Bioinformatics, 39(3), 2023, btad097
https://doi.org/10.1093/bioinformatics/btad097
Advance Access Publication Date: 2 March 2023
Original Paper

OXFORD

Sequence analysis
AGC: compact representation of assembled genomes

with fast queries and updates

2,3, %

Sebastian Deorowicz ® "*, Agnieszka Danek ® ' and Heng Li

'Department of Algorithmics and Software, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of
Technology, Akademicka 16, Gliwice 44-100, Poland, 2Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215,
USA and Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA

*To whom correspondence should be addressed.
Associate Editor: Tobias Marschall

Received on June 23, 2022; revised on January 13, 2023; editorial decision on February 20, 2023

Abstract

Motivation: High-quality sequence assembly is the ultimate representation of complete genetic information of an
individual. Several ongoing pangenome projects are producing collections of high-quality assemblies of various
species. Each project has already generated assemblies of hundreds of gigabytes on disk, greatly impeding the
distribution of and access to such rich datasets.

Results: Here, we show how to reduce the size of the sequenced genomes by 2-3 orders of magnitude. Our tool
compresses the genomes significantly better than the existing programs and is much faster. Moreover, its unique
feature is the ability to access any contig (or its part) in a fraction of a second and easily append new samples to the
compressed collections. Thanks to this, AGC could be useful not only for backup or transfer purposes but also for
routine analysis of pangenome sequences in common pipelines. With the rapidly reduced cost and improved
accuracy of sequencing technologies, we anticipate more comprehensive pangenome projects with much larger
sample sizes. AGC is likely to become a foundation tool to store, distribute and access pangenome data.

Availability and implementation: The source code of AGC is available at https://github.com/refresh-bio/agc. The

package can be installed via Bioconda at https://anaconda.org/bioconda/agc.
Contact: sebastian.deorowicz@polsl.pl or hengli@broadinstitute.org
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Rapidly evolving long-read sequencing technologies such as Pacific
Biosciences and Oxford Nanopore have enabled routine haplotype-
resolved assembly of haploid and diploid genomes (Cheng et al.,
2021; Nurk et al., 2022). We have started to sequence and de novo
assemble collections of samples from the same species (Bayer et al.,
2020; Ebert et al., 2021; Jayakodi et al., 2020; Leger et al., 2022;
Miga and Wang, 2021). For example, the Human Pangenome
Reference Consortium (HPRC) has released 94 haplotype assemblies
and plans to produce additional 600 assemblies in the next few years
(Miga and Wang, 2021; Wang et al., 2022). Nowadays, their total
size is about 290 GB of uncompressed FASTA files and in the future
it will grow to about 2 TB. These haplotype assemblies do not only
encode small variants but also represent complex structural varia-
tions in segmental duplications and centromeres, empowering the
investigation of genetic sequence variations at full scale for the first
time. Currently, we use generic compression tools, such as gzip, to
compress collections of similar genomes. Despite high similarity be-
tween genomes, these tools can only achieve a 4-fold compression
ratio.

©The Author(s) 2023. Published by Oxford University Press.

There are, however, some specialized tools able to compress bet-
ter. NAF (Kryukov et al., 2019) is a simple utility that can be used,
among others, for FASTA files with genome assemblies. The proc-
essing is very simple. Nucleotide symbols are packed 4 into a single
byte. Then, they are compressed using a general-purpose zstd com-
pressor. The gains over generic tools are thus little. GeCo3 (Silva
et al., 2020) combines neural networks with specific DNA models.
This gives better ratios than NAF, but the compression of a 1 GB
file takes an hour, making the tool impractical for large collections.
HRCM (Yao et al., 2019) implements a specialized variant of the
LZSS algorithm (Storer and Szymanski, 1982) that searches for
matches between the sequence currently processed and the reference
sequence. In addition, it also employs second-level matching,
inspired by FRESCO (Wandelt and Leser, 2013) and GDC2
(Deorowicz et al., 2015), in which the same matches are identified
between different sequences and the reference for more efficient
encoding. The results are compressed using a PPMD compressor
(Shkarin, 2002). The compression ratios of HRCM are much better
than those of NAF, but even better results are given by the recently
published MBGC (Grabowski and Kowalski, 2022) tool. It uses a

1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

https://orcid.org/0000-0002-9496-733X
https://orcid.org/0000-0003-1953-0880
https://orcid.org/0000-0003-4874-2874
https://github.com/refresh-bio/agc
https://anaconda.org/bioconda/agc
https://academic.oup.com/

S.Deorowicz et al.

hash table to index the reference sequence and then looks for
matches between the new sequences and the reference. It checks,
however, also matches in the reverse-complemented sequence,
which sometimes is beneficial. After encoding each contig, MBGC
calculates how many symbols are not covered by any match. If this
value is larger than about 0.5%, this contig is added to the reference
sequences set, i.e. it is indexed using a hash table. Thanks to this ap-
proach, parts of the genomes not seen before can serve as references
for the remaining genomes of the collections. The matches found are
compressed using the LZMA algorithm (Salomon and Motta,
2010).

Both HRCM and MBGC can localize matches among any
sequences in the collection. This helps if we aim at the best compres-
sion ratio. Nevertheless, the extraction of a selected part of the col-
lection, e.g. a single contig (or sample), is problematic, because we
need to decompress everything that was compressed before the con-
tig in query. This takes time, and the time is long if the collection is
large. Therefore, these tools are mainly intended to reduce transfer
and archival costs. As a result, users have to store uncompressed
data for routine analysis. This severely limits their practical
applications.

Historically, the first attempts to compress collections of
genomes were RLZ (Kuruppu et al., 2010) and GDC (Deorowicz
and Grabowski, 2011). Both tools adapted the Ziv—-Lempel method
to the properties of genome collections. Nevertheless, they assumed
that genome collections are given as sets of complete chromosomes
and processed the data chromosome by chromosome. Nowadays,
the output of de novo assembly is just a set of contigs. The contigs
are of various sizes, and it is unknown what is the origin of each
contig. Thus, the compression problem is much harder and both
RLZ and GDC cannot be used here.

In this article, we present AGC (Assembled Genomes
Compressor), a highly efficient compression method for the collec-
tion of assembled genome sequences of the same species. The com-
pressed collection can be easily extended by new samples. AGC
offers fast access to the requested contigs or samples without the
need to decompress other sequences. The tool is implemented as a
command-line application. Access to the data is also possible using
C, C++ and Python programming libraries.

2 Materials and methods

2.1 The general idea

The main contribution of the algorithm is the way it represents the
assembled genomes and how it supports fast access to the com-
pressed data. Compression is a three-stage process. Initially, a refer-
ence genome (provided by the user) is analyzed to find unique
candidate k-mers (short sequences of length k; 31 by default). In the
second stage, the reference is analyzed one more time to find spliz-
ters, which are candidate k-mers distant (in the contigs) from each
other by approximately segment size (60 kb by default). Proper com-
pression is performed at the third stage, which is executed separately
for each added genome. Here, AGC uses splitters to divide each con-
tig into segments. Then, the segments are collected in groups using
pairs of terminating splitters to have in the same group segments
that are likely highly similar to each other. The actual implementa-
tion is more complicated to allow AGC to handle segments with
only one terminating splitter (at contig boundaries) or in a situation
in which some splitter is ‘missing’ (e.g. due to some evolutionary
event). Some insight into such situations is given in Figure 1, and
more details are given in the following subsections. The first seg-
ment of a group serves as a reference. The remaining segments are
processed in blocks (default size 50). Each segment is represented as
descriptions of similarities and differences with respect to the refer-
ence segment. These (usually short) descriptions are concatenated
and compressed with a general-purpose zstd compressor. This
allows a highly efficient representation of not only the similarities
between segments and the reference segment but also among non-
reference segments.

In the decompression of a single contig, it suffices to read the in-
formation about the groups and blocks containing the segments of
the requested contig. Then, AGC decompresses the reference seg-
ments and, partially, also the necessary blocks. In general, the larger
the block size, the better the compression ratio, but the longer the
access time.

The described strategy is a compromise between compression
ratio and access time. It offers very good compression ratios and lim-
its the part of an archive that needs to be decompressed when we
want to extract data. This allows us to use AGC archives directly in
the routine pipelines, greatly reducing storage costs.

2.2 Algorithm overview

The algorithm is implemented as a multithreading application in the
C++17 programming language. It supports all IUPAC codes in
the input data (A, C, G, T, U, R, Y, S, W, K, M, B, D, H, V, N). The
symbols can be lower- and upper-case but before compression
sequences are upper-cased. The application can be run in one of the
modes:

* create—create an archive from FASTA files,

* append—add FASTA files to existing archive,

* getcol—extract all samples (whole collection) from archive,
* getset—extract a sample from archive,

* getctg—extract a contig from archive,

* listset—list sample names in archive,

* listctg—list sample and contig names in archive,

* info—show some statistics of the compressed data.

Initially, the application must be run in create mode to build a
new archive. The user should provide a collection of genomes to
compress and a reference genome. The reference genome can be one
of the genomes in the collection or a reference for the species. The
user can define the parameters of the archive, for example, k-mer
length (default: 31), block size (default: 50) and segment size (de-
fault: 60 000). Then, the user can extend the archive or ask various
types of queries.

There are three main stages of compression:

1. candidate k-mer determination,
splitters determination and
3. adding genomes to the archive.

The first two occur only in the create mode. The last occurs in
the create and append modes.

2.3 Candidate k-mers determination

In the first stage of compression, all k-mers present in the reference
contigs are determined and stored in an array. Then, they are sorted
using a fast in-place variant of the radix-sort algorithm (Kokot
et al., 2018). Finally, the k-mers occurring two or more times are
removed.

2.4 Splitters determination

Each splitter is a candidate k-mer. The number of splitters is more
or less the reference genome size divided by segment size, so for a
human genome and default algorithm parameters it is about 50 000.
To determine the splitters, AGC processes contigs of a reference gen-
ome one by one from the beginning to the end. For each of them, it
looks for the first k-mer that is a candidate k-mer and stores it as
a splitter. Then, it skips segment size bases and looks for the next
splitter, and so on. The last candidate k-mer of a contig is also
a splitter (cf. Fig. 1a).

2.5 Compression of a single genome
The genomes are added to the compressed archive one by one in the
same way. The first genome added is, however, the reference

AGC

() (b)

Splitters

Contig

Contig from the reference (first genome)

(B Tl P [W] [
sgamept sogment segment sogment
Segment ‘seqment seqment Searent

3-tuples representing successive splitters

0 M N S

Segments distributed into groups <group, segment in group>

<1,0>| <2, 0> <8, 0re> <4, 0re> <5, 0> <6, 0> <7, 0> <8, 0>
| [-

(c) (d)
Compression of segments in a single group
(<8)
) ZSTD-compressed Contig (remaining genomes)

<3, - S| o] B T[]

<3 segment segment (split nto two segments) segment

<3: é T segment segment Sagrent

3 —_— ment t

<3, 2 LZ-parsed and concatenated ZSTD-compressed segment seomen

<8,

<2' 3-tuples representing successive splitters

<8, ~

IE O N N e

<8, S—— Iy —>

<3, a LZ-parsed and concatenated ZSTD-compressed Segments distributed into groups <group, segment in group>

<3, 10> <1,0>| <2, 0> <3, Ore> <4, Ore> <5, 0> <6, 0> <7,0> <8, 0>| <9, 0> <10, 0>
=S i — s s o =~ 5 =N

<3, 11> <2, 1> <3, 1> <4, 1re> <5, 1> <6, 1>

<8, 121> x =

<3,18> B |8 ——> I _—

a LZ-parsed and concatenated ZSTD-

Fig. 1. lllustration of the most important stages of the compression algorithm. (a) In the first two stages of the compression, we pick some of the k-mers of the reference genome
(uniformly distributed) as splitters (shown in colors). (b) Compression of the first genome. The contigs are split into segments and distributed into groups according to the ter-
minating splitters. For technical reasons some segments are reverse-complemented (dark-gray-marked,). The 3-tuples represent the successive splitters in the contigs. (c)
Compression of remaining genomes. The contigs are split into segments and distributed into groups. If there is no group identified by a pair of terminating splitters (e.g. blue
and violet) it is checked if there is a triple of consecutive splitters (blue, any, violet). If so, it is assumed that the middle splitter (green) is missing (probably due to some evolu-

tionary event) and (blue, violet) segment is split into two segments: each with only one terminating splitter. Otherwise, e.g. for (brown, yellow) segment, a new group is cre-
ated. (d) Compression of segments in a single group. The reference segment is packed using general-purpose zstd compressor. The remaining segments are processed in blocks:
LZSS-parsed against the reference segment to find similarities and differences, concatenated (red box is a terminator here) and zstd-compressed

genome. The remaining genomes are added in the order provided by
the user.

Each genome is compressed contig by contig. At first, each con-
tig is split into segments. Segment boundaries are defined by splitters
(cf. Fig. 1b). For technical reasons, a splitter is part of both neighbor
segments. There are three types of segments:

* spt-2—segment surrounded by two splitters; the majority of seg-
ments are of this type,

* spt-1—segment with only one splitter; this is usually the case at
contig boundaries,

* spt-O—segment without any splitter; it can happen that for some
short or highly redundant contig it is not possible to localize any
candidate k-mer; such a segment is always a whole contig. Such
a situation can also happen if the whole contig contains a se-
quence not present in the reference genome.

2.5.1 Dealing with spz-2 segments

Most segments of this type are distributed to groups identified by a
pair of splitters they contain. To make this grouping easier, we ‘nor-
malize’ each segment, which means that we compare which of the
canonical splitters is lexicographically smaller. Then, we reverse
complement the segment if it is necessary to ensure that the smaller
splitter is at the beginning of the segment.

The first segment in each group serves as a reference for the
group. It is packed: 1, 2, 3 or 4 symbols into a single byte, depending
on the alphabet size in the sequence. Then, it is compressed using
zstd.

The remaining segments are LZSS-parsed (Storer and
Szymanski, 1982) with respect to the reference segment of the
group. The (usually) much shorter descriptions of the segments are
concatenated into blocks of size block size. The blocks are com-
pressed independently using zstd (cf. Fig. 1c and d).

However, it is possible that a segment of this type will be split
into two segments of type sp#-1. This could happen if we have a seg-
ment with a pair of splitters (sy, s;) and there is no group identified

by this pair. In this situation, we check if the archive already con-
tains groups identified by splitter pairs (s, s3) and (s3, s») for any
splitter s3. If so, we LZSS-parse the current segment with respect to
the reference segments of both groups to find the best division point.
Then we split the segment into two sp#-1 segments. If there is no
such pair of groups, the current segment starts a new group (espe-
cially this is the case when adding the first genome to the archive).

2.5.2 Dealing with sp#-1 type segments

We analyze all groups in which at least one splitter is the same as
the splitter in the current segment. For each such group, we perform
LZSS-parsing to find the group in which the cost of storing the cur-
rent segment will be the smallest. Then, we add the current segment
to this group. A segment of this type can also start a new group if
the LZSS-parsing shows that there are no groups similar to the cur-
rent segment.

2.5.3 Dealing with sp#-0 type segments

The segments of type sp#-0 are randomly distributed (but in a deter-
ministic way) into one of 16 groups. Within each group, segments
are organized in blocks of size block size. Each group is compressed
independently using zstd compressor.

2.6 Archive organization

The archive contains compressed blocks from all groups. It also con-
tains descriptions of the contigs, i.e. the ids of groups and within-
group ids of segments. These descriptions are also zstd-compressed.

2.7 Extending an archive

The archive can be extended by new samples. In this mode, the arch-
ive is partially loaded into the memory. This means that the last
blocks of each group are loaded (but not decompressed until it is ne-
cessary to add anything to them). We also load the descriptions of
the contigs. Then, we proceed as usual when we add new genomes.

S.Deorowicz et al.

2.8 Adaptive mode

For highly divergent species, such as bacteria, better results are pos-
sible if the splitters are determined not only in the reference genome
but also in the remaining genomes. The processing of the reference
is the same as in the default mode. However, when a new genome is
added, the sp#-0 type segments are collected in some buffer (not dir-
ectly stored in the archive). Then, after processing all genome con-
tigs, the k-mers in the buffered contigs are counted, duplicates are
removed, and also the k-mers present in the reference genome
are removed to get sample-candidate k-mers. Then, these k-mers are
used to determine new splitters that extend the global splitters. After
that, the buffered contigs are processed one more time to determine
spt-2, spt-1 and spz-0 segments that are handled as usual.

2.9 Decompression of a contig or a sample
To decompress a contig, it is necessary to read its description to find
which groups will be required. Then, we zstd decompress the refer-
ence segments of the selected groups. If necessary, we also decom-
press one of the blocks in a group, get LZSS-parsing of the requested
segment and reconstruct it. In the query, it is possible to restrict to
only some part of a contig. In this case, we decompress only the seg-
ments necessary to reconstruct the requested part.

Decompression of a sample is just decompression of the contigs
it is composed of.

2.10 Block size choice

The block size has a significant impact on the size of the archive, as
well as compression and extraction time. We performed a few
experiments on the HPRC dataset to measure it. The results will be
discussed in the next section. The default block size value (50) is a
compromise between access time and compression ratio, which
should be used for large genomes, such as humans. For bacterial and
viral datasets, larger values (e.g. 500) should be a better choice.

3 Results

For evaluation, we used several datasets of various species: human,
bacterial and viral (Table 1). The machine used in the tests was
equipped with an AMD 3990X CPU (64 cores clocked at 2.9 GHz),
256 GiB RAM and 3.6 TB NVME disk. All tools were run with 32
threads. The details of the datasets and the command-lines of the
used tools are provided in Supplementary Material.

The largest HPRC dataset consists of 94 human haplotype
assemblies, reference genome (GRCh38) and CHM13 genome from
the T2T consortium (Nurk et al., 2022). With each assembly taking
~3 GB, the entire dataset requires 293.2 GB of space or 79.8 GB
when gzipped. AGC compresses it about 200 times to as little as
1.45 GB in about 12min using 32 threads. MBGC (Multiple
Bacteria Genome Compressor) (Grabowski and Kowalski, 2022) is
the only tool that can compete in terms of compression ratio. It pro-
duces a 1.95 GB archive in three times longer time (Fig. 2a and ¢).

The most significant advantage of AGC is the access time to the
compressed data allowing one to keep the collection in a compact
form and extract the samples, contigs or contig fragments when
requested, both from the command line as well as using program-
ming libraries. For example, the complete human sample can be

Table 1. Datasets used in the experiment

extracted in <3's, independently of the position of the sample in the
collection (Fig. 2b). The contigs can be extracted in even a shorter
time. This is tens of times faster than MBGC and even faster than
extracting from separate gzip archives (Fig. 2b).

Moreover, in contrast to MBGC, AGC can extend the existing
archive with new samples, which takes 10-25s for a single human
genome (Fig. 2d). Extending an MBGC archive means recompress-
ing the whole collection, which takes a lot of time, e.g. a few thou-
sand of seconds to add the last HPRC sample to the archive, and
needs a lot of disk space for temporal storage of the decompressed
collection. Importantly, AGC needs much less main memory (20
GB) than MBGC (110 GB). The appending time is constant for pigz
and 7z as these tools compress each sample separately—they cannot
benefit from repetitions in separate genomes for such large genomes.

Figure 2e shows the decompression times of a single sample as a
function of the position of the sample in the archive. AGC excels
here, decompressing any human sample in <3s. Moreover, its times
are more or less constant. As expected, they are constant also for
pigz and 7z. The decompression time for MBGC is much longer
than of AGC (about two orders of magnitude for the last samples in
the archive). Moreover, the MBGC times increase. This is a conse-
quence of the design of MBGC focused on the best possible ratio
and using all of what was seen as a potential reference for what it
compresses. Thus, during decompression, MBGC needs to decom-
press everything that was compressed before the requested genome.

Experiments with two human datasets, phased (HGSVCp) and
unphased (HGSVCu), from the Human Genome Structural
Variation Consortium, Phase 2 (Ebert ef al., 2021) (36 samples
each) lead to similar conclusions.

AGC appeared to be quite insensitive to the selection of the refer-
ence genome in the human datasets. We examined GRCh38,
CHM13 and randomly selected samples as references and differen-
ces in compression ratio were always <7% (Table 2).

We also experimented with two bacterial datasets, i.e. SALMO
(1000 Salmonella enterica samples) and CAMP (21 988
Campylobacter jejuni samples) from Blackwell ez al. (2021). Here,
MBGC, a tool designed especially for bacterial genomes, wins in
terms of compression ratio by producing smaller archives: 12 MB in-
stead of 21 MB and 121 MB instead of 191 MB. In both cases, the
compacted files are rather small, so the difference is not crucial in
practice. The reason for the advantage of MBGC is the high diver-
sity of bacterial genomes. Therefore, there is no splitter in some con-
tigs, so the (AGC) grouping of segments does not work as well as for
human datasets. To partially overcome the problem, for bacterial
data we used an adaptive compression mode, in which AGC extends
the list of splitters by k-mers from contigs without a known splitter.
In addition, we used a larger block size (500) and a shorter segment
size (1500).

AGQC, on the other hand, clearly leads in extraction times. For a
single sample, it needs less than a second, while MBGC needs tens of
seconds for the larger dataset (Fig. 2b). Furthermore, the extraction
time of AGC increases slowly with increasing collection size. This
suggests that even for huge collections, AGC can still be regarded as
a way of on-line access to the samples stored in a very compact
form.

In the final test in this series, we evaluated the tools for the high-
ly similar collection of ~620k SARS-CoV2 genomes. AGC wins
clearly in terms of compression ratio and access time.

Dataset Species No. of samples Reference genome size (Mb) Size (GB)
HPRC H.sapiens 96 3100 293.2
HGSVCp H.sapiens 36 3100 104.4
HGSVCu H.sapiens 36 3100 102.9
SALMO S.enterica 1000 5.03 5.0
CAMP C.jejuni 21988 1.63 38.5
COVID SARS-CoV2 619 750 0.03 18.8
661K Bacterial 661 398 90.7 2,640

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad097#supplementary-data

AGC

(a) (b)
4
10 : T 177s
° = pigz |
£ = 7z 1 5.27
= =IMBGC '
5 == AGC :
g W e 335s N [
5 | | |
£ | |
S 1.85s ; ;
[" "
el 0 0
- | | |
AR ;] P [N | N PR A
g : | | 0.13s |
3 : : : . :
= B %01 | | |
—_— o 0 0 0
8) 48.8 ‘ 44.4 3 ‘
-3 :: 10t b dees 4 A44s o]
£ = 29.6 | 29._735 | 29._sz |
3 - e | | |
& 9 | | | |
E : 117.35 16.4s
i 331 | P
8 2,805 L = i
5 |
£ |
o ' :
B0t R e N B
= |
2 |
mg § 0.19s
S I S I — B
O HPRC HGSVCp HGSVCu SALMO CAMP _ COVID HPRC HGSVCp HGSVCu SALMO CAMP CovID
(¢ (d)
(e)
& pigz @ Tz = pigz @ Tz
104 & MBGC -e-AGC & MBGC -e-AGC
o 1083 g™ w 10?
o o o
E o E
10 E =
5 ‘ " 5
8 = e ¢
S g T
o o
3 3 5
a
'
10 ‘ ‘ 10t o
HPRC HGSVCp HGSVCu SALMO CAMP COVID 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90

Appended sample (HPRC)

Decompressed sample (HPRC)

Fig. 2. Experimental results. (a) Relative sizes of compressed collections of genomes. (b) Extraction time of a single sample. The box plots show minimal, median and maximal times rela-
tive to decompression time of pigz archives. The labels show median absolute times. (c) Compression times of whole collections of genomes. (d) Time of appending a single sample to the
archive containing given number of HPRC samples (markers). Main memory usage (filled areas). The filled areas of gzip is not presented as they is very small. (d) Appending time of a sin-
gle HPRC sample to the archive containing given number of samples. () Extraction time of a single HPRC sample as a function of sample position in the archive

Table 2. Archive sizes for human datasets for reference genome
randomly selected from the collection and remaining genomes
appended in a random order

Reference sequence Archive size (MB)

HPRC dataset
CHM13 draftv1.1 1454
GRCh38 1464
HG00621 1523
HGO01071 1473
HGO01243 1544
HG02109 1493
HGO03486 1496

HGSVCp dataset
HG00096 1162
HGO00731 1150
HGO01596 1170
NA19239 1164
NA20847 1179

HGSVCu dataset
HG00096 1066
HGO00731 1101
HGO01596 1170
NA19239 1116
NA20847 1063

We used the HPRC dataset to evaluate various parameters of
AGC, as well as to measure what happens for a single added genome.
Figure 3a shows the impact of block size. It is easy to see that for block
size equal 1, which is more or less equivalent to compressing each gen-
ome using only a single reference, we need to spend 20-25 MB for a
single genome. When the block size increases, the cost of storing a sin-
gle genome becomes much smaller, like 5-8 MB for block size equal
50. However, this is a compromise, as we can see in Figure 3b. The
larger the block size, the slower the extension of the archive.
Fortunately, the increase in compression time is moderate. Figure 3¢
shows the impact of block size on decompression. We can notice that
value 50 is slightly better than 100, but what is interesting is the time
for value 1. The decompression is the slowest here. This is related to
the fact that the archive size for block size equal to 1 (2889 MB) is
much larger than for value 50 (1454 MB) and the time to load the
data from the disk is longer than the gains from faster decompression.

To evaluate the flexibility of the examined tools, we performed
one more experiment. We used the complete collection of 661 398
bacteria genomes from Blackwell et al. (2021) of total size of ~2.6 TB
of uncompressed FASTA files, with 105 324 060 contigs in total. This
collection is a mix of various species. Some of them are more frequent,
some rare. The quality of assemblies of some are poor (c.f. the average
number of contigs is 159 while the average genome size is <4 Mb).
Thus, the compression is a real challenge. The results are presented in
Table 3. The only tools we were able to run were gzip, 7z and AGC as
MBGC failed during decompression, and we were not able to verify
the validity of the compressed archive. In terms of compression ratio,

S.Deorowicz et al.

Size increment [MB]

____|®*b=1 eb=50 =b=100{

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Appended sample

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Appended sample Sample

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

ol

5

Fig. 3. Experimental results. (a) Archive space increase after extending the collection by adding a single HPRC sample at a time. The series show impact of block size, b. (b)
Time of extending the collection by adding a single HPRC human sample at a time. The series show impact of block size, b. (c) Decompression time of a single HPRC sample.

The series show impact of block size, b

Table 3. Experimental results

Tool Compressed Compression (collection) Decompression (collection) Sample extraction (averages)
size (GB)
Time (s) Memory (MB) Time (s) Memory (MB) Time (s) Memory (MB)
pigz 805.3 80 003 33 5377 6 0.008 2.4
7z. 148.5 252276 15395 8049 136 7.18 134
AGC 27.6 121 419 180 873 7529 34256 8.93 6257
MBGC Error during compression/decompression

Note: Compression and decompression of 661K dataset.

AGC is a clear winner. The compression and decompression running
times were, however, similar. gzip was the fastest in extraction of a
single sample as the samples were compressed separately. Fortunately,
the sample extraction of both 7z and AGC are still reasonable. As we
can see, AGC can be useful also for such demanding dataset.
Nevertheless, in practice, dividing such collection into smaller but
more homogeneous subsets would be a better choice.

4 Conclusions

Here, we introduce AGC, a versatile package to maintain genome col-
lections in a very compact form. It offers a two-order-of-magnitude re-
duction of data sizes and allows access to the samples or contigs in
seconds or fractions of seconds. Moreover, it allows one to extend the
compressed collections by adding new samples. Such a combination
of features makes AGC a tool in its own category. This opens new
opportunities in the field of (rapidly growing) pangenome projects.
AGC archives can be used to distribute pangenome data, store them
and quickly answer queries. Due to the programming libraries pro-
vided for popular languages, AGC can be easily integrated with exist-
ing pipelines, allowing them to operate on small files.

Author contributions

H.L. defined the problem and requirements of the compression tool
for pangenome projects. S.D. designed and implemented the major-
ity of the algorithm. H.L. and A.D. contributed to the design and
implementation. H.L., A.D. and S.D. designed the experiments.
A.D. performed the experiments and prepared the charts. S.D. wrote
the majority of the manuscript. H.L. and A.D. contributed to the
manuscript. All authors read and approved the final manuscript.

Funding

This work was supported by National Science Centre, Poland, project [DEC-
2017/25/B/ST6/01525 to S.D. and A.D., DEC-2019/33/B/ST6/02040 to S.D.];
and US National Institutes of Health [ROTHG010040 and U0THG010961
to H.L.].

Conflict of Interest: H.L. is a consultant for Integrated DNA Technologies
and is on the scientific advisory boards of Sentieon and Innozeen. The remain-
ing authors declare no competing interests.

Data availability

All datasets used in the experiments are publicly available. Details
on how to download them are given in the Supplementary Data.

References

Bayer,P.E. et al. (2020) Plant pan-genomes are the new reference. Nat. Plants,
6, 914-920.

Blackwell,G.A. et al. (2021) Exploring bacterial diversity via a curated and
searchable snapshot of archived DNA sequences. PLoS Biol., 19, e3001421.

Cheng,H. et al. (2021) Haplotype-resolved de novo assembly using phased as-
sembly graphs with hifiasm. Nat. Methods, 18,170-175.

Deorowicz,S. and Grabowski,S. (2011) Robust relative compression of
genomes with random access. Bioinformatics, 27,2979-2986.

Deorowicz,S. et al. (2015) GDC 2: compression of large collections of
genomes. Sci. Rep., 5, 11565.

Ebert,P. et al. (2021) Haplotype-resolved diverse human genomes and inte-
grated analysis of structural variation. Science, 372, eabf7117.

Grabowski,S. and Kowalski, T.M. (2022) MBGC: multiple bacteria genome
compressor. Giga Science, 11, giab099.

Jayakodi,M. et al. (2020) The barley pan-genome reveals the hidden legacy of
mutation breeding. Nature, 588,284-289.

Kokot,M. et al. (2018) Even faster sorting of (not only) integers. In: Gruca, A. et al.
Book Man-Machine Interactions S, Series Advances in Intelligent Systems and
Computing. Vol. 659, Springer International Publishing, Switzerland, pp. 481-491.

Kryukov,K. et al. (2019) Nucleotide archival format (NAF) enables efficient
lossless reference-free compression of DNA sequences. Bioinformatics, 35,
3826-3828.

Kuruppu,S. et al. (2010) Relative Lempel-Ziv Compression of Genomes for
Large-Scale Storage and Retrieval. Lecture Notes in Computer Science, Vol.
6393, Springer-Verlag Berlin Heidelberg, New York, USA. pp. 201-206.

Leger,A. et al. (2022) Genomic variations and epigenomic landscape of the
medaka inbred Kiyosu-Karlsruhe (MIKK) panel. Genome Biol., 23, 58.

Miga,K.H. and Wang,T. (2021) The need for a human pangenome reference
sequence. Annu. Rev. Genomics Hum. Genet., 22, 81-102.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad097#supplementary-data

AGC

Nurk,S. et al. (2022) The complete sequence of a human genome. Science,
376,44-53.

Salomon,D. and Motta,G. (2010) Handbook for Data Compression. Springer,
London.

Shkarin,D. (2002) PPM: one step to practicality. In: Proceedings of the IEEE
Data Compression Conference, Snowbird, UT, USA, pp. 202-211.

Silva,M. et al. (2020) Efficient DNA sequence compression with neural net-
works. GigaScience, 9, giaal19.

Storer,].A. and Szymanski, T.G. (1982) Data compression via textual substitu-
tion. J. ACM, 29, 928-951.

Yao,H. et al. (2019) HRCM: an efficient hybrid referential compression
method for genomic big data. Biomed. Res. Int., 2019, 3108950.

Wandelt,S. and Leser,U. (2013) FRESCO: referential compression of highly simi-
lar sequences. IEEE/ACM Trans. Comput. Biol. Bioinform., 10, 1275-1288.
Wang,T. et al. (2022) The human pangenome project: a global resource to

map genomic diversity. Nature, 604, 437-446.

	tblfn1

