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Abstract

The enantioselective installation of a methyl group onto a small molecule can result in the 

significant modification of its biological properties. While hydroalkylation of olefins represents 

an attractive approach to introduce alkyl substituents, asymmetric hydromethylation protocols 

are often hampered by the incompatibility of highly reactive methylating reagents and a lack of 

general applicability. Herein, we report an asymmetric olefin hydromethylation protocol enabled 

by CuH catalysis. This approach leverages methyl tosylate as a methyl source compatible with 

the reducing base–containing reaction environment, while a catalytic amount of iodide ion 

transforms the methyl tosylate in situ into the active reactant, methyl iodide, to promote the 

hydromethylation. This method tolerates a wide range of functional groups, heterocycles, and 

pharmaceutically relevant frameworks. Density functional theory studies suggest that after the 

stereoselective hydrocupration, the methylation step is stereoretentive, taking place through an 

SN2–type oxidative addition mechanism with methyl iodide followed by a reductive elimination.
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The introduction of a methyl group, despite its small size and simplicity, can induce 

profound changes in the properties of a molecule.1–4 In biologically active compounds, the 

incorporation of a methyl group may result in conformational changes which increase the 

structural complementarity of a lead compound to its target receptor with minimal impact 

on its molecular weight and lipophilicity (Figure 1A).5–7 While common approaches for 

the introduction of other single-carbon fragments rely on the asymmetric functionalization 

of olefins,8–13 few strategies have been reported for the direct installation of methyl 

groups. Standard methods to directly install methyl groups rely on conjugate additions to 

polarized olefins using preformed organometallic reagents facilitated by chiral Lewis acid 

catalysts.14–17

Hydromethylation is an attractive approach for the introduction of a methyl group to an 

olefin. Even though not enantioselective, some notable methods to hydromethylate olefins 

include Kambe’s Zr–catalyzed reductive coupling protocol18 and Tilley’s Sc-catalyzed 

methane C–H activation process.19 Additionally, Baran has developed a formal olefin 

hydromethylation protocol, utilizing Fe-catalyzed H-atom transfer and a formaldehyde 

hydrazone as the methyl surrogate.20 The reaction demonstrated a high degree of functional 

group tolerance and was used in the late-stage functionalization and isotopic labeling of 

complex molecules. More recently, Shenvi disclosed a hydroalkylation protocol utilizing 

Ni/Mn dual catalysis, in which Mel and CD3I were utilized to afford the corresponding 

methylated products,21 and Nocera has reported on the use of photochemically generated 

Me-radical from acetic acid.22 Finally, Frederich delineated the use of a superstoichiometric 

quantity of Tebbe’s reagent.23 Despite the emergence of several formal hydromethylation 

strategies, controlling the absolute stereochemistry at the newly formed C–Me bond remains 

a largely elusive goal (Figure 1B).18–24 The most relevant asymmetric variant is limited to 

Lu and Fu’s elegant Co-catalyzed hydromethylation of fluoroalkenes (Figure 1C).25

Our group and others have leveraged CuH-catalysis to forge C–C bonds in a 

variety of enantioselective transformations,26 including intramolecular hydroalkylation,27 

intermolecular allylation,28 and 1,2-carbonyl addition.29–36 These reactions utilize an in 
situ generated enantioenriched Cu-alkyl species to engage various electrophiles. We sought 

to employ a CuH-catalyst system in combination with an appropriate electrophilic methyl 

source to effect the enantioselective hydromethylation of olefins (Figure 1D).37,38 Due to the 

highly reactive nature of common electrophilic methyl sources, such as methyl iodide,39,40 

we anticipated the major challenge to be the incompatibility between the methylating 

reagents and reducing reaction conditions and/or the base necessary for CuH generation or 

regeneration. Therefore, we chose to employ a less reactive methyl source, methyl tosylate 

(MeOTs).41

We commenced our investigation by examining the hydromethylation of a styrene allylic 

ether (1a), employing MeOTs as the methyl source. Utilizing several bidentate chiral 

bisphosphine ligands (L1–L5) in combination with CuOAc, the olefin hydromethylation 

product 2a was formed in moderate yield and low er (entries 1–5, Table 1). We identified 

(S)–DTBM–SEGPHOS (L5) as the optimal ligand, among those we tested, for this 

transformation (entry 5). Examining various copper(l) halides (entries 6–8) revealed that 

the use of Cul provides the desired product in excellent yield and with a very high level 
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of enantioselectivity. To simplify the reaction protocol, a precatalyst (L5)CuI (P1) was 

prepared and utilized in subsequent experiments. The use of P1 afforded 2a in similar yield 

and selectivity to that obtained using a mixture of Cul and L5 (entry 9).

The improved reaction outcome with the use of CuI prompted further investigation into the 

role of iodide ion.42,43 A series of experiments were carried out by systematically varying 

the equivalents of iodide ion in the presence of a constant amount of copper (6 mol % Cu; 

entry 10: 12 mol % I−; entry 11: 9 mol % I−; entry 12: 4.5 mol % I−; entry 13: 3 mol 

% I−; entry 14: 1.5 mol % I−; see Supporting Information, Table S2). We observed that 

increasing the iodide ion concentration concomitantly led to increased enantioselectivity of 

2a and decreased conversion of 1a (entry 10). We hypothesized that the in situ formation 

of methyl iodide (MeI)42,43 facilitates the asymmetric hydromethylation through a proposed 

catalytic cycle shown in Scheme 1. Enantioselective hydrocupration of 1a with ligated CuH 

species (3) generates the Cu-alkyl intermediate (4). Catalytic quantities of I− convert MeOTs 

to the more reactive MeI,44 which undergoes methylation with 4 to form product 2a. The 

resulting ligated CuI intermediate regenerates 3 through sequential Cu–alkoxide generation 

and σ-bond metathesis with PhMe2SiH. Two competing processes take place concurrently: 

(1) the epimerization of 4,45 and (2) the trapping of MeI by NaOTMS. With a higher iodide 

ion concentration, the more rapid methylation of 4 with Mel leads to the observed increase 

in enantioselectivity. At the same time, higher iodide ion concentrations increase the rate 

of MeOTMS formation, leading to the observed decrease in conversion. In a similar way, 

lowering the effective concentration of Mel increases the steady-state concentration of 4, 

which facilitates the productive methylation while minimizing trapping of the methylating 

reagent (see Supporting Information for detail, Scheme S1). Taken together, modulating the 

iodide ion concentration offers an operationally simple handle to tune the enantioselectivity 

or yield of this reaction.

Density functional theory (DFT) calculations were carried out to corroborate our proposed 

hydromethylation catalytic cycle, namely the participation of in situ formed Mel and 

the apparent iodide effect. The calculations were performed at the M06/6–311+G(d,p)-

SDD(Cu, I)/SMD(THF)//B3LYP-D3/6–31G(d)-SDD(Cu, I) level of theory using 1a as the 

model substrate with L5-supported Cu catalyst (Figure 2; see Supporting Information for 

Computational Details). The hydrocupration of 1a with CuH catalyst 3 through TS-1 was 

found to be exergonic and kinetically facile, preferentially giving (R)-Cu-alkyl intermediate 

4. The hydrocupration TS leading to (S)-Cu-alkyl intermediate 4′ (via TS-1′) is 7.7 

kcal/mol higher in energy than TS-1, due to the substituents of the alkene being placed in 

quadrants occupied by the C2-symmetric ligand L5, leading to unfavorable steric repulsions 

(see Supporting Information, Figure S3).46

From Cu-alkyl intermediate 4, we first assessed the reactivity of MeI toward methylation 

through an SN2-type oxidative addition47–49 via TS-2A (ΔG‡ = 18.7 kcal/mol with respect 

to 4; see Supporting Information, Figure S4 for 3D TS structures). The resulting cationic 

species 5 undergoes rapid stereoretentive reductive elimination (via TS-3) to furnish 2a,47 

which is consistent with the absolute configuration of the hydromethylation products 

(vide infra). The activation barrier for the methylation using MeOTs as the methylating 

reagent via TS-2D is 12.8 kcal/mol higher in energy than TS-2A, suggesting that MeI 
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is indeed the active form of the methylating reagent and the higher reactivity of MeI 

is critical to suppressing benzylcopper epimerization45 and thus achieving higher product 

enantioselectivity.50

Several alternative methylation mechanisms involving MeI were also considered. 

Methylation through the direct SN2 nucleophilic substitution via TS-2B (see Figure 

S5 for 3D TS structures),48‘49 involving simultaneous formation of the C–C bond and 

the dissociation of the C–I and Cu–C bonds, requires a 6.4 kcal/mol higher barrier 

than TS-2A. This indicates that this stereoinvertive pathway is less favorable than the 

stereoretentive pathway via TS-2A and TS-3. The concerted oxidative addition via a three-

centered transition state TS-2C is 18.2 kcal/mol less favorable. Finally, the outer-sphere 

concerted dissociative electron transfer (DET) mechanism51,52 was also ruled out due to 

the high activation barrier (ΔG‡
sol = 22.8 kcal/mol with respect to 4) calculated using the 

modified Marcus theory (see SI for details).53,54 Collectively, these computational results 

corroborated our proposed catalytic cycle and provided insight into the mechanism by which 

the critical C–CH3 bond is formed.

We then used our mechanistic understanding of the olefin hydromethylation protocol to 

aid our exploration for substrates amenable to this transformation (Table 2). Given our 

understanding of the role of iodide ions in this reaction, we first optimized reaction 

conditions by modulating the loading of P1 and/or adding substoichiometric quantities 

of MeI. For instance, in the case of olefins that delivered good yields in the presence 

of P1 alone, substoichiometric MeI was added to increase the enantioselectivity of the 

transformation (2g and 2l). For substrates that exhibited low conversions under the standard 

reaction conditions, decreasing the amount of P1, thereby reducing the effective iodide 

ion concentration, led to an increased product yield at the expense of enantioselectivity 

(vide supra, 2h–k, 2n). Additionally, slow addition of MeOTs was demonstrated to be a 

viable method to increase the product yield (2d and 2f). The reaction proceeded effectively 

with substrates bearing both electron-donating and -withdrawing functional groups. A range 

of heterocycles were also well-tolerated, such as indazole (2c), pyrrole (2d), benzoxazole 

(2e), piperazine (2f), pyrrolidine (2g), furan (2g), indole (2h), thiophene (2l), oxazole 

(2m), morpholine (2p), and phenothiazine (2p). Several pharmaceuticals were derivatized 

to further demonstrate the functional group compatibility of this protocol, including from 

antihistamine Cinnarizine (2f), respiratory stimulant Ethamivan (2k), nonsteroidal anti-

inflammatory Oxaprozin (2m), and anti-infective Naftifine (2n). To access 2m in high 

yield, NaOTMS was slowly introduced to the reaction mixture to prevent deprotonation at 

the α-carbon of the ester. The absolute configuration of the products was determined by 

comparing the optical rotation of 2b, 2d, and 2i to literature values.55–57

To further highlight the synthetic utility of the asymmetric olefin hydromethylation protocol, 

the synthesis of 2k was carried out on a 5.0 mmol scale, resulting in improved yield and 

comparable enantioselectivity to the 0.5 mmol scale reaction (Scheme 2A). To showcase 

the utility of our method, we devised a three-step asymmetric synthetic sequence to 

8a, a substrate which binds the σ1-receptor (Scheme 2B).58 Starting from commodity 

chemical 2-bromo-6-methoxynaphthalene (8b), a Pd-catalyzed Heck reaction between 8b 
and 1,1-diethoxyethene furnished the α,β-unsaturated aldehyde 8c in high yield. Subsequent 
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reductive amination (8d) followed by CuH-catalyzed hydromethylation furnished 8a in high 

enantiomeric purity (95:5 er) and 27% yield over three steps. The general substructure of 8a 
is widely present in a range of pharmaceutical lead compounds.59–66

In summary, we have developed a CuH-catalyzed enantioselective olefin hydromethylation 

protocol. This method is tolerant of a wide range of functional groups and heterocycles. 

This method was also used for the derivatization of several pharmaceuticals, and in a 

concise three-step asymmetric synthesis of a σ1-receptor binding molecule. Mechanistic 

evidence suggests a crucial role of catalytic iodide ion in effecting both the yield and 

enantioselectivity of the asymmetric methylation. Density functional theory calculations 

revealed that the methylation occurs through an SN2-type oxidative addition giving a formal 

Cu(III) intermediate, which undergoes reductive elimination to furnish the methylated 

product.

Supplementary Material
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Figure 1. 
(A) Representative examples of drug potency increase resulting from the incorporation of 

a methyl group. (B) Recently reported synthetic protocols for olefin hydromethylation. (C) 

Co-catalyzed asymmetric hydromethylation of fluoroalkene precursors. (D) Asymmetric 

olefin hydromethylation using CuH-catalyst supported by chiral bisphosphine ligands.
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Figure 2. 
Computed reaction energy profile (kcal/mol) of the Cu-catalyzed asymmetric 

hydromethylation.
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Scheme 1. Proposed Catalytic Cycle
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Scheme 2. Application of the CuH-Catalyzed Asymmetric Hydromethylation Reaction
aReaction conditions: 1,1-diethoxyethene (3.0 equiv), Pd(OAc)2 (20.0 mol %), KCl (1.0 

equiv), K2CO3 (1.5 equiv), (nBu4N)(OAc) (2.0 equiv), DMF, 90 °C, 16 h. bReaction 

conditions: (1) N-methylbenzylamine (4.0 equiv), H2SO4 (5 mol %), DCM, 25 °C, 2 h; 

(2) NaBH4 (2.0 equiv), DCM, 25 °C, 6 h.
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Table 1.

Optimization of the Enantioselective Hydromethylation of (E)-(3-(Benzyloxy)prop-1-en-1-yl)benzene (1a) 

Employing MeOTs as the Methyl Source
a

a
Reaction conditions: 0.20 mmol of (E)-(3-(benzyloxy)prop-1-en-1-yl)benzene (1a, 1.0 equiv), 0.30 mmol of MeOTs (1.5 equiv), 0.40 mmol of 

sodium trimethylsilanolate (NaOTMS, 2.0 equiv), 0.40 mmol of PhMe2SiH (2.0 equiv), specified catalyst mixture, and THF (0.4 M); reaction 

yields were determined by 1H NMR spectroscopy of the crude reaction mixture using 1,1,2,2-tetrachloroethane as an internal standard (see SI for 
details). Enantiomeric ratio (er) of 2a was determined by chiral supercritical fluid chromatography (SFC).

b
A catalyst mixture of P1 (6.0 mol %) and MeI (6.0 mol %) was employed; a significant amount of 1a (43%) was observed in the product mixture.

c
A catalyst mixture of P1 (6.0 mol %) and MeI (3.0 mol %) was employed.

d
A catalyst mixture of P1 (4.5 mol %) and P2 (1.5 mol %) was employed.

e
A catalyst mixture of P1 (3.0 mol %) and P2 (3.0 mol %) was employed.

f
A catalyst mixture of P1 (1.5 mol %) and P2 (4.5 mol %) was employed.
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