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Objectives: Latent infection by HIV hinders viral eradication despite effective antire-
troviral treatment (ART). Among proposed contributors to viral latency are cellular small
RNAs that have also been proposed to shuttle between cells in extracellular vesicles.
Thus, we profiled extracellular vesicle small RNAs during different infection phases to
understand the potential relationship between these extracellular vesicle associated
small RNAs and viral infection.

Design: A well characterized simian immunodeficiency virus (SIV)/macaque model of
HIV was used to profile extracellular vesicle enriched blood plasma fractions harvested
during preinfection, acute infection, latent infection/ART treatment, and rebound after
ART interruption.

Methods: Measurement of extracellular vesicle concentration, size distribution, and
morphology was complemented with qPCR array for small RNA expression, followed
by individual qPCR validations. Iodixanol density gradients were used to separate
extracellular vesicle subtypes and virions.

Results: Plasma extracellular vesicle particle counts correlated with viral load and
peaked during acute infection. However, SIV gag RNA detection showed that virions
did not fully explain this peak. Extracellular vesicle microRNAs miR-181a, miR-342–
3p, and miR-29a decreased with SIV infection and remained downregulated in latency.
Interestingly, small nuclear RNA U6 had a tight association with viral load peak.

Conclusion: This study is the first to monitor how extracellular vesicle concentration
and extracellular vesicle small RNA expression change dynamically in acute viral
infection, latency, and rebound in a carefully controlled animal model. These changes
may also reveal regulatory roles in retroviral infection and latency.
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Introduction
Although HIV can be well controlled virologically with
antiretroviral treatment (ART), chronic inflammation and
other mechanisms lead to early aging disorders and serious
non-AIDS events (SNAEs) including the HIV-associated
neurocognitive disorders (HAND) [1,2]. Eradication of
HIV reservoirs also cannot yet be achieved routinely [3,4].
New biomarkers of SNAEs, inflammation, and responses
to treatments and eradication approaches would be useful.
Animal models of HIV facilitate understanding of disease
and biomarker discovery. These models allow control of
ART dosing, compliance, disease monitoring, and other
factors and also access to normally inaccessible compart-
ments like the brain. Pig-tailed macaques (Macaca
nemestrina) and rhesus macaques (Macaca mulatta) are well
characterized SIV models of HIV disease, with some
species-specific differences [5–7].

Extracellular vesicles are nanosized membranous vesicles
released from most cells. Extracellular vesicles have roles in
viral pathogenesis [8–10] and,much like retroviruses, shuttle
molecules between cells, including microRNAs (miRNAs)
[11,12] and small nuclearRNAs (snRNAs) [13–15].We and
othershave reported correlationsofmiRNAexpressionwith
HIV infection, virus replication, and central nervous system
(CNS) diseases using HIV-infected CD4þ cell lines [16,17],
total plasma [18–21], and extracellular vesicles [22–26].
However, our previous work identified relatively few robust
miRNA differences in total plasma [18], and a preinfection
time point was required to establish informative changes
in abundance. This may be because a large proportion of
RNA in the blood is found in non-extracellular vesicle
fractions [11,27] that represent a relatively constant baseline
of nonspecific release from dead or dying cells. We reason
that extracellular vesicle release might better reflect the
state of living cells and responses to infection events, but
dynamic changes of extracellular vesicles attributes including
miRNAs have not yet been fully characterized at different
stages of retroviral infection and treatment.

We thus characterized extracellular vesicles, extracellular
vesicles miRNA, and U6 snRNA in longitudinal samples
from pig-tailed and rhesus macaque models [28–31],
comparing preinfection with, acute (viremic peak), latent
(ART-suppressed), and rebound [ART-treatment inter-
ruption (ATI)] phases. We report that average particle
counts correlate with infection, while levels of several
extracellular vesicle miRNAs are altered even during
latent infection. Remarkably, U6 snRNA is highly
upregulated during infection, even in extracellular
vesicles purified by density gradient.

Materials and methods

Sample collection
All samples were from archives of studies approved by the
Johns Hopkins University Institutional Animal Care and
Use Committee and conducted in accordance with the
Weatherall Report, the Guide for the Care and Use of
Laboratory Animals, and the USDA Animal Welfare Act.
For initial studies and verification of extracellular vesicle
separations, plasma samples were obtained from pigtailed
macaques that were not infected (n¼ 2) or dual-inoculated
with SIV swarm B670 and clone SIV/17E-Fr and
untreated (n¼ 3) or treated then treatment interruption
(‘‘rebound,’’ n¼ 3); (Supplemental Table 1, http://links.
lww.com/QAD/C795). Longitudinal verification samples
were from two cohorts of six pigtailed macaques dual-
inoculated as above [28,29] and treated with ART
(consisting of once daily subcutaneous 2.5mg/kg dolute-
gravir, 20mg/kg tenofovir, and 30mg/kg emtricitabine)
boosted or not with maraviroc, and a cohort of six rhesus
macaques infected with SIVmac251 [30,31] and treated
with ART (Supplemental Table 2, http://links.lww.com/
QAD/C795). For pigtails, ART started at 12 days
postinoculation (dpi), and for rhesus, at 14 dpi. Time
points were preinfection (two draws), acute infection
(7, 14 dpi), latent infection (ART-suppressed) (86, 154
dpi), rebound [12 days ART treatment interruption
(postrelease (dpr)], and necropsy. Additional pigtailed
samples (uninfected, n¼ 3 and acute infected 7 dpi, n¼ 3)
were used for density separations (Supplemental Table 3,
http://links.lww.com/QAD/C795).

Separation of plasma extracellular vesicle
enriched and protein-enriched fractions
Plasma was thawed on ice and centrifuged twice at 2500
� g (15min, 48C) to deplete residual platelets and debris
[32,33]. 0.1 (Samples listed in Supplemental Table 2,
http://links.lww.com/QAD/C795), 0.5 (Supplemental
Table 1, http://links.lww.com/QAD/C795), or 8 (Sup-
plemental Table 3, http://links.lww.com/QAD/C795)
ml of platelet-depleted plasma (PDP) was separated by
size-exclusion chromatography (SEC) with qEVsingle/
70 nm, qEVoriginal/70 nm, or qEV10/70 nm columns
(Izon Science). PBS was used to elute fractions of 0.2ml
(qEVsingle/70 nm), 0.5ml (qEVoriginal/70 nm), or 5ml
(qEV10/70 nm). Extracellular vesicle enriched fractions
(F6–8, qEVsingle/70 nm; F7–9, qEVoriginal/70 nm;
and F1–4, qEV10/70 nm) were pooled and concentrated
by 100 kilodalton (kDa) MWCO concentrators (Thermo
Fisher 88503, 88524, 88532). Pooled fractions 10–12 and
13–15 from qEV original columns were collected and
concentrated as protein-enriched fractions. All fractions
were stored at –808C.

Iodixanol gradient separation
Iodixanolgradients (Optiprep,Sigma-AldrichD1556)were
made by layering 2.5ml each of 18, 14, 10, 6% iodixanol
(from60% iodixanol at 1.320� 0.001g/ml) diluted in PBS.
extracellular vesicle enriched fractions in 1.6ml PBS were
loaded onto the gradient. After ultracentrifugation at
200 000� g (60min, 48C, TH-641 rotor, 13.2ml thinwall
polypropylene tubes, acceleration/deceleration 9), 12
fractions (0.96ml/each) were collected from the top.
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Fraction densities were measured by absorbance at 340 nm.
Fractions were diluted in 5ml PBS and washed by
ultracentrifugation at 200 000� g (60min, 48C, AH-650
rotor, 5ml Beckman Ultra-Clear tubes, acceleration/
deceleration 9). Pellets were pipetted up and down 10
times and vortexed for 5 s in 120ml PBS. Tubeswere placed
on ice (20min) followed by another round of pipetting/
vortexing as above. Resuspensions were stored at –808C.

Nanoflow cytometry
Concentration and size of extracellular vesicle and
protein-enriched fractions were measured for 1min by
side-scatter using NFCM (NanoFCM) calibrated for
concentration and size with 200 nm polystyrene beads
and silica nanospheres, respectively (NanoFCM).

Transmission electron microscopy
Extracellular vesicle preparations (10ml) were adsorbed to
glow-discharged 400mesh ultra-thin carbon-coated grids
(EMS CF400-CU-UL) for 2min followed by three rinses
in TBS and staining in 1% uranyl acetate with 0.05 Tylose.
After aspiration and drying, grids were observed with a
Philips CM120 instrument at 80 kV. Images were
captured by XR80 charge-coupled device (8 megapixel;
AMT Imaging, Woburn, Massachusetts, USA).

Western blotting
Extracellular vesicle containing fractions were lysed in 1X
RIPA. Protein concentrations were determined by
microBCA protein assay (Thermo Fisher, 23235).
Equivalent protein amounts (extracellular vesicles and
proteins) were separated on 4–15% stain-free precast
SDS-PAGE gradient gels (Bio-Rad 5678083) under
nonreducing conditions and transferred onto PVDF
membranes (Sigma Aldrich IPVH00005). After 1 h
blocking (5% nonfat milk, Bio-Rad 170–6404) at room
temperature (RT), membranes were incubated with
antibodies against CD63 (1 : 1000, BD Biosciences
556019), CD81 (1 : 500, Santa Cruz Biotechnology
sc23962), calnexin (1 : 2000, Abcam ab22595), GM130
(1 : 1000, Abcam, ab76154), albumin (1 : 1000, Abcam
ab28405), AGO2 (1 : 500, Sigma-Aldrich SAB4200085),
ApoB100 (1 : 1000, Academy Bio-Medical 20A-G1b),
ApoA1 (1 : 1000, Academy Bio-Medical 11A-G2b), and
ApoC1 (1 : 1000, Academy Bio-Medical 31A-G1b)
overnight at 48C. Membranes were washed three times
for 8min in PBST with shaking, then incubated with
HRP-conjugated secondary mouse antirabbit IgG or
mouse IgG kappa binding protein antibodies (1 : 10 000,
Santa Cruz Biotechnology sc-2357 and sc-516102) at RT
for 1 h. After a PBSTwash, membranes were incubated
with SuperSignal West Pico PLUS chemiluminescent
substrate (Thermo Fisher 34580) and visualized by
iBright (Thermo Fisher, Waltham, Massachusetts, USA).

Total RNA extraction
RNA was extracted by miRNeasy Serum/Plasma Kit
(Qiagen 217184) per manufacturer’s instructions, with
4� 108 copies of cel-miR-39 miRNA mimic (Qiagen
339390) spiked into to the sample after addition of
lysis buffer.

SIV Gag RNA quantification by RT-qPCR/ddPCR
ViralRNAwasmeasured by quantitative reverse transcrip-
tion-PCR (qPCR) or digital droplet PCR (ddPCR)
as described [34,35]. RNA from 140ml of plasma was
isolated by QIAamp Viral RNA Minikit (Qiagen
1020953). qPCR of SIV gag RNA was by QuantiTect
Virus kit (Qiagen 211011) or ddPCR using One-Step
RT ddPCR Adv kit (Bio-Rad 1864022). Copy numbers
were calculated with a regression curve from control
transcript standards and normalization to the volume of
extracted plasma. Primers/probes for SIV gag RNAwere:
SIV21 forward 5’-GTCTGCGTCATCTGGTGCAT-
TC-3’; SIV22 reverse 5‘’-CACTAGGTGTCTCTG-
CACTATCTGTTTTG-3’; SIV23, 5’ FAM/3’-Black
hole-labeled probe 50-CTTCCTCAGTGTGTTTCA-
CTTTCTCTTCTG-3 (Integrated DNATechnologies).

SIV p27 ELISA
SIV p27 Gag was quantified by ELISA (ZeptoMetrix
0801169) per manufacturer’s instructions.

miRNA profiling by custom TaqMan OpenArray
Panel
A custom 112-assay TaqMan OpenArray MicroRNA
panel (Thermo Fisher 4471121) was designed with
miRNA assays chosen based on previous investigations of
infectious and inflammatory diseases and identity of
human and Macaca mulatta (mml-) miRNAs. Stem-loop
primer reverse transcription and preamplification were
done with manufacturer’s reagents as described [18], but
with 16 cycles of preamplification. qPCR was performed
by QuantStudio 12K. Data were collected using SDS
software, and quantification cycle (Cq) values were
extracted with EXPRESSION SUITE v1.0.4 (Thermo
Fisher Scientific). miRNAs with amplification score
more than 1.1 and detected in more than 90% of samples
were included. Cq values were normalized by quantiles.

Individual quantitative PCR assays
Individual qPCR assays (Thermo Fisher 4366596,
4440038) were performed as described [18] for U6
snRNA (Assay ID 001973), miRs-181a (000480), 342–
3p (002260), 29a (0002112), 16 (000391), 192-5p
(000491), 193b (002367),126 (000450), 21 (000397),
and let-7b (002619). Cq values were adjusted to the mean
Cq of cel-miR-39 spike-in.

Statistical analysis
Statistical significance of differences in extracellular
vesicle/particle concentration, particle/protein ratio,
and miRNA level between two groups were assessed
by two-tailed Student’s t-test for overall ranking.
Correlations between average extracellular vesicle/parti-
cle count and viral RNA were evaluated by Pearson’s
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correlation coefficient (r). Receiver operating character-
istic (ROC) analyses were done in SPSS Statistics
(bi-negative exponential model).
Results

Plasma size exclusion chromatography
fractionation
Macaque plasma was separated by SEC into early, middle,
and late pooled fractions (F7–9, F10–12, and F13–15)
and characterized per MISEV recommendations [32].
Despite similar particle concentrations (Figure S1A,
http://links.lww.com/QAD/C794), F7–9 had signifi-
cantly less protein versus other fractions, consistent with
relatively pure EVs. Transmission electron microscopy
(TEM) showed cup-shaped oval/round particles in F7–9
but non-extracellular vesicle aggregates in others (Figure
S1B, http://links.lww.com/QAD/C794). Western blot
for extracellular vesicle-enriched membrane markers
CD63 and CD8; argonaute protein 2 (AGO2, which
may be present at low levels in extracellular vesicles but is
mostly outside extracellular vesicles in plasma); cellular
markers GM130 and calnexin; and albumin and
Fig. 1. Characterization of plasma extracellular vesicle and pr
nonhuman primate models. (a) Particle concentrations of EV (left) a
and rebound animals weremeasured byHSFCM. Particle concentra
(b) Size distributions of EV (left) and protein (right) fractions were me
bin versus total detected particles in each sample (percentage). (c) V
unfractionated plasma, EVs, and proteins. Data are mean� SD. ns,
two-tailed Welch’s t-test.
lipoproteins ApoB100, ApoA1, and ApoC1 (Figure S1C
and D, http://links.lww.com/QAD/C794). We thus
defined F7–9 as extracellular vesicles, and F10–12 and
F13–15 as proteins. Individual qPCRassays confirmed the
abundance of several miRNAs, including miRs-126, 21,
and 16, in non-extracellular vesicle fractions such as low-
density lipoprotein particles (LDL), high-density lipopro-
tein particles (HDL), and an albumin-rich protein fractions
(ALB) (Figure S1E, http://links.lww.com/QAD/C794).

Particle counts and sizes in uninfected, infected,
and rebound groups
Particle counts and size profiles of extracellular vesicle and
protein fractions were characterized from a small number
of uninfected (n¼ 2), infected and untreated (44–49 dpi,
n¼ 3), and rebound (infected/ART treatment inter-
rupted) (Supplemental Table 1, http://links.lww.com/
QAD/C795) subjects. Five of six infected samples from
untreated and rebound groups had greater particle counts
than uninfected in extracellular vesicle (though not
statistically different due to the small sample size used) but
not protein fractions (Fig. 1a). The extracellular vesicle
fractions of infected, untreated animals had smaller
average particle sizes, but following treatment
otein-enriched fractions from SIV-uninfected and infected
nd protein (right) enriched fractions of uninfected, untreated,
tion for each groupwas normalized by plasma input (per 1ml).
asured by HSFCM and calculated as particles in a specific size
iral load (GAG RNA qPCR) as copy number per ml plasma for
no significant difference (P>0.05), �P�0.05, ���P�0.001 by
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interruption, there were more extracellular vesicles with
diameter more than 120 nm (Fig. 1b). As the majority of
particles had diameters less than 100 nm, intact virions
(100–130 nm) could not fully explain these differences.

Distribution of an simian immunodeficiency
virus gag RNA amplicon
Approximately one-third of total plasma viral gag RNA
signal was recovered in extracellular vesicle fractions
(Fig. 1c): one order of magnitude greater than recovery
from protein fractions. During rebound, most plasma gag
RNA (mean 2.1� 105 copies/ml) was recovered in
extracellular vesicles (mean 1.4� 105 copies/ml): two
orders of magnitude greater than recovery from protein
(mean 2.81� 103 copies/ml).
Fig. 2. Plasma particle concentration and viral load in longitudina
particle concentration measured by HSFCM and SIV GAG RNA c
groups based on species and treatment regimen (b). Particle con
normalized by plasma input (per 1ml). (c) Particle concentration
measured by HSFCM. Particle concentration for each group was n
�P�0.05, ��P� 0.01, ���P�0.001, ����P�0.0001 by two-tailed
Longitudinal particle and viral RNA
concentrations in three HIV/simian
immunodeficiency virus models
We next examined species, SIV strain, and ARTregimens
with three cohorts of NHP (n¼ 6 each, Supplemental
Table 2, http://links.lww.com/QAD/C795; viral load,
Figure S2, http://links.lww.com/QAD/C794). Group A
was pigtailed macaques receiving ART at 12 dpi. For
Group B, ART was augmented with CCR5 inhibitor
Maraviroc. Group C was rhesus macaques treated with
ART at 14 dpi. Combining all participants, average
particle concentration in extracellular vesicle fractions
was positively correlated with average plasma SIV RNA
throughout infection phases (R¼ 0.8916, P< 0.05;
Fig. 2a). However, the correlation of particle
l samples from nonhuman primate (NHP) models. Plasma EV
opy number (qPCR) of 18 NHPs (a) and NHPs separated by
centration and viral RNA copy number for each group was
s of EV-enriched fractions at different infection phases were
ormalized by plasma input (per 1ml). Data are mean� SD.
Welch’s t-test.
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concentration andviralRNAwas significant only inGroup
A (R¼ 0.88, P< 0.05; Fig. 2b), nearing nominal statistical
significance in Group B (R¼ 0.71, P¼ 0.07; Fig. 2b) but
not in Group C (R¼ -0.12, P¼ 0.79; Fig. 2b; see also
Fig. 2c for individual particle counts). Average viral loads at
7dpi were highest for Group A, followed by B and C
(Fig. 2b). Virions, which comprise only a small percentage
of total particles, do not explain these differences. Size
distribution in extracellular vesicle fractions was similar
between groups and time points, with the majority of
detected particles less than 100 nm in all groups (Figure S3,
http://links.lww.com/QAD/C794).

Plasma extracellular vesicle sRNA profiles during
simian immunodeficiency vurus infection
Because of the infection-associated differences in particle
counts in the extracellular vesicle fractions, and as our
previous work focused on total plasma miRNAs, we next
measured the abundance of extracellular vesicle associated
small RNAs (sRNAs, mostly miRNAs) by custom
microarray. Fifty-six features satisfied inclusion criteria.
Significantly differentially abundant sRNAs with fold
difference in abundanceofmore than1.5 in acute infection,
latent infection (ART-suppressed), and rebound (after
treatment interruption) vs. preinfection are shown in
Figure S4A, http://links.lww.com/QAD/C794. Most
sRNA differences were found in Group A, with the largest
acute and rebound viral loads. Similarly,more sRNAswere
dysregulated during acute infection than in other phases
(Figure S4A, http://links.lww.com/QAD/C794). Several
sRNAs were consistently dysregulated across two or more
groups. During acute infection, these included miR-29a
and miR-145 (Groups A,B) and miR-342–3p and U6
(all groups). During ART treatment, there were no
consistent sRNA changes compared with preinfection.
During viral rebound, miR-192 (A,B) and miR-146b and
miR-342–3p (A,C) were partly consistent. Thus, the only
consistent changes across groupswere ofmiR-342–3p and
U6 during acute infection.

Extracellular vesicle miRNA dysregulation:
individual quantitative PCR validation
Individual qPCR assays confirmed downregulation of
miRs-342–3p, 181a, and 29a after SIV infection in
pigtails (A,B, Supplemental Table 2, http://links.lww.
com/QAD/C795) (Fig. 3a). miRs-342–3p and 181a
were not only dysregulated in acute infection, but also
remained downregulated during latent and rebound
phases. To assess association with phase, receiver operating
characteristic (ROC) curves were generated (Fig. 3b).
miR-342–3p alone had greater area-under-the-curve
(AUC, 0.83� 0.10) in discriminating preinfection from
rebound, while a combination of three miRNAs had
greater AUC in other comparisons: 0.77� 0.10 (acute 7
dpi), 0.81� 0.10 (acute 14 dpi), 0.75� 0.10 (latency).
We also examined how these miRNAs changed
dynamically in the 12 participants individually (Figure
S5A, http://links.lww.com/QAD/C794). Despite large
inter-participant variation, miRs-342–3p, 181a, and 29a
were downregulated after SIV infection in at least half of
the participants. In contrast, for rhesus macaques (Figure
S5B, http://links.lww.com/QAD/C794, GroupC), only
miR-29a was differentially abundant between acute
infection (14 dpi) and latent infection, but this could
be largely attributed to one outlier (Figure S5C, http://
links.lww.com/QAD/C794).

U6 snRNA correlates with plasma viral RNA
peak in pigtailed and rhesus macaques
U6 is a commonly used reference in miRNA qPCR
assays, especially for examination of cellular and tissue
RNA. Extracellular vesicle associated U6 snRNA
increased in both pigtailed and rhesus macaques during
peak viral load in acute infection (7 dpi, pigtails, 14 dpi,
rhesus, Fig. 4a; viral load, Figure S2, http://links.lww.
com/QAD/C794), with log2 fold changes versus
preinfection of 2–3 on average (Fig. 4b). Tracking the
abundance of extracellular vesicle U6 snRNA across
infection (Fig. 4c), changes in extracellular vesicle U6
levels were highly consistent. Association with infection
was also supported by ROC curves (Fig. 4d).

U6 snRNA in gradient-separated extracellular
vesicles
Increased U6 in extracellular vesicle fractions during
infection could be due to packaging into extracellular
vesicles, virions, or both. We thus further fractionated
extracellular vesicles from uninfected and acute infected
samples (Supplemental Table 3, http://links.lww.com/
QAD/C795) into lighter extracellular vesicle fractions
and denser virus populations using differential gradient
ultracentrifugation with iodixanol. For acute infected
samples, SIV p27 Gag protein (Fig. 5a) and RNA
(Fig. 5b) were determined for input plasma and
extracellular vesicle enriched SEC fractions. Consistent
with the findings in Fig. 1, not all viral protein and RNA
was recovered in the extracellular vesicle fractions, likely
because some material is lost to the column matrix. Also
as before, total particles by NFCM tended to be greater in
infection (Fig. 5c). qPCR confirmed that miRs-342–3p
and 29a were less abundant, while U6 snRNAwas more
abundant, in acute infection samples, although miR-181a
abundance was similar (Fig. 5d).

Following gradient separation, the density distribution of
12 collected fractions was similar for uninfected and acute
infected samples, ranging from 0.961 to 1.187 g/ml
(Figure S6A, http://links.lww.com/QAD/C794). Parti-
cles with extracellular vesicle morphology were found by
TEM in all fractions, although it was difficult to identify
virions (Figure S6B, http://links.lww.com/QAD/
C794). Transmembrane protein CD9 was detected in
F2–9 (acute infected), and F2–4 (uninfected; Figure
S6C, http://links.lww.com/QAD/C794). The pattern of
CD9 distribution for the acute infected sample suggests
successful separation of a light extracellular vesicle
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Fig. 3. EV miRNA validation in pigtailed macaques. (a) qPCR validation for miR-342–3p, miR-181a, and miR-29a in pigtailed
macaques (n¼12) at different infection phases. Delta Cq values were normalized to the spike in cel-miR-39 control. Data are
mean� SD. �P� 0.05, ��P� 0.01, ���P� 0.001, ����P�0.0001 by two-tailed Welch’s t-test. (b) Receiver operating characteristic
(ROC) curves for the levels of three individual EV miRNAs and a combined three-miRNA panel to differentiate preinfection from
acute infection (7 and 14 dpi), latency, and rebound.
fraction (�F2–4) and a heavy extracellular vesicle and/or
virion fraction (�F7–9). Gag RNAwas detected in most
fractions with a peak around F8, consistent with presence
of virions, while Gag protein was below the limit of
detection (Fig. 5e and data not shown). There was no
significant correlation between particle concentration
and viral RNA (R¼ 0.3501, P¼ 0.2645; Fig. 5f). Particle
recovery was greatest in F2 and F7-F9 (acute infected),
but in F3 for uninfected, with few particles in F7–9
(Fig. 5g). U6 snRNA was more abundant in all infected
fractions except for F1, with the highest average
abundance in the heavier F7–10 (Fig. 5h). miRs-342–
3p and 29a, while detected, were highly variable (Figure
S6B, http://links.lww.com/QAD/C794).
Discussion

As the gold standard to measure the latent HIV reservoir,
quantitative virus outgrowth assays (qVOAs) are
laborious, expensive, and require a large amount of
blood samples [36]. We posited that the presence of latent
infection could potentially be verified using extracellular
vesicles released from live cells, which are easily accessible
in blood and whose contents, including host RNAs, may
reflect infection status. Here, for the first time, we
examined extracellular vesicle concentration and small
RNA contents in longitudinal samples from several SIV
models, finding that extracellular vesicle concentration,
miRNA, and U6 snRNA levels are linked to SIV
infection. Several extracellular vesicle miRNAs that were
differentially regulated during acute-phase infection
remained downregulated even during the latency phase,
when viral RNAwas undetectable. These miRNAs could
potentially signal the presence of a latent infection and
could conceivably have regulatory roles. Interestingly,
density separation of extracellular vesicle subtypes
revealed strong enrichment of U6 snRNA in all
extracellular vesicle subtypes in acutely infected vs.
uninfected plasma.

http://links.lww.com/QAD/C794
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Fig. 4. EV U6 snRNA level is tightly associated with the acute infection phase. (a) Individual qPCR validation of U6 snRNA in
Groups A, B, and C at different infection phases. �P�0.05, ��P�0.01, ���P�0.001, ����P�0.0001 by two-tailed Welch’s t-test.
(b) Log2 (fold change) of EVU6 snRNA in acute infection compared to preinfection fromOpenArray and individual qPCR analyses.
(c) U6 snRNA levels in pigtailed and rhesus macaques in longitudinal samples. (a)–(c) Delta Cq values were normalized to cel-
miR-39 control. Data are presented as mean� SD. (d) Receiver operating characteristic (ROC) curves for the levels of EV U6 to
differentiate preinfection from acute infection in pigtailed and rhesus macaques.
To be sure, overlapping contents and physical properties
make EVs and virions (or ‘‘host EVs’’ and ‘‘viral EVs’’)
nontrivial to separate [37–40]. Although density gra-
dients are a standard method for virion/extracellular
vesicle separation [41–45], most methods have been
optimized for cell culture medium [42–44] or large
quantities of virions spiked into plasma [45]. However,
our extracellular vesicle and extracellular vesicle exRNA
results are likely not skewed by the presence of virions.
First, retrovirions are less abundant than extracellular
vesicles in biofluids, even in uncontrolled viral replica-
tion. We observed a significantly lower viral GAG RNA
copy number than nanoparticle number in extracellular
vesicle enriched SEC fractions, even during viral peak.
Both GAG RNA and GAG antigen levels were
significantly lower in extracellular vesicle enriched
SEC fractions vs. unfractioned plasma. In addition,
gradient-separated extracellular vesicles did not contain
detectable GAG antigen but did have GAG RNAs.
Second, GAG RNA was also detected in protein
fractions, with particles of much smaller diameter than
virions. Finally, viral RNA fragments could also be
incorporated into host extracellular vesicles [46,47].
Thus, increased particles in infected plasmas are not
explained solely by retrovirions.

Previous studies reported increased plasma extracellular
vesicle concentration in HIV-infected patients compared
with uninfected controls [23,24,48], albeit with no
differences between ART-naive and ART-suppressed
patients [23]. In some cases, extracellular vesicles were
quantitated by acetylcholinesterase (AChE) [48], which
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Fig. 5. EV and EV small RNA characterization in iodixanol density fractions. SIV P27 GAG protein (a) measured by ELISA and
GAG RNA and (b) by qPCR in raw plasma and EV-enriched SEC fraction from SIV acutely infected pigtailed macaque plasma
(n¼3). (c) Particle concentrations of EV-enriched SEC fractions of uninfected (n¼ 3) and acutely infected (n¼3) pigtailed
macaques as measured by HSFCM. Particle concentration for each group was normalized by plasma input (per 1ml). ns, no
significant difference (P>0.05) by two-tailed t-test. (d) qPCR validation for miRNAs and U6 snRNA in EV-enriched SEC fractions
from uninfected and acutely infected plasma. �P�0.05, ��P�0.01, ���P� 0.001, ����P�0.0001 by two-tailed t-test. (e) GAG
RNA level detected by qPCR in 12 EV fractions separated by iodixanol density gradient in acutely infected plasma (n¼ 3). (f) EV
particle concentration and SIV GAG RNA copy number were plotted for 12 EV iodixanol fractions of acutely infected plasma
(n¼3). Particle concentration and viral RNA copy number for each group was normalized by plasma input (per 1ml). (g) Particle
number distribution of 12 iodixanol fractions from uninfected (n¼ 3) and acutely infected plasma (n¼ 3). Particle concentration
for each fraction was measured by HSFCM and calculated as particles in each fraction versus total particles recovered from
12 fractions (percentage). (h) The level of U6 in 12 iodixanol fractions from uninfected (n¼ 3) and acute infected plasma (n¼3).
(a)–(h) Data are mean� SD.
may not be specific for EVs [49]. Moreover, separating
extracellular vesicles from, for example, lipoproteins is
difficult using ultracentrifugation or polymer precipita-
tion [32]. Here, we used SEC, a good option for
obtaining relatively pure extracellular vesicles [50,51].
We also further separated extracellular vesicle subtypes
and virions by gradient, revealing extracellular vesicle
and extracellular vesicle small RNA distributions.
Although we cannot rule out all co-isolates, and thus
refer to ‘‘EV-enriched fractions,’’ our results support more
extracellular vesicle production during SIV infection.
Even so, changes appeared to vary with species and
individual subject, and more work is needed to
understand mechanisms behind this and previous findings
on release of extracellular vesicles after retroviral infection
[52–54].

Where do our miRNA findings fit into the existing
literature? We previously reported that total plasma
miRNA profiles change during acute SIV infection [18]
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and that extracellular vesicle borne miRNA miR-186–
5p is downregulated in cervicovaginal lavage (CVL)
and regulates HIV replication in macrophages [55]. Here,
we identified several miRNAs that were dysregulated
during latent and rebound infections, but only very few
compared with the acute infection phase, consistent with
a study comparing productive and latent infection in
CD4þT-cell models [16]. Some identifiedmiRNAswere
previously reported in HIV infection or inflammation,
such as miR-29a [56–59] and miR-181a [16,60,61],
while miR-342–3p was not. However, unlike particle
concentration, which varied with viral load, extracellular
vesicle miRNAs remained downregulated after infection
even when viral RNA was undetectable. Of note, host
miRNA changes are probably not specific to HIV
infection. For example, miR-29a, identified by us and
other groups, was previously observed to be down-
regulated in tuberculosis [62] and hepatitis C virus (HCV)
[57] infection. Extracellular vesicle miRNA may thus
be useful to indicate persistent infection generally but
may not be a good indicator for specific disease
monitoring.

Our findings on U6 were unexpected and potentially
informative. U6 snRNA is one of the most highly
conserved RNAs across species and is thus commonly
used as an internal control gene in, for example, miRNA
qPCR assays [63–66] despite some individual and
disease-related differences [67–71]. Although a few
studies revealed upregulation of extracellular vesicle U6
in cancer and smoking [72–74], such changes have not to
our knowledge been reported in infectious diseases. Our
data suggest that U6 is not an ideal reference RNA, at
least in retroviral infection. Interestingly, U6 snRNA is
also one of the host cellular RNAs reported to be
specifically packaged into retroviral particles [75–77], for
example, in murine leukemia virus (MLV) infection
[75,78]. Retroviral packaging of U6 may be independent
of viral full-length RNA transcripts [77,79] but affected
by the nucleocapsid domain of the Gag polyprotein [79].
However, standard virus purifications [76,77,79] also co-
isolate extracellular vesicles. How U6 is packaged into
extracellular vesicles is unclear, as is the possible function
of this RNA in the cell or in the extracellular vesicle
during retroviral infection.

In summary, our rigorous EV separation and characteri-
zation strategy showed that plasma extracellular vesicles
and several extracellular vesicle sRNAs change consis-
tently during the course of SIV infection across several
related models. Our findings raise new questions about
the distribution of host RNAs released in ‘host’ EVs
compared with ‘hijacked’ extracellular vesicles (retro-
virions) and sound a cautionary note about the use of
U6 as a reference RNA, at least in retroviral infection.We
are now applying these methods to studies of human
plasma to understand if extracellular vesicle RNAs will
provide value in monitoring HIV latent infection.
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