementary feeding experiments in the two tit species (Mainwaring 
& Hartley, 2009; Smith et al., 2013).

4.4  |  Heritability and learning of preferences

Increasing evidence suggests that birds' nest material preferences 
are not entirely genetically predetermined, since they can ad-
just nest construction based on experience (Breen,  2021; Breen 
et al.,  2016; Camacho-Alpízar et al., 2021). To our knowledge, to 
what extent preferences for certain bryophyte species are inherited 

is not known. However, some information exists on the use of feath-
ers as lining materials. Cross-fostering between great tits and blue 
tits in the field showed that the use of feathers is not a result of 
cultural transmission (Aasen & Slagsvold, 2020). In another study of 
blue tits, repeatability in the use of feathers by individual females 
across years was low (Järvinen et al., 2017), as was the similarity 
between mother and daughter, both in feather use and in nest depth 
(Järvinen et al., 2017; O'Neill et al., 2018).

5  |  CONCLUSIONS AND 
RECOMMENDATIONS

In the present study, we demonstrated the importance of obtain-
ing quantitative data on the specific materials found in bird nests, 
as emphasized by many authors (e.g., Biddle et al., 2017; Deeming 
& Mainwaring, 2015). In addition, we compared the bryophyte spe-
cies found in tit nests with the bryophyte species composition in 
the immediate surroundings of the nests. The study design made 
it possible to reject the null hypothesis that bryophyte choices by 
great tits were random.

We advocate closer collaboration between ornithologists and 
bryologists to investigate the bryophyte species composition of bird 
nests and not just the total mass or volume of bryophytes. We also 
advocate adopting a sampling design like ours to obtain multivariate 
data sets that can be analyzed by ordination. As with other data anal-
yses, there may sometimes be a mismatch between the model and 
the data, and ordination may produce spurious axes (Økland, 1990). 
To ensure that the ordination axes represent the true structure, two 
ordination methods from different families should be used in par-
allel to enhance the detection of artifacts in the results (van Son & 
Halvorsen, 2014).

More insights can be gained by conducting choice experi-
ments (Briggs & Mainwaring, 2019; McGowan et al., 2004; Surgey 
et al.,  2012). Alternatively, the moss layer in some tit nests could 
be exchanged for a similar layer of nonpreferred bryophyte spe-
cies to study whether the bryophyte content affects the insulation 
properties of the nest, the risk of collapse of the nest structure, the 
abundance of fleas, and overall breeding success. Heritability may 
be studied in the same way as has been done for feathers, by cross-
fostering between and within species, by comparing nest building 
between mothers and daughters, and by comparing nest building by 
individual females both within and between breeding seasons.
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