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Prostate cancer is morphologically and molecularly heteroge-
neous, which poses obstacles for early diagnosis and treatment.
Advancements in understanding the heterogeneity of prostate
cancer will help navigate through these challenges and ulti-
mately benefit patients. In this study, we integrated single-
cell sequencing for transposase-accessible chromatin and whole
transcriptome in prostate cancer cell lines, aiming to decode
the epigenetic plasticity upon enzalutamide (ENZ) treatment.
By comparing the cell populations representing early-treat-
ment response or resistance to the initial tumor cells, we iden-
tified seven signature gene sets; they present consistent trends
of chromatin closing co-occurred with down-regulated genes
during early response and chromatin opening with up-regu-
lated genes uponmaintaining drug resistance. In the molecular
signatures, we found genes ZNF337, MAPK15, and ESRRG are
favorable in progression-free prognosis during early response,
while genes CCDC150, CCDC18, and POC1A marked poor
prognosis underpinning the pre-existing drug resistance in
The Cancer Genome Atlas prostate adenocarcinoma cohort.
Ultimately, drug-target analyses nominated combinatory
drug candidates to either enhance early-treatment response
or potentially overcome ENZ resistance. Together, our integra-
tive, single-cell multi-omics approach in pre-clinical models is
effective in identifying informative signatures from complex
molecular events, illustrating diverse drug responses in pros-
tate cancer, and invoking novel combinatory drug strategies
to inform clinical decision making.

INTRODUCTION
Prostate cancer (PCa) is the secondmost frequent malignancy in men
and the fifth leading cause of death worldwide.1 Androgen depriva-
tion therapy (ADT) is the preferred standard treatment for advanced
and high-risk prostate cancer, which is also known as hormone ther-
apy2 ADT can induce remission, but its resistance brings recurrence
and aggressive progression of cancer, such as castration-resistant
prostate cancer (CRPC).3 Resistance to next-generation anti-
androgen agents, such as enzalutamide (ENZ), accounts for a major
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challenge for effective treatments of advanced PCa.4,5 However,
ENZ-induced molecular phenotypes in pre-clinical models remain
understudied.

Agents targeting the androgen receptor (AR) signaling pathway are
initially effective, but they eventually fail in the majority of CRPC pa-
tients. One of the main driving forces of treatment failure is the
morphological and molecular heterogeneity within PCa.6,7 It is also
the reason why patients with PCa develop ENZ resistance early and
easily. Several genomic mechanisms related to ENZ resistance have
been proposed, such as AR gene mutation8 and gene duplication.9–11

Despite the central role of AR highlighted in the development of ENZ
resistance, other studies have suggested that AR-negative or AR-low
PCa cells or pre-existing and genetically diverse clones in untreated
primary tumors could hold the keys to therapy resistance and disease
progression.4,12,13 Regardless, the majority of these genomics and/or
epigenomics studies to date originate from the traditional bulk anal-
ysis of tumors, which lacks the power to capture cell population-level
difference among cell types in the tumor.14,15 Advancements in sin-
gle-cell sequencing techniques are thus here to help us profile the
genetic and epigenetic heterogeneous landscapes of prostate cancer.
Recently, a study used both single-cell RNA sequencing (scRNA-
seq) and single-cell assays for transposase-accessible chromatin
(scATAC-seq) to characterize a subset of pre-existing cells that
were associated with tumor relapse in advanced PCa.16 Similarly, in
primary PCa, pre-existing castration-resistant PCa-like cells were
also observed using scRNA-seq, which promoted resistance to
hormonal therapy.17 And single-cell RNA-seq analysis in localized
PCa patients focused on tumor microenvironment revealed the
Author(s).
://creativecommons.org/licenses/by-nc-nd/4.0/).
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heterogeneity of tumor-associated epithelial cell states.18,19 However,
not many investigations have been particularly performed to study
the effects of ENZ-induced diverse cellular phenotypes via integrating
scRNA-seq and scATAC-seq data, and to understand their underly-
ing molecular mechanisms.

Here, we integrated scRNA-seq and scATAC-seq data in PCa cell
lines in response to ENZ treatment to decode the cellular heterogene-
ity captured by epigenetic plasticity. Seven gene signature sets were
extracted by integrating differential events calculated using both
scRNA-seq and scATAC-seq data. On the basis of gene set enrich-
ment analysis, we revealed the functional difference between the
ENZ-induced drug-responsive phenotype and the pre-existing
drug-resistant phenotype when comparing with the initial tumor
cell population. Moreover, survival analysis using the ENZ treat-
ment-naive Cancer Genome Atlas (TCGA) prostate adenocarcinoma
cohort demonstrated the prognostic values of our signature genes.
Last, drug-gene network analysis predicted the combinatory use of
drugs potentially to overcome ENZ resistance. Altogether, our study
sheds light on the cellular heterogeneity captured by epigenetic re-
shaping upon drug treatment, and our signature gene sets character-
ized by epigenetic reshaping can be applied for novel combinatory
drug discoveries and served as useful prognostic biomarkers in PCa
patients.

RESULTS
Cellular heterogeneity captured by multi-omic single-cell

sequencing

Matched and publicly available single-cell RNA sequencing and
single-cell assays for transposase-accessible chromatin data in four
prostate cancer cell lines were used to characterize the cellular hetero-
geneity induced by enzalutamide treatment.16 ENZ, an oral androgen
receptor inhibitor, is approved by the U.S. Food and Drug Adminis-
tration (FDA) as the last line therapy to extend the survival time of
castration-resistant PCa patients.20 These four cell lines included
parental/control cell line LNCaP, short-term ENZ-exposed cell line
LNCaP-ENZ48, and ENZ-resistant cell lines RES-A and RES-B
derived from LNCaP via long-term exposure to AR inhibitor agents.21

Almost inevitably, patients develop ENZ resistance along the course
of treatment. Cancer cell line models showing dynamic cellular phe-
notypes upon ENZ treatment will thus help us understand the molec-
ular mechanisms underpinning ENZ-induced cellular dynamics.

Single-cell sequencing data from each PCa cell line profiled using
both scRNA-seq and scATAC-seq were processed and integrated,
respectively (Figures 1A, 1B, S1A, and S1B). In total, 13 cell clusters
were yielded for each type of data after initial quality control proced-
Figure 1. ENZ-induced cellular phenotype shift

Dimension reduction uniform manifold approximation and projection (UMAP) plots are

clusters are colored according to their phenotypes as determined by their cellular c

comparison analysis. Annotations for the color-coded phenotypes and shape-coded ce

early response and initial and between that of persistent and initial are shown for scRN

differentially expressed genes (DEGs) or differentially accessible regions (DARs) are lab
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ures (Table S1; also see materials and methods) as visualized using the
first two UMAP (uniform manifold approximation and projection)
dimensions (Figures S1A and S1B). To define diverse cellular pheno-
types in response to ENZ treatment, cellular compositions for each
cell cluster were calculated and compared (Figures S1C and S1D).
We then adopted the definitions for diverse phenotypes on the basis
of the clustering compositions of single-cell sequencing data with
similar standards from a previous study.16 From scRNA-seq clus-
tering (Figure S1C), initial phenotype was defined as clusters of 1,
4, and 9 with their dominant compositions being cells from parental
cell line LNCaP and/or LNCaP-ENZ48 with short-term treatment
(see materials and methods). ENZ-induced responsive phenotype,
defined as clusters most prevalent in RES-A or RES-B, contained
cell clusters of 0, 5, 8, and 12. And pre-existing ENZ-resistant (i.e.,
persistent) phenotype, equally prevalent through all four cell lines,
included cell clusters of 3, 6, 7, 10, and 11 (Figure S1C). In total, we
selected 3,862, 4,549, and 4,840 cells using scRNA-seq data which rep-
resented initial, induced responsive, and drug-resistant phenotypes,
separately. Meanwhile, using scATAC-seq data, 3,363, 3,191, and
2,911 cells were chosen to represent initial (cell clusters 1 and 3
included), ENZ-induced responsive (cell clusters 2 and 4 included),
and drug-resistant (cell clusters 0 and 7 included) phenotypes, respec-
tively (Figure S1D). To further examine our identified three cellular
phenotypes from single-cell data, we assembled a pseudo-bulk read
count table per cell cluster within each single-cell dataset. Principal
components were calculated to show the membership similarity
among all the cell clusters (Figures S1E and S1F). As the result, our
three cellular phenotypes defined on the basis of cell line com-
positions totally aligned with the pseudo-bulk principal analysis.
Additionally, we applied label transfer to explore whether cellular
phenotypes were consistent between scRNA-seq and scATAC-seq
data. Using gene activity score calculated from scATAC-seq, we could
conduct label transfer from scRNA-seq to scATAC-seq data. The
consensus ratio for initial and induced cell populations between
scRNA-seq and scATAC-seq datasets were close to 80% (Figure S1G).
As expected, the persistent cell population yielded a lower than
average consensus ratio because of the vast amount of heterogeneity
within this phenotype.

Differential events underpinning the ENZ-induced cellular

heterogeneity

Differential events including differentially expressed genes (DEGs)
and differentially accessible regions (DARs) were calculated by
comparing the induced to initial phenotypes and by comparing the
resistant to initial phenotypes using scRNA-seq (Figures 1C and
1D; Table S2) and scATAC-seq data (Figures 1E and 1F; Table S3),
respectively. In total, we identified 3,686 and 3,097 DEGs for
shown using scRNA-seq (A) and scATAC-seq data (B) in four PCa cell lines. Seurat

ompositions. Clusters with ambiguous classifications in gray are not selected for

ll lines are on top of each plot. Volcano plots for comparisons between phenotypes of

A-seq data (C and D) and for scATAC-seq data (E and F). Top differential events:

eled on the plots.
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comparison between induced and initial phenotypes, and that be-
tween resistant and initial phenotypes (Table S2; see materials and
methods). Meanwhile, 3,305 and 3,887 DARs were identified using
scATAC-seq data, respectively (Table S3). A reshaping in open chro-
matin regions was indicated upon ENZ treatment, which showed
significantly higher number of open chromatin regions (�99.9%) in
cells with resistant phenotype (Figure 1F). Meanwhile, approximately
81% of the genes were up-regulated when comparing resistant to
initial cell populations (Figure 1D). A clearly consistent trend be-
tween single-cell epigenetic and transcriptomic alterations was thus
observed.

To demonstrate the epigenetic reshaping in response to ENZ treat-
ment, we combined both DEGs and DARs to generate 7 different
gene signature sets which represent bi-directional effects of epige-
netic regulations on gene expression (Table S4; Figures 2A and
2B). Interestingly enough, a much higher number of DEGs are
down-regulated while having open chromatin regions closed when
comparing induced phenotype to initial phenotype (Figure 2A).
On the contrary, when comparing pre-existing resistant to initial
cell populations, we observed a dominated effect of open chromatin
state accompanied by up-regulated genes (Figure 2B). As shown in
Figure 2C, our gene signature sets are mostly exclusive to their
own, with some gene sets partially overlapping with other gene
sets showing the same up- or down-regulations within the two com-
parisons. For example, 13 down-regulated genes were shared
between the two comparisons, which were coupled with open chro-
matin states when comparing persistent to initial phenotype but co-
occurred with closed chromatin regions when comparing induced to
initial phenotype. This suggests potentially different functional reg-
ulations from other layers of omics were used in ENZ-induced
responsive cancer cells.

To validate our identified gene signatures from single-cell data, we
downloaded a recently released and normalized bulk RNA
sequencing (RNA-seq) dataset,22 containing three similar pheno-
types of initial, induced responsive, and persistent from the xeno-
grafts of prostate cancer cell line LNCaP. Despite the difference
in gene expression profiling platforms and cell line culture condi-
tions, we observed a decent proportion of our identified gene signa-
tures consistently presented in the above independent dataset
(Figures 2D and 2E). In total, we could confirm the consistency in
differential regulations of 142 and 104 of the 241 and 335 up- and
down-regulated signature genes, respectively, when comparing
early-responsive to initial cellular phenotype (Figure 2D). For the
comparison between persistent and initial phenotype, we confirmed
187 and 10 of the 377 and 66 up- and down-regulated signature
genes, respectively (Figure 2E).
Figure 2. Bi-directional epigenetic regulations on gene expression

(A) Gene signature sets yielded by comparing induced with initial phenotypes: closed/do

closed), closed/up, open/down, and open/up. (B) Gene signature sets generated by co

among the seven gene signature sets. Heatmaps show the validation of signature gene

persistent and initial phenotype (E), using an independent bulk RNA-seq dataset. Up to
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Functional divergence between the ENZ-induced early response

and pre-existing drug resistance

Gene set enrichment analysis was carried out to demonstrate func-
tional shift between the ENZ-induced response and pre-existing
drug-resistant cell populations when comparing with the initial tu-
mor cells (Figures 3A and 3B; Table S5). Commonly used Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways and Gene
Ontology terms enriched within each comparison were curated in
Table S6. Altogether, we showcased two gene signature sets with
the highest number of genes from the two comparisons. Among the
top 30 most enriched gene sets that formed 5 major functional clus-
ters on the basis of semantic similarities, androgen-related gene sets
were significantly down-regulated upon responding to the ENZ treat-
ment (Figure 3A, golden branch). Aldehyde dehydrogenase 1A3
(ALDH1A3), which stands out in the gene cloud, has been implicated
in the survival and proliferation of prostate cancer cells.23 ALDH1A3
protein is also a key inactivator of reactive oxygen species (ROS)-
generated aldehydes, which is a perspective target for the develop-
ment of new chemotherapeutic drugs thus indicating a potential
combinatory use of drugs with ENZ treatment.24 On the other
hand, the activation of the classic transcriptomic switch to a
mitosis-phase program (Figure 3B, pink branch) as well as stemness
were significantly up-regulated in tumor cells with pre-existing drug
resistance.25 Interestingly, tubule cell-related gene signatures in kid-
neys were highly enriched in our down-regulated gene signatures
(Figure 3A, pink and blue branches). Proximal tubule cell populations
were reportedly associated with pathogenic expression signatures as
defined by the expression quantitative trait loci (eQTL) from
genome-wide association studies (GWASs).26 This down-regulation
of tubule cell-regulated gene features hints at a potential back-to-
normal effect in prostate cancer cells showing early response subject
to ENZ treatment.

Additionally, enrichment analysis of transcription factors (TFs) was
conducted to show themost relevant regulators enriched in the differ-
entially accessible regions identified from both the ENZ-induced
responsive (Figure S2A) and pre-existing drug-resistant phenotypes
(Figure S2B). Top 30 enriched TFs from each comparison are visual-
ized in Figure S2C. In total, 20 of 40 pooled top enriched TFs were
shared between comparisons. Consistently, we observed stemness-
related features were enriched in persistent phenotype (Figure 3B),
as illustrated by its uniquely enriched TFs, such as KLF1, KLF4,
and KLF927 (Figure S2C). Meanwhile, Forkhead box (Fox) TFs, for
instance FOXA1 and FOXO1, can help shape AR signaling that drives
the growth and survival of prostate cancer cells (Figure S2C).28,29

In agreement with the functional shift observed, we also identified
survival-related genes in both early-responsive and persistent groups
wn (genes are down-regulated while their nearest chromatin accessibility regions are

mparing persistent with initial phenotypes. (C) Upset plot showing the intersections

s from the comparison between induced and initial phenotype (D) and that between

top 20 differential genes are labeled.
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Figure 4. Kaplan-Meier survival analysis using progression-free data in the TCGA prostate adenocarcinoma cohort

(A) Prognosis-related gene markers from ENZ-induced group. (B) Prognosis-related gene markers from ENZ-resistant group. Patients are stratified into two groups on the

basis of the median gene expression of each marker gene. FDR-adjusted p values are labeled below the curves in each plot.
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of tumor cells using The Cancer Genome Atlas ENZ treatment-naive
prostate adenocarcinoma cohort (Table S7; Figure 4). Particularly, we
aimed to search for gene signatures responsible for better prognosis in
the comparison between early-responsive and initial group (Fig-
ure 4A), and worse prognosis in the other comparison between persis-
tent and initial group (Figure 4B). Differential directions inherited
from our single-cell multi-omics analysis were also taken into consid-
eration in order to determine whether they were prognostic genes.
Among the early-responsive signature genes, we showed that lower
expression of genes ZNF337 and MAPK15, and higher expression
of gene ESRRG were favorable in progression-free prognosis despite
different regulatory effects from chromatin accessibility on gene
Figure 3. Functional divergence underlying the epigenetic landscape shift

Gene set enrichment analysis using two signature gene sets from comparison between in

gene sets are clustered to form major functional branches on the basis of semantic simil

(on the right). Genes shown in larger letters represent higher frequency.
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expression (Figure 4A). Although higher expression of genes
CCDC150, CCDC18, and POC1A was indicators of poor progres-
sion-free prognosis in patients with potential drug resistance (Fig-
ure 4B). Among the six prognosis-related gene markers, MAPK15 is
the only one that has been previously reported to play important roles
in the pathogenesis of nasopharyngeal cancer (NPC), osteosarcoma
(OS), and gastric cancer.30–32 Particularly, for patients with OS, inhib-
iting MAPK15 expression significantly decreased OS cell metastasis
which remains the primary cause of death.31 Additionally, MAPK15
is also a key modulator of autophagy and, through this, of cell trans-
formation, which might offer plenty of potential targets for future
therapeutic interventions in human cancers.33
duced and initial (A) and that between persistent and initial (B). The 30most enriched

arities (on the left). Genes contained with each branch are visualized by word clouds



Table 1. DeSigN prediction of drug candidates for enzalutamide-

responsive phenotype

Drug Gene target Connectivity score p value

Shikonin undefined 1.000 0.000

Lapatinib EGFR, ERBB2 0.992 0.018

Bleomycin LIG1, LIG3 0.991 0.028

A-443654 undefined 0.991 0.029

CGP-082996 undefined 0.990 0.015

Erlotinib EGFR, NR1I2 0.989 0.021

WZ-1-84 undefined 0.989 0.018

CGP-60474 undefined 0.983 0.039

SL-0101-1 undefined 0.980 0.046

A-770041 Undefined 0.980 0.032

BX-795
CDK2, CHEK1, GSK3B,
KDR, PDK1, PDPK1

�1.000 0.000

Table 2. DeSigN predictions of drug candidates for ENZ-resistant

phenotype

Drug Target Connectivity score p value

AKT-inhibitor-VIII undefined 1.000 0.000

Etoposide TOP2A, TOP2B 0.994 0.008

OSU-03012 undefined 0.989 0.021

Bleomycin LIG1, LIG3 0.987 0.020

PD-0332991 CDK4, CDK6 0.977 0.031

QS11 undefined 0.973 0.046

AZD6482
PIK3CA, PIK3CB,
PIK3CD, PIK3CG

0.972 0.040

GW843682X undefined �0.969 0.043

BX-795
CDK2, CHEK1, GSK3B,
KDR, PDK1, PDPK1

�0.973 0.049

GNF-2 ABL1, BCR �0.976 0.042

Nilotinib ABL1, KIT �0.977 0.047

AZ628 undefined �0.980 0.036

WO2009093972 undefined �0.982 0.029

Roscovitine CDK2, CDK9 �0.989 0.018

AS601245 undefined �0.990 0.014

Nutlin-3a undefined �1.000 0.000
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Identification of potential combinatory use of drugs to overcome

ENZ resistance

We employed theDeSigN (Differentially Expressed Gene Signatures –
Inhibitors) webserver to link our gene signatures to potential combi-
natory drug treatment.34 Connectivity scores were measured by
DeSigN to assess the correlation of gene perturbation profile of a
particular drug treatment on cancer cell lines from the Connectivity
Map datasets with query gene list. In our study, the query gene lists
were ranked on the basis of their gene expression fold changes
upon ENZ treatment (see materials andmethods). Therefore, a signif-
icant positive score would indicate a consistent trend of gene expres-
sion alterations between our query gene lists and drug-induced gene
perturbation profiles. On the contrary, a significant negative score
represented a nearly opposite trend between drug-induced perturba-
tion profiles and our query gene lists. Specifically, we sought to rank
drugs with positive connectivity scores in early-responsive phenotype
to enhance the induced gene signatures (Table 1). Conversely, we
considered negative connectivity scores in order to reverse the effects
of persistent/resistant phenotype and to identify drugs that could
induce an opposite perturbation profile than our query gene lists
(Table 2). However, the exact drug targets, or the macromolecule
which drug compounds directly bind to, may not be captured in
our dataset. In such cases, “undefined target genes” were indicated.
The drug-gene networks are shown in Figure 5, excluding drugs
with undefined targets.

Particularly, we queried the DeSigN webserver using DEGs of 205 up-
and 137 down-regulated genes extracted from the comparison of the
early-responsive cells with initial cells (Table 1 and Figure 5A), and
the DEGs of 379 up- and 66 down-regulated genes from the compar-
ison of persistent cells with initial cells, respectively (Table 2; Fig-
ure 5B). For comparison between induced to initial phenotypes,
10 drugs in total were returned with positive connectivity scores
(p < 0.05), indicating similar or enhanced responses as ENZ treatment
when applied as treatments (Table 1). Among the 10 drugs identified,
6 have been already documented to be potentially beneficial in treat-
ment for prostate cancer and/or in human cancers; these drugs
included shikonin, lapatinib, erlotinib, bleomycin, A-443654, and
SL0101-1.35–40 Shikonin, which ranked as the first, on the basis of
connectivity score, is a traditional Chinese medicine, which has
been proved to induce antitumor effects inmultiple tumors, including
PCa.35,41 Shikonin promotes antitumor effects by inducing apoptosis
and more dominantly necroptosis in both parental and docetaxel-
resistant PCa cells.35 Shikonin also inhibits the viability, proliferation,
migration, and invasion of prostate cancer stem cells.42 Furthermore,
it has enhanced antitumor effect of cabazitaxel, a drug indicated for
advanced prostate cancer,42 and decreased the transcriptional activity
of AR.43 Although shikonin has no defined target, it can inhibit the
expression ofALDH3A1,ABCG2,42MMP-2, andMMP-9.44 Lapatinib
(ranked second with connectivity score) and erlotinib (ranked sixth),
approved by the Food and Drug Administration, both have ErbB
(EGFR/HER2/ErbB3/ErbB4) family molecules as their targets. It is
expected that these molecules would be relevant to PCa, as epidermal
growth factor receptor is overexpressed in a number of cancers.45,46

Lapatinib is an oral dual tyrosine kinase inhibitor that can block
HER1 and HER2 tyrosine kinase activity to inhibit tumor cell
growth.36 Although there is no determined evidence that lapatinib
is effective for prostate cancer treatment, some research has shown
that lapatinib might be a viable therapeutic option for castration-
resistant prostate cancer.47 Erlotinib is used to treat non-small cell
lung cancer (NSCLC) and pancreatic cancer.39 It may also be admin-
istered to patients with advanced prostate cancer and chemotherapy-
naive CRPC, as it has been shown to improve clinical benefits.46

Evidence also indicates that docetaxel combined with erlotinib can
Molecular Therapy: Nucleic Acids Vol. 31 March 2023 655
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Figure 5. Combinatory therapeutics strategy derived using drug-gene network

Drug-gene network analysis for ENZ-induced (A) and ENZ-resistant gene signatures (B). ENZ-driven gene signatures are shown in the middle of each network, connected by

dotted line. Predicted candidate drugs with potential combinatory use are shown if they target genes driven by the ENZ treatment. Predicted drugs are colored according to

their connectivity score, with orange being negative and blue positive.
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be delivered safely in elderly patients with androgen-independent
prostate cancer (AIPC).48 Bleomycin, which ranked third in connec-
tivity score, is approved by FDA to treat squamous cell carcinomas,
testicular cancers, and malignant lymphomas.37 A study from Ueki
et al.49 showed that electroporation with bleomycin might be effective
for prostate cancer, especially AIPC. Another drug of interest,
A-443654, which ranked fourth in connectivity score, is a potent
small-molecule inhibitor of Akt that can induce Akt Ser-473 phos-
phorylation in all human cancer cell lines.50 Akt kinases are central
nodes in signal transduction pathways, which are important for
tumor progression and overexpressed or amplified in a variety of
human cancers. Furthermore, A-443654 can slow the progression
of tumors as monotherapy or in combination with paclitaxel or rapa-
mycin.51 Last, SL0101-1 (SL-0101), which ranked ninth in connectiv-
ity score, is also of interest as it inhibits proliferation of the human
breast cancer cell line MCF-7.52 On the contrary, the drug BX-795
shows a connectivity score of�1, which suggests a complete opposite
role in driving gene feature alterations. We would suggest avoiding
the use of BX-795 on ENZ-responsive and/or ENZ-naive patients
for treatment enhancement.

Meanwhile, for comparison between persistent and initial tumor cells,
there were 7 drugs returned with positive connectivity scores, which
demonstrate a potentially similar resistant response if given to PCa
patients (Table 2). We also identified 9 drugs, nutlin-3a, AS601245,
roscovitine, WO2009093972, AZ628, nilotinib, GNF-2, BX-795, and
GW843682X, with p values less than 0.05. These drugs are promising
to overcome ENZ resistance (Table 2; Figure 5B). Nutlin-3a, which
656 Molecular Therapy: Nucleic Acids Vol. 31 March 2023
ranked first on the basis of negative connectivity score, is a therapeutic
compound with potential antineoplastic activities, which inhibits
MDM2, activates wild-type p53, and induces apoptosis.53 It is sug-
gested as a potential therapeutic agent for ovarian carcinomas ex-
pressing wild-type TP53.54 The drug AS601245, which ranked second
on the basis of negative connectivity score, affects proliferation,
apoptosis, and differentiation and alters the gene expression profile
of human colon cancer line CaCo-2.55,56 Similarly, the drug roscovi-
tine, which ranked third on the basis of negative connectivity score, is
also of interest for treating PCa, as it has been shown to promote cell-
cycle arrest as well as apoptosis induction in glioblastoma cell lines.57

Moreover, a PC-3 xenograft model in nude mouse showed a 35%
reduction in tumor growth conducted with CDK inhibitor roscovi-
tine.55,56 AZ628, another drug that ranked fifth on the basis of nega-
tive connectivity score, is a type II RAF inhibitor, which has greater
effects in inhibiting cell growth than the combination of dabrafenib
and trametinib. While combing AZ628 with BP-1-102, enhanced in-
hibition of cell proliferation and tumor growth were observed.58,59

Interestingly, nilotinib, which ranked sixth on the basis of negative
connectivity score, as the tyrosine kinase inhibitor has been shown
effective in targeted therapy of the Philadelphia chromosome-positive
chronic myeloid leukemia (CML) after patients experienced resis-
tance to or intolerance of imatinib.60 Another drug in our results,
GNF-2, ranked seventh in negative connectivity score and is a mem-
ber of novel allosteric inhibitors of the Abelson (ABL) family of tyro-
sine kinases. GNF-2 was also shown to overcome resistant mutations
of imatinib found in CML patients.61,62 We also consider the drug
BX-795, which ranked eighth in negative connectivity score, is
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another cell cycle inhibitor that could potentially overcome drug
resistance. In oral squamous cell carcinoma, BX-795 is shown to
inhibit Akt and NF-kB signaling pathways, to arrest cells in the
mitotic phase, and to increase autophagy.63,64 More recently, in
high-risk neuroblastoma , which is also highly drug resistant, BX-
795 was tested using dual therapeutic approaches with either doxoru-
bicin or crizotinib.65,66 Synergistic and significant inhibition of NB
growth were found in contrast to either drug alone. However, note
that we do not recommend using BX-795 for the ENZ-induced
phenotype (Figure 5A). Last, GW843682X, which ranked ninth in
negative connectivity score, is a novel selective PLK1 inhibitor, which
has been shown to be effective in nasopharyngeal carcinoma, pediat-
ric tumor cell lines, and leukemia cells.63–67

DISCUSSION
Advanced prostate cancer exhibits molecular, cellular, and tissue-
level heterogeneity at a significant scale, thus hampering efforts to
develop effective and safe treatments. Single-cell sequencing technol-
ogies provide unprecedented resolution to accurately delineate the
diverse cellular phenotypes upon drug treatment in pre-clinical
models. However, a single layer of molecular profiling, such as sin-
gle-cell RNA sequencing, is often difficult to resolve and to capture
the comprehensive landscapes of the vast heterogeneity. It is thus
crucial to integrate scRNA-seq with single-cell assays for transpo-
sase-accessible chromatin to provide a better molecular portrait of en-
zalutamide-induced diverse cellular phenotypes.

Using scRNA-seq, we adopted the definitions of initial, induced
responsive, and pre-existing resistant cellular phenotypes from a pre-
vious study16 on the basis of cancer cell line compositions within each
cell cluster. Meanwhile, similar observations were made using scA-
TAC-seq. To study the molecular mechanisms underpinning
different cellular phenotypes, we first calculated differential events
(differentially expressed genes using scRNA-seq and differentially
accessible regions using scATAC-seq) by comparing induced to initial
phenotypes and by comparing persistent to initial phenotypes. Then,
7 signature gene sets were extracted by integrating DEGs under the
influence of DARs. Among these gene sets, down-regulated DEGs
coupled with open DARs or vice versa were also included as signa-
tures. This suggests more layers of omics data, such as single-cell
DNA methylation and copy number alterations, are in need to delin-
eate the complex regulations between DARs and DEGs with opposite
alteration directions. For example, mitogen-activated protein kinase
15 (MAPK15) was commonly up-regulated,68 while gene MAPK15
was identified as down-regulated in cells showing early response
upon ENZ treatment but coupled with open chromatin when
comparing induced to initial phenotype. This phenomenon could
be partially driven by chromatin accessibility, meanwhile regulated
by other stable epigenetic marks such as DNAmethylation.69 Few ev-
idence has focused on the functions of kinases in human cancers, PCa
in particular. But inhibiting MAPK15 expression has been shown to
significantly decrease osteosarcoma cell metastasis both in vitro and
in vivo.31 Consistently, we demonstrated its favorable prognostic po-
tential in progression-free survival using the treatment-naive TCGA
prostate adenocarcinoma cohort. This is not the best practice to iden-
tify prognostic genes upon ENZ treatment among our signatures but
rather to provide additional supporting evidence to show the consis-
tency in importance among different applications of our signatures.
The lack of large patient cohort treated using ENZ with well-main-
tained clinical information and omic data profiles is one of our limi-
tations, which should be resolved in the near future as more relevant
treatment data are expected to be generated in PCa.

Other applications of our signature gene sets include conducting a
candidate drug survey that may nominate drugs to overcome poten-
tial drug resistance. Molecular biomarkers related to ENZ resistance
are understudied, especially at the single-cell level. Our research high-
lighted 9 potential drugs on the basis of the connectivity map, which
can be tested as potential candidates in terms of overcoming the resis-
tance upon ENZ treatment. Among these candidate drugs, cell cycle
inhibitor targeting agents were much common. BX-795 in particular,
has been shown to be effective in multiple human cancers, such as
neuroblastoma,66 oral squamous cell carcinoma,70 and bladder can-
cer.71 Therefore, combinatory use of BX-795 and/or cell cycle target-
ing agents with current therapies could be an effective and clinically
tractable therapeutic approach for drug-resistant PCa.

In this study, we extracted gene signatures coupled with epigenetic al-
terations in PCa upon ENZ treatment. We show that these gene sig-
natures are valuable in predicting patients’ progression-free progno-
ses. Moreover, we show that these gene signatures underpinning
diverse cellular phenotypes in response to drug treatment can be
applied for drug discovery. Even though our present research topic
is centered on ENZ treatment in PCa using pre-clinical cancer cell
lines, our analytical approach is portable and can be applied to other
disease models with single-cell multi-omic profiles generated. The
single-cell multi-omics approaches have been rapidly applied to can-
cer and other disease research, including molecular signatures of drug
response or resistance; thus, we expect that more advanced analytic
approaches will be further developed to meet the expected strong de-
mand. Overall, we have identified and characterized gene signatures
that can be used as biomarkers to present populations of ENZ-
induced and ENZ-resistant cells in advanced PCa.

MATERIALS AND METHODS
Multi-omics single-cell sequencing data from prostate cancer

cell lines

Single cell multi-omics data were collected to study biological
underpinnings of prostate cancer. This multi-omics single-cell dataset
included four prostate cancer cell lines: parental LNCaP cells (DMSO
treated, the control), LNCaP cells treated with 10 mM enzalutamide
for 48 h (LNCaP-ENZ48), and LNCaP-derived enzalutamide-resis-
tant RES-A and RES-B cells.21 LNCaP cell lines serve as a model
for PCa, as these cells originate from human prostatic adenocarci-
noma.72 For single-cell RNA sequencing data, Cell Ranger-mapped
(version 3.0.2) count matrices were downloaded from the Gene
Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/)
under accession number GSE168668. Cell Ranger pre-built human
Molecular Therapy: Nucleic Acids Vol. 31 March 2023 657
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genome reference (build GRCh38, version 3.0.0) was used for map-
ping. Matched but raw single-cell assay for transposase-accessible
chromatin with sequencing data were downloaded from the Sequence
Read Archive (SRA) database (https://www.ncbi.nlm.nih.gov/sra/)
under BioProject PRJNA713355.16

Processing the scRNA-seq count matrices and quality control

Cells were filtered according to a well-established quality control
routine,16,72 on the basis of the number of detected genes, the total
number of molecules detected, and the percentage of reads mapping
to the mitochondrial genome. Detailed filtering thresholds and the to-
tal number of cells prior to and after quality control per sample are
documented in Table S1. After cell filtering, scRNA-seq data from
individual samples were then combined and batch-corrected using
R package Harmony (version 0.1.0).73 The harmonized gene expres-
sion matrix was normalized against library size and applied for down-
stream analysis using R package Seurat version 4.0.6.74 The first two
dimensions using the uniform manifold approximation and projec-
tion nonlinear dimensionality reduction technique after adjustment
were used for visualization.

Preprocessing the raw scATAC-seq data and quality control

Raw sequencing data for scATAC-seq was preprocessed using Cell
Ranger-atac (version 2.0.0)75 with default settings. To be consistent
with the processed scRNA-seq data, human genome GRCh38 was
used for mapping. Routine quality control16,72 was carried out on
the basis of the following metrics: strength of nucleosome-binding
pattern, transcription start site enrichment score (ENCODE version),
total number of fragments in peaks, and the fraction of fragments in
peaks. Specific thresholds per metric per sample, together with the
number of cells prior to and after quality control, are included in
Table S1.

Data normalization and dimensionality reduction were performed
using R package Signac (version 1.6.0)76 with latent semantic index-
ing (LSI) embeddings, which consists of term frequency-inverse
document frequency (TF-IDF) normalization and singular-value
decomposition (SVD), on the basis of the top 50%most variable peaks
across all cells. UMAP coordinates were calculated using the first
50 LSI components but removing the first LSI component which
captures sequencing depth (i.e., technical variation) rather than bio-
logical variation in our data.

Identifying differential events in response to the treatment of

enzalutamide using pseudo-bulk strategy

Cell clustering was performed separately for scRNA-seq and scA-
TAC-seq data after sample integration. Cellular phenotypes in
response to drug treatment were defined on the basis of composition
of cell clusters generated in each type of data. Three cellular pheno-
types were thus identified with similar standards from a previous
study16: (1) the initial phenotype includes clusters dominated by cells
from parental cell lines LNCaP and LNCaP-ENZ48), (2) the induced
phenotype consists of clusters dominated by cells from cell lines
RES-A or RES-B, and (3) the persistent phenotype (or pre-existing
658 Molecular Therapy: Nucleic Acids Vol. 31 March 2023
ENZ-resistant phenotype) consists of clusters showing no differences
in cellular proportions of cells from all four different cell lines. To
reduce potential bias for differential analysis, the total number of cells
were balanced while merging different cell clusters into the three phe-
notypes. Principal-component analysis (PCA) using pseudo-bulk
read count tables per cluster was conducted using R package stats
with function prcomp. Additionally, we conducted a label transfer
analysis to examine the consistency of the above three phenotypes be-
tween these two data types. Gene activities matrix calculated using
scATAC-seq data was used as the query. We applied function
FindTransferAnchors of Seurat R package to identify anchors and
to annotate scATAC-seq data with scRNA-seq as reference. The frac-
tion of cells consistently labeled as the same phenotype was used to
assess the agreement between the two data types.

Differential events (i.e., differentially expressed genes and differen-
tially accessible regions) between the induced and initial phenotype
and between the persistent and initial phenotypes were calculated us-
ing R package Seurat with function FindMarkers. To enrich signal at
each gene locus or open chromatin region to compute its fold change,
we adopted the pseudo-bulk approach by simply summing up the to-
tal read counts from that gene or region across all the cells in a partic-
ular group. A gene was considered differentially expressed with
adjusted p value of no more than 0.05 and pseudo-bulk fold change
of no less than 1.2, while open chromatin regions were identified as
differentially accessible if their adjusted p values were less than 1e-6
and their pseudo-bulk fold changes were higher than 2. Differentially
accessible regions were then annotated with their closest gene(s) using
function ClosestFeature in R package Signac.

Integrating multi-omics-based differential events to identify

epigenetically regulated gene signatures and their related

functions

We integrated the differential events (i.e., DEGs and DARs) to
generate gene sets showing directions in epigenetic regulations. For
instance, when comparing the induced phenotype with the initial
phenotype, we generated four gene sets with up-regulated DEGs
coupled with open (log2-transformed fold changes more than 1)
and closed DARs (log2-transformed fold changes lower than �1)
and down-regulated DEGs combined with open and closed DARs,
respectively.

Functional enrichment analysis using hypergeometric test was carried
out using all the gene sets downloaded from the MSigDB database
(version 7.5.1).77 Compiled gene sets (“modules”) from a variety of re-
sources such as KEGG and Gene Ontology in category C4 were
removed before calculation because of information redundancy
with categories C2 and C5. Gene sets significantly overlapped with
our signatures were calculated on the basis of adjusted p values of
less than 0.05 and visualized using R package clusterProfiler (version
4.2.2).78 Specifically, the hierarchical tree plots for top enriched func-
tional terms were constructed and visualized on the basis of their pair-
wise similarities using Jaccard’s similarity index. Each tree plot was
accompanied by gene cloud plots that were generated from using
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genes overlapped with our gene signatures within each functional
branch. Genes with higher frequencies within a particular functional
branch were shown in larger font size and visualized using R package
wordcloud. Gene set enrichment analysis using KEGG pathway and
Gene Ontology terms was also conducted. Significantly enriched
gene sets were calculated based on p values less than 0.05 using en-
richGO and enrichKEGG functions, separately, in R package cluster-
Profiler (version 4.2.2).

Enrichment analysis of transcription factors

The TF enrichment analysis was carried out using TF binding profiles
downloaded from the JASPAR database (version 2022).79 Differentially
accessible regions from each comparison were used to perform TF
enrichment analysis using R package TFBSTools. Enriched TFs were
then ranked on the basis of their enriched significance levels. Heatmaps
were used to visualize the top 30 enriched TFs per comparison.

Validating gene signatures independently

The normalized bulk RNA sequencing data of prostate cancer cell
line LNCaP xenografts comprising 54 samples spanning different
treatment groups (PRE-CX [pre-castration group], POST-CX
[post-castration group], CRPC [castration-resistant prostate cancer],
ENZS [ENZ-sensitive], and ENZR [ENZ-resistant] groups) were
downloaded from the National Center for Biotechnology Information
(NCBI) GEO database under accession number GSE211856.22

Among them, groups PRE-CX (n = 9), ENZS (n = 12), and ENZR
(n = 15) were used as our independent validations. However, because
of data quality concerns, one sample, ATTX.ENZ.87 from group
ENZR, was excluded from further analysis.

Our identified seven signature gene sets were first combined into four
sets of up- and down-regulated gene sets for two comparisons. Then
differential genes from bulk RNA-seq data were calculated with fold
change threshold of 1.2 in both direction for each comparison.
Finally, we evaluated how consistent of the differential direction
from our identified signature genes and the differential genes calcu-
lated using bulk RNA-seq data. Consistent gene signatures were visu-
alized with heatmap using bulk RNA-seq data.

Identifying potential use of combinatory drugs using drug-gene

network analysis

The DeSigN webtool (https://design-v2.cancerresearch.my/query;
database version CTRP) was used to identify candidate drugs using
algorithm KS-IC50 with signatures of up- and down-regulated genes
for each comparison as stated above.34 The webtool aims to uncover
novel biomarkers either sensitive or resistant to cancer therapeutics,
which curated a panel of several hundred cancer cell lines and 130
drugs in total under clinical and pre-clinical investigation.80 Visuali-
zation of the network among candidate drugs, target genes, and enza-
lutamide were generated using Cytoscape (version 3.9.1).81

Survival analysis

We split the cancer patients into two groups on the basis of the signa-
ture gene sets using their median gene expression. Then, we per-
formed the Kaplan-Meier analysis using progression-free intervals
with R package survival (version 3.3-1). Progression-free interval
survival (PFS) was defined as the interval length of time during
and after certain treatment.82 Survival curves were generated using
R package survminer (version 0.4.9). A threshold of false discovery
rate [FDR]-adjusted p value less than 0.05 was applied to select
PFS-related prognosis genes.

All statistical analyses were performed using R Statistical Software
(version 4.1.2 or higher; R Core Team 2021) and Bioconductor.
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