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ParseCNV2: efficient sequencing tool for copy number variation
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Improved copy number variation (CNV) detection remains an area of heavy emphasis for algorithm development; however, both
CNV curation and disease association approaches remain in its infancy. The current practice of focusing on candidate CNVs,
where researchers study specific CNVs they believe to be pathological while discarding others, refrains from considering the full
spectrum of CNVs in a hypothesis-free GWAS. To address this, we present a next-generation approach to CNV association by
natively supporting the popular VCF specification for sequencing-derived variants as well as SNP array calls using a PennCNV
format. The code is fast and efficient, allowing for the analysis of large (>100,000 sample) cohorts without dividing up the data
on a compute cluster. The scripts are condensed into a single tool to promote simplicity and best practices. CNV curation pre
and post-association is rigorously supported and emphasized to yield reliable results of highest quality. We benchmarked two
large datasets, including the UK Biobank (n > 450,000) and CAG Biobank (n > 350,000) both of which are genotyped at >0.5 M
probes, for our input files. ParseCNV has been actively supported and developed since 2008. ParseCNV2 presents a critical
addition to formalizing CNV association for inclusion with SNP associations in GWAS Catalog. Clinical CNV prioritization,
interactive quality control (QC), and adjustment for covariates are revolutionary new features of ParseCNV2 vs. ParseCNV.
The software is freely available at: https://github.com/CAG-CNV/ParseCNV2.
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INTRODUCTION
PennCNV [1] has emerged as a fast and popular high-sensitivity/
specificity tool for CNV detection in single nucleotide polymorphism
(SNP) array data. However, no such tool exists as a field consensus
tool for whole-genome sequencing data. Compounding this
problem is the lack of curation and association tools to apply on
CNV calls from these detection algorithms to yield insights into
statistical error properties of the calls or disease biology. Plink [2]
is an excellent suite of tools for efficient genome-wide association
studies on SNP genotypes, but does not support CNV nor
structural variation (SV) calls (http://www.cog-genomics.org/
plink2#Limitations). ParseCNV has been actively supported and
developed since 2008 [3] which led to a Nature paper applying the
methods [4] (2011 first posted online, 19 updated releases with new
features over 8 years, or almost 2.5 per year) as documented in
http://parsecnv.sourceforge.net/#VersionHistory. In contrast, other
CNV association tools have stagnated with minimal additional
content beyond the initial publication (Table 1).
The original ParseCNV tool key strengths were: quality tracking

information to filter confident associations, uncertainty in CNV
calls underlying CNV associations is evaluated to verify significant
results, including CNV overlap profiles, genomic context, number
of probes supporting the CNV and single-probe intensities.
ParseCNV2 started as a code efficiency rewrite from scratch with
emphasis on VCF input, the popular consensus format. When

optimal quality control parameters are followed using ParseCNV2,
90% of CNVs validate by polymerase chain reaction, an often
problematic stage because of inadequate significant association
review or low yield of association due to overly strict QC
thresholds of input CNV calls.
The sequencing era is advancing rapidly, but the array still

holds massive utility for cost-effective screening of SNPs and
CNVs. Along with the sequencing era, a number of CNV/SV
detection tools and variant call file (VCF) specifications have
emerged increasing the complexity of the CNV analysis. In
contrast to single nucleotide variants (SNVs), CNVs involve
multiple bases and only the chromosome and start positions
are given dedicated fields. In some cases, the END position may
need to be found by taking the difference in string lengths of
reference (REF) and alternate (ALT) alleles. More commonly, the
“INFO” field may contain “END”, “SVLEN”, or “SVEND” but cannot
be assumed to be located in the same index order of the semi-
colon separated INFO list and other fields containing the
substring “END” should not be confused, except in the case of
“SVEND” or similar. Along with the various CNV detection tools in
sequencing are various interpretations of those methods with
different CNV specification of the VCFs. While this is not ideal, VCF
has remained the popular mainstay of sequencing variant call
formats. VCF allows for accessible usage by bioinformaticians and
functional biologist alike. VCF was designed chiefly for single
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nucleotide variants (SNVs) given the singular “POS” field, instead
of START and END. A potential solution is the 3rd column ID could
be used to contain CHR:POS-END instead of or in addition to
(semicolon separated) dbSNP rs ID. Reading the VCF header is
needed to get a full description of various abbreviated values,
especially QUAL, FILTER, and INFO can be information rich about
the variant in the population but have slightly different words
used to express the same concept. FORMAT, SAMPLE_ID_1 have
genotypes but also sample-specific quality scores of the CNV
state predicted by a detection algorithm. Here we present a next-
generation approach to CNV association by optimally supporting
the popular VCF specification for sequencing-derived variants as
well as SNP array PennCNV format.

METHODS
ParseCNV2 was coded using Perl primarily with R, Bash, and C modules
programming making up the code base as outlined below.

Upfront quality control: SNP microarray data
First, the samples in case and control cohorts must be quality controlled
using the SNP genotype call rate, relative intensity standard deviation,
intensity waviness, count predicted CNVs, ethnicity principal compo-
nents, and genotype relatedness as previously described [3] and now
expanded in ParseCNV2. CNV calls from passing samples may be further
quality controlled using number of probes supporting the CNV signal,
genomic length, PennCNV confidence, Mace et al. confidence [5], and
DeepCNV probability [6].

Upfront quality control: exome or genome sequencing data
Different yet conceptually similar sample and CNV call QC and
confidence metrics are output from each exome or genome sequencing
data CNV detection tool for ParseCNV2 -qc usage. For WES, the number
of contiguous exons supporting the existence of a CNV is used as the
number of probes. The most frequently provided quality control metric
across WES and WGS CNV VCF outputs is “Phred-scaled quality score”
which should be comparable between different CNV detection tools for
WES or WGS. Tool specific QC metrics also exist, for example: CLC
Genomics Workbench: Absolute fold change, CNVkit: Mean squared
standard error of copy number log2, CNVnator: t-statistic p-value,
cn.MOPS: Median informative/non-informative ratio value, CODEX2:
Likelihood ratio, ControlFREEC: Wilcoxon rank sum test p-value, DELLY:
Genotype quality values, ExomeDepth: Observed/expected read ratio,
GATK gCNV: CNQscores (difference between the two best genotype
Phred-scaled log posteriors), Lumpy: Number of pieces of evidence
supporting the variant across all samples, Manta: CNV quality score.
The ParseCNV2 code lends itself to be tested with various QC metric
thresholds.

Upfront quality control: modulating metric thresholds
Modulating thresholds of quality metrics such as size, depth of coverage,
genotype within CNV regions to increase accuracy while retaining
sensitivity can be informed by ParseCNV2 interactive quality control using
the -qc option recommended usage: First providing QC inputs and
reviewing automatically determined thresholds based on outliers in your
dataset. Then you may specify an adjusted threshold for a given quality
metric based on your review of the plots. “Field standard” recommended
thresholds may vary by array type and refinement, however, there are
“essential” CNV QC sample inclusion metrics such as Call Rate >0.98
(similarly BAF_SD < 0.045) and LRR_SD < 0.2 for Illumina SNP arrays.

Input files
The input files allow for PennCNV RAWCNV format, a generic BED format,
or a VCF format. The idiosyncrasies of VCF format interpretations from
various CNV detection tools in sequencing have been tested to ensure
flexibility. Other than the CNV calls file, one must specify the sample IDs of
cases for the analysis and the genome build used to map coordinates. The
consolidation and support of different CNV calling tools output has been
demonstrated to be an important feature [7]. A key new feature is
extended interpretation to a further range of CNV calling tools output from
sequencing data.Ta
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Probe-based CNV statistics
CNVs are mapped to the genomic regions they are predicted to occupy
per sample and per copy state. Only observed breakpoints make up the
genomic coordinate map for computational efficiency and simplicity of
representation. Fisher’s exact test or alternative statistical models, such as
logistic regression to take covariates into account, are employed to assess
significance of allele frequency differences in cases and controls. The 2 × 2
contingency table with raw counts of observations: cases deletion, cases
no deletion, controls deletion, controls no deletion, and similarly for
duplications with a separate test statistic. Here we distinguish the
Plink options --assoc fisher vs. the --model fisher which provides
TEST: GENO, TREND, ALLELIC, DOM, and REC. We use the --model
fisher output GENO lines p-values and odd ratios to take forward to
be consistent with the previous implementation of ParseCNV which used
the perl module Text::NSP::Measures::2D::Fisher::twotailed (or right for
case enriched only consideration). The most sophisticated Javascript
implementation web-based tool for Fisher’s exact test also is consistent:
https://www.langsrud.com/fisher.htm or http://www.liheng.org/
fisher.html. We used these other implementations of statistical tests to
ensure our computations were consistent. Binary case-control logistic
generalized linear model with covariates and quantitative trait linear
generalized linear model are powerful options for association testing as
well. Continuous trait linear regression is an option in ParseCNV2 beyond
binary trait logistic regression or Fisher’s exact test. The Fisher’s exact test
was used originally for its precision property in low-count rare variant
data. The Plink website states “the statistics computed by --glm are not
calibrated well when the minor allele count is very small (<20)”. The -q
option is used to provide a quantitative trait value for each sample,
instead of the -c option to provide case sample IDs. The -covar option
accepts a covariates file (containing sex, age, principal components
representing genetic ancestry, residual QC metric values for samples
passing initial inclusion QC) The code for conducting logistic regression
test with covariates association is in a C++ pre-compiled linux
binary executable for efficiency and portability, so the text-based code
is not visible. The -stat option specifies the test statistic desired (fisher,
logistic, or linear).

Association statistic options
Fisher’s exact test is optimized for rare (low population frequency) variant
association where other statistics tend to be inflated. RvTests [8]
implements many of the latest developed statistical models motivated
by the influx of sequencing data and rare variants to increase statistical
power (https://github.com/zhanxw/rvtests#models). RvTests is used as a
module that generates p-values and direction of effect that are direct
inputs to ParseCNV2_Insert.pl if done by the user separately or internally
to the ParseCNV2.pl main script by command line option. The -stat option
to ParseCNV2 supports classical fisher, logistic, or linear test options or
RvTests including Single variant (score, wald, exact, dominantExact,
famLRT, famScore, famGrammarGamma, firth), Burden (cmc, zeggini, mb,
fp, exactCMC, cmcWald, rarecover, cmat, famcmc, famzeggini), Variable
threshold (price, analytic, famAnalytic), Kernel (skat, skato, kbac, famSkat),
and Meta-Analysis (score, dominant, recessive, cov, bolt, boltCovA).

Merging probe-based statistics into Copy Number Variable
Regions (CNVRs)
CNV breakpoint coordinates with similar p-values (1 power of 10 default)
and not exceeding the maximum distance parameter (1 MB default) are
collapsed together into CNVRs to reduce redundancy of reporting similar
significance nearby regions. The tag SNP of the CNVR is deemed the
representative probe-based CNV statistic to characterize the CNVR in a
discrete manner. The CNV detection tool uses SNP/Exon small region
data points to call individual-level CNV segments which are larger
genomic spans. ParseCNV2 takes these individual-level CNV segments
and converts them to population-level CNV resolved to SNP/Exon small
region data points granularity for association testing. Once ParseCNV2
has the p-values and direction of effects (OddsRatio/BETA), then these
SNP/Exon small region data points are re-segmented into population
level CNV segments based on minimal variation in p-value, consistent
direction of effect, and minimal distance of neighboring SNP/Exon small
region data points. Overall, SNP/Exon small region data points are
assessed by one or more CNV Detection Tools resulting in CNV segments
(Compose), then ParseCNV2 Association creates SNP/Exon small region
data points p-values and direction of effects (Decompose), lastly,
ParseCNV2 CNVR Calling outputs the Association CNVRs (Compose).

If CNVs in a genomic region are very few the CNVR boundaries will
indeed be less confident. Also, since these CNVs are rarely observed, SNP
arrays or WES capture kits likely have not tested such variation in
developing their content. This is also why we re-calculate CNVR
boundary definition based solely on the input CNVs provided from a
specific platform, rather than having a static list of CNVR boundaries
provided up-front and used for all platforms and studies. While a static
list of CNVR boundaries provides consistency and comparability, it does
not model rare CNVs well into CNVRs.

Review of association signals by quality tracking
Various genomic features are annotated for each CNVR to further
characterize the genomic context of significant signals from the genome-
wide CNV analysis. This includes CNV disease and healthy control databases
such as Decipher and ClinVar as well as DGV [9] and gnomadSV [10].
Sophisticated CNV call characterization has been done in 1000 Genome
Project [11] and Autism Families [12]. Quality tracking remains a paramount
concern and is addressed by “red flags” which are annotated on CNVRs to
establish confidence in the overall association signal. Predetermined
significance criteria examples of best practices: Red Flags Average CNV
Length <1000 bp, Database of Genomic Variants Overlapping Entries >10,
Maximum p-value in the CNVR >0.5 (as opposed to the minimum p-value
which is reported), Population Frequency >0.01, Segmental Duplications
(regions >1 kb with 90% matching) Overlapping Entries >10, Known
Recurrent False Positive Regions, Inflated Samples Frequency >0.5, Average
Confidence <10; p < 0.0005 and direction= “case” (green flag), exon overlap
(green flag). Finally, to determine overall CNVR Pass or Fail: RF > 2 Red Flag
Pass Fail= “FAIL” otherwise Red Flag Pass Fail= “PASS”. Standard Filter
for high significant and confident results: Sort Red Flags <= 3, deletion
p-value < 5 × 10^−4 and Odds Ratio deletion>1 or duplication p-value
<5 × 10^−4 and Odds Ratio Duplication>1 (on exon).

Multiple testing correction
P-value threshold of 5 × 10−4 is a conservative bar for CNV genome-wide
significance surviving multiple testing correction based on analysis of
Illumina and Affymetrix genome-wide SNP arrays, including a count of less
than 100 CNVs per sample (corrected P value of <0.05). The typical bar of
5 × 10−8 used in GWAS is not appropriate for CNV association considering:

● The number of probes with a nominal frequency of CNV occurrence
(only probes with some CNV detected are informative) in a high-
quality SNP-array sample amounts to fewer than 100 CNVs.

● The number of probes with enrichment in cases vs. controls and vice
versa (evidence of more case-enriched loci than control-enriched loci)

● We are principally interested in probes with less than 1% population
frequency of CNV (optionally).

● The number of CNVRs (multiple probes are needed to detect a single
CNV and should not count separately for multiple testing correction) is
well below 100 per sample, rendering P value of 5 × 10−4 being
appropriate for multiple testing correction.

● 2 × 10−5 multiple testing correction threshold according to permuta-
tion studies was observed.

In an independent recent study [13], Bonferroni correction was used for
multiple testing adjustment to control the family-wise error rate (FWER) of
α= 0.05. The P-value threshold for genome-wide significance was 0.05/
23= 2.2 × 10–3, where 23 is the total number of CNVRs tested.

CNV validation by quantitative Polymerase Chain Reaction
(QPCR)
Orthogonal validation by an independent method is still a crucial step to
verify CNVs and address if a given CNV is enriched in cases and not an
artifact of technology issues of a given assay. qPCR is the primary
workhorse for such verification. Droplet Digital PCR (ddPCR) is a more
expensive yet more sensitive method, especially for non-integer copy
states. In the case of detection of CNVs based primarily on sequencing,
microarrays run on the same samples can serve as independent validation
as well. We ran 393 across various loci on various sample sources with a
qPCR validation success rate of 0.8.

Clinical
Prioritization of CNVs based on the predicted pathogenicity, dosage
sensitivity scores, and concordance with disease CNV entries in Decipher

J.T. Glessner et al.

306

European Journal of Human Genetics (2023) 31:304 – 312

https://www.langsrud.com/fisher.htm
http://www.liheng.org/fisher.html
http://www.liheng.org/fisher.html
https://github.com/zhanxw/rvtests#models


and ClinVar in individual patient-by-patient basis is another horizon for
ParseCNV2 [14, 15]. Deleteriousness of the CNV on the genomic span of
bases is integrated. SG-ADVISER [16] and AnnotSV [17] are comparable
tools in this approach. Clinical CNV prioritization integrates Annotations:
OMIM, DGV, ClinGen, Known Syndromic, Internal Controls (with matched
genomic assay platform), Gene exon, pLI, and HGMD CNVs. Quality control
filtering of CNV calls for clinical utility typically requires more strict
thresholds than research-based GWAS to optimize specificity, even at the
cost of lowering sensitivity.

Comparison to other methods
We compared existing CNV association tools by benchmarking different:
public CNV call data (1KG, UKBiobank, CAG CNV Map), CNV Calling genomic
platform, and association type (Case-Control or Quantitative Trait) monitor-
ing: CPU use, runtime, memory use, and results nominally significant p < 0.05
CNV loci split into (where available): deletion/duplication, direction of effect
(OR for case-control, BETA for quantitative trait), and Pass/Fail CNV overlap
Red Flag association QC (Table 2).

Whole Exome Sequencing (WES) data for validation
The WES input to ParseCNV2 was downloaded from the database of
genotypes and phenotypes (dbGaP) released by the Pediatric Cardiac
Genomics Consortium (PCGC) [18] (accession phs001194.v2.p2 and
phs001194.v2.p2.c1) including 2103 individuals with exome capture
Nimblegen SeqCap Exome V2 and sequencing on Illumina HiSeq 2000
platform. Sequence reads were aligned to the human reference genome
hg19 using Burrows-Wheeler Aligner (BWA −0.7.17 r1188) and dupli-
cates were marked with Picard. Insertion deletion (Indel) realignment
and Base Quality Score Recalibration was done with GATK. To generate
potential CNV calls and quality metrics, we used the XHMM pipeline [19]
consisting of 6 steps: (1) depth of coverage calculated for all targets. (2)
Filter out target regions with extreme GC content (<10% or >90%) and
complexity regions. (3) PCA normalization of read depth (also included
in recently released GATK gCNV). (4) Remove samples with extreme
variability in normalized read depth. (5) Per-Sample CNV Detection with
a hidden Markov model (HMM). (6) Quality Metrics assigned to
discovered CNVs. CNV association was performed using the ParseCNV2
pipeline presented here, based on VCF files from XHMM.

Whole Genome Sequencing (WGS) data for validation
WGS input to ParseCNV2 was generated by the Center for Applied Genomics
(CAG) at The Children’s Hospital of Philadelphia (CHOP), leveraging CAG’s
Biobank including comprehensive electronic medical records (EMR). We
reviewed and analyzed 205 Attention Deficit Hyperactivity Disorder (ADHD)
cases and 670 controls of European and African Ancestry. All subjects were
thoroughly phenotyped [20]. The structural variations (SVs), including
deletions, duplications, insertions, and inversions, were detected by
MANTA which leverages read-pair information content. We included SVs
that passed MANTA’s default filters. VCF files from MANTA were input to
ParseCNV2.

RESULTS
We outlined the workflow structure for the variables incorporated
into ParseCNV2 runs for both array and sequencing data inputs
(Fig. 1). We also provide a graphical CNV analysis workflow which
includes the steps: Quality assessment, ParseCNV2 CNV associa-
tion, Red Flag review, and Raw signal (BAF/LRR) Review (Fig. 2).
ParseCNV2 starts with a comprehensive quality control (QC)
stringency of both samples and individual CNV calls. The software
performs genome-wide CNV association which can be accom-
plished in less than 10 min for 2000 samples run with 32 GB
memory on a x86_64 GNU/Linux system with Intel(R) Xeon(R)
Platinum 8176 CPU @ 2.10 GHz processor (Table 2). The data used
for computational benchmarking were: AGRE Autism samples
genotyped on Illumina 550 K SNP microarray: 5 cases vs. 5
controls and 785 cases vs. 1110 controls. Neurodevelopmental
disorder samples genotyped on Illumina Omni2-5-8v1-3 SNP
microarray: 700 cases vs. 797 controls. Congenital heart defect
samples genotyped on Nimblegen SeqCap Exome V2 WES: 758
cases vs. 1344 controls. Neurodevelopmental disorder samplesTa
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genotyped on Illumina WGS: 205 cases vs. 689 controls. Publicly
available CNV call sets were used including: 1000 Genomes
Population control samples genotyped on Illumina WGS includ-
ing the widely studied gold standard sample NA12878: 767 cases
vs. 1737 controls (randomly assigned), UKBiobank CNV calls [21],
and CAG CNV Map [22] (Table 2). CNV association tools were run
with publicly available CNV call sets listed in Table 2 and resulting
nominally significant genomic regions compared (Table 3 and
Fig. 3).
Chromosome, start and end (base pair position based on the

genome build used), p-value, odds ratio (OR), cases (count), controls
(count), and filters used are statistical association fields in the output
file generated. Direction, type, count cases, count controls, caseIDs,
controlIDs are annotated to track the kind of association signals
produced. Segmental duplications, DGV, Guanine/Cytosine base
content, cytoband, recurrent events, exon impact, gene(s) impacted
and telomere/centromere involvement are provided as genomic
feature annotations. Collectively, this approach provides high
quality association results with robust confidence. The output is

also provided in a brief and succinct format to be readable in a Linux
terminal and Microsoft Excel format. Significant CNVRs are then QC
reviewed for further curation and bias screening and either kept or
dropped based on predetermined significance criteria.

Development of a unified CNV VCF parser for diverse
applications
While VCF parsers exist, few if any support the variety of VCF
presentations and interpretations of CNV genotypes. Therefore,
we implemented a flexible VCF to rawcnv/bed format conversion
tool. Key challenges include the variety of ways to represent the
end genomic position and the alternative alleles. The allele
coding for the genotypes may be phased “|” or unphased “/” and
can use any combination and order of alternative allele copy
number states such as ALT= 0,2 and GT= 0/0 meaning CN= 2 or
GT= 0/1 meaning CN= 1 or GT= 2/2 meaning cn= 4. This lack
of strict convention for encoding CNVs into VCF creates a strong
challenge to make a unified parser that will accept and correctly
interpret diverse sources of VCFs.

Quality Control Sample Set:
Call Rate, SD_LRR, GCWF, CountCNV, Stratification

Quality Control Call Set:
Num SNPs/Exons/Bins, length, confidence,

quality (phred scaled for comparability)
(ParseCNV2 -qc or ParseCNV_QC.pl)

CNV Calling Algorithm
SNP Microarray: PennCNV/QuantiSNP

aCGH: CGHCall
Exome Sequencing: XHMM

Genome Sequencing: Manta/ Delly/ 

Lumpy/cnvnator/GATK gCNV/cn.MOPS

-i Cases_Controls.rawcnv or Cases_Controls.vcf
Sample Input

Intensity (LRR/Read 
Depth) and Genotype 
(BAF/ALT Allele Depth 

Fraction) and Read Pairs, 
Split Reads, Assembly 

Probe Values

-c Cases.list or -q Samples_Quan�ta�veTrait.txt
Definition Files

ParseCNV2

Report.txt (p-value sorted) Report.txtSorted (chr pos sorted)
Report_Contribu�ngCalls.txt Report_Verbose.txt

DEL Plink2 bfile: bed/bim/fam and pfile: psam/pvar/pgen DUP Plink2 bfile: bed/bim/fam and pfile: psam/pvar/pgen

CNV Associa�on Review
Report.txt: filter=Pass/Fail based on Red Flags 

in Report_Verbose.txt
(segDups, DGV, GC, recurrent, exon, pop_freq, 

gene, teloCentro, avgLength, p_max, 
pop_freq, inflatedSamplesFreq, 

avgConfidence, Summarized by RF, 
RF_PassFail)

CNV Call Review 
(BAF/LRR/RP/SR/AS)

Associa�on Region for CNV + and – Samples
(Report_Contribu�ngCalls.txt: Integra�ve 
Genomics Viewer Read Groups, Illumina 

Genome Studio Genome Viewer or Affymetrix 
Genotyping Console Browser) 

qPCR/ddPCR/RT-qPCR Wet 
Lab Review Confirma�on

True Posi�ve and True 
Nega�ves

Report_Verbose.vcf

Probe 
Clustering/Re
ad Mapping 
(BWA) and 

Variant Calling 
(GATK)

-b hg19 or hg38 or other species

ParseCNV.log

Additional Customized 
Statistics (gcta/RvTests/plink)

ParseCNV2_Insert.pl

Covariates

-covar covariates.txt

Fig. 1 ParseCNV2 process flow. Mirroring ParseCNV Nucleic Acids Research Fig. 1 [3] to show advances made at each step in ParseCNV2. Data
processing, information content extraction and assessment, CNV calling based on genomic regions of aberration, Quality control metric
assessment for samples and calls (in passing samples), CNV calls are provided for all samples in PennCNV rawcnv or VCF formats, covariates
(age, sex, race/top principal components), case sample IDs list or quantitative trait value for all sample IDs, and genome build are the main
ParseCNV2 command line options. Optionally, ParseCNV2 output files can be used by other statistical methods and imported back to
ParseCNV2 reporting using ParseCNV2_Insert. The main output is Report.txt (p-value sorted) listing genomic segments and ParseCNV2 Red
Flag filter for CNV Association Review (details in Report_Verbose output), Report_ContributingCalls.txt contains the input calls underlying
significant associations for review. Lastly, samples with predicted CNV and samples without predicted CNV for each remaining significant CNV
region are confirmed by lab PCR method.
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Validation based on real NGS data
Figure 4 shows WES and WGS CNVR association results from
ParseCNV2 results based on sequencing inputs. CNV detection
algorithm concordance and potential unique features such as type
of information content assessed can produce a CNV callset balancing
sensitivity and specificity.
To illustrate advantages of ParseCNV2, we applied ParseCNV2

association to the XHMM and exomeDepth detection algorithm
outputs from the PCGC data set. Based on annotations and filters
in ParseCNV2, the number of CNV candidates in the PCGC WES
dataset was reduced to 242.
Various datatypes and sizes were tested and benchmarked for

speed of computation. Results are listed as the number of
nominally significant (p < 0.05 unadjusted for multiple testing)
CNVRs enriched in cases/enriched in controls. For ParseCNV
comparison, pre-parsed VCFs to RAWCNVs were required and run
with the splitByChr option to avoid memory overflow.

DISCUSSION
In this study, we present a next-generation approach to CNV
association by supporting VCF specification for sequencing-derived
variants and SNP array data. The code is fast and efficient, allowing
for the analysis of large cohorts without dividing up the data on a
compute cluster. The scripts are condensed into a single tool to
promote simplicity and best practices with association CNV curation
that is rigorously supported to yield reliable results and of higher
quality than existing tools. In this study, we present a formalization
of CNV association. CNV association curation is rigorously supported
to yield reliable results of higher quality than existing tools. The UK
Biobank samples were CNV called using previously described
methods [21]. We would like to provide sensitivity and specificity
data in the benchmarking table but establishing a “truth set” or “gold
standard” for CNV associations genome-wide remains challenging.
The closest thing is probably 1KG P3 curated CNVs release [11] and
in particular sample NA12878. The 1KG VCF including 2500 samples
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Fig. 2 ParseCNV2 process flow graphical representation. Image representation mirroring top row boxes and bottom row boxes of
ParseCNV2 process flow text-based Fig. 1.

Table 3. Venn diagram (upset plot) quadrant counts for upset plot input.

1KG association results File 1 1KG association results File 2 Intersect

CNVRanger_1KG_qt ParseCNV2_1KG_cc 1518

CNVRanger_1KG_qt ParseCNV2_1KG_qt 2322

CNVRanger_1KG_qt ParseCNVOriginal_1KG_cc 1286

CNVRanger_1KG_qt ParseCNVOriginal_1KG_qt 429

CNVRanger_1KG_qt Plink2_1KG_cc 15,529

ParseCNV2_1KG_cc ParseCNV2_1KG_qt 194

ParseCNV2_1KG_cc ParseCNVOriginal_1KG_cc 828

ParseCNV2_1KG_cc ParseCNVOriginal_1KG_qt 39

ParseCNV2_1KG_cc Plink2_1KG_cc 2090

ParseCNV2_1KG_qt ParseCNVOriginal_1KG_cc 158

ParseCNV2_1KG_qt ParseCNVOriginal_1KG_qt 219

ParseCNV2_1KG_qt Plink2_1KG_cc 3851

ParseCNVOriginal_1KG_cc ParseCNVOriginal_1KG_qt 32

ParseCNVOriginal_1KG_cc Plink2_1KG_cc 1939

ParseCNVOriginal_1KG_qt Plink2_1KG_cc 854
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is the best gold standard for CNV detection which is also freely
accessible for raw read mapping data and CNV call data [11].
1KGP4 released 9 samples (3 trios: Han Chinese, Puerto Rican,

and Yoruban) sequenced and arrayed by many platform types and
algorithms [23]. Namely Pacific Biosciences, Oxford Nanopore,
Illumina short insert, Illumina liWGS, Illumina 7 kb JMP, 10X
Chromium, Bionano Genomics, Tru-Seq SLR, Strand-seq, and Hi-C.
Genome in a Bottle (GIAB) has independently undertaken a

similar effort [24] typing 7 samples on diverse platforms.
Limitations to address in future releases include: extending

functionality to support the full range of SV types, including SVA
(SINE, VNTR and Alu), ALU, LINE1, CNV, INVersion, INSertion, STR
(Short Tandem Repeat), ROH (Run of Homozygosity), MOS (Mosaic
CNV). Need more Gold Standards for CNV and SV association and
Reference Map Definitions in sizeable cohorts. Modeling Detection
Error Profile of each SV type is needed to inform metrics and
thresholds for QC filtering. The Weight of each SV in Association
could be further delineated. Formalizing CNV and SV association
and reporting is needed for inclusion of significant CNV and SV
associations in a widely used reference platform like the GWAS

Catalog. QC filtering of samples for CNV detection and passing
samples CNV calls could provide the passing sample and call with
the actual value of all the QC metrics as a covariate for association
to further adjust the association testing.

CONCLUSION
Being able to interpret CNVs effectively is severely hampered by
lack of confidence of current CNV detection tools as well as lack of
effective association tools. The same phase existed prior to
PennCNV being released where CNV variant calls from array data
were completely unreliable. Today, we are in a similar phase with
sequencing data CNV variant calls. Fast and easy curation and
association is a must have tool as implemented in ParseCNV2.
ParseCNV2 is an efficient algorithm for both QC and statistical
disease phenotype associations, a feature lacking in current tools,
and supports many species genomic CNV analysis. With respect to
key attributes of the ParseCNV2 we emphasize the fast and easy
curation and association of CNVs in both population and family-
based disease association settings.
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Fig. 3 Upset Plot Comparing Nominally Significant CNVR Loci. 1000 Genomes CNV callset phase 3 from Sudmant et al. [11] with samples
split randomly into cases and controls or assigned quantitative trait values to conduct CNV association testing with different methods. The
Upset Plot shows 73 nominally significant CNVR loci are detected by all tested CNV association methods. The Upset Plot was generated by R
package UpSetR [25].
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DATA AVAILABILITY
• Project name: ParseCNV2
• Project (source code) home page: https://github.com/CAG-CNV/ParseCNV2
• Operating systems: Linux (32/64-bit), OS X (64-bit Intel), Windows (32/64-bit)
• Programming language: Perl, R, Bash
• Other requirements (when recompiling): none
• License: GNU General Public License version 3.0 (GPLv3)
• Any restrictions to use by non-academics: none

REFERENCES
1. Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF, et al. PennCNV: an integrated

hidden Markov model designed for high-resolution copy number variation
detection in whole-genome SNP genotyping data. Genome Res. 2007;17:1665–74.

2. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation
PLINK: rising to the challenge of larger and richer datasets. Gigascience 2015;4:7.

3. Glessner JT, Li J, Hakonarson H. ParseCNV integrative copy number variation
association software with quality tracking. Nucleic Acids Res. 2013;41:e64.

4. Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S, et al. Autism
genome-wide copy number variation reveals ubiquitin and neuronal genes.
Nature 2009;459:569–73.

5. Mace A, Tuke MA, Beckmann JS, Lin L, Jacquemont S, WeedonMN, et al. New quality
measure for SNP array based CNV detection. Bioinformatics 2016;32:3298–305.

6. Glessner JT, Hou X, Zhong C, Zhang J, Khan M, Brand F, et al. DeepCNV: a deep
learning approach for authenticating copy number variations. Brief Bioinform. 2021.

7. Kim JH, Hu HJ, Yim SH, Bae JS, Kim SY, Chung YJ. CNVRuler: a copy number
variation-based case-control association analysis tool. Bioinformatics 2012;28:
1790–2.

8. Zhan X, Hu Y, Li B, Abecasis GR, Liu DJ. RVTESTS: an efficient and comprehensive
tool for rare variant association analysis using sequence data. Bioinformatics
2016;32:1423–6.

9. MacDonald JR, Ziman R, Yuen RK, Feuk L, Scherer SW. The Database of Genomic
Variants: a curated collection of structural variation in the human genome.
Nucleic Acids Res 2014;42:D986–92.

10. Collins RL, Brand H, Karczewski KJ, Zhao X, Alfoldi J, Francioli LC, et al. A structural
variation reference for medical and population genetics. Nature 2020;581:444–51.

11. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, et al.
An integrated map of structural variation in 2,504 human genomes. Nature
2015;526:75–81.

12. Werling DM, Brand H, An JY, Stone MR, Zhu L, Glessner JT, et al. An analytical
framework for whole-genome sequence association studies and its implications
for autism spectrum disorder. Nat Genet. 2018;50:727–36.

Fig. 4 ParseCNV2 Input and Output Formats. a Input CNV Data Formatting and Harmonization by ParseCNV2 from array and sequencing
data and b CNVR Association Results for WES and WGS.

J.T. Glessner et al.

311

European Journal of Human Genetics (2023) 31:304 – 312

https://github.com/CAG-CNV/ParseCNV2


13. Zhan X, Girirajan S, Zhao N, Wu MC, Ghosh D. A novel copy number variants
kernel association test with application to autism spectrum disorders studies.
Bioinformatics 2016;32:3603–10.

14. Alexander-Bloch A, Huguet G, Schultz LM, Huffnagle N, Jacquemont S, Seidlitz J,
et al. Copy Number Variant Risk Scores Associated With Cognition, Psycho-
pathology, and Brain Structure in Youths in the Philadelphia Neurodevelop-
mental Cohort. JAMA Psychiatry 2022;79:699–709.

15. Collins RL, Glessner JT, Porcu E, Lepamets M, Brandon R, Lauricella C, et al. A
cross-disorder dosage sensitivity map of the human genome. Cell 2022;185:
3041–55.e25.

16. Erikson GA, Deshpande N, Kesavan BG, Torkamani A. SG-ADVISER CNV: copy-
number variant annotation and interpretation. Genet Med. 2015;17:714–8.

17. Geoffroy V, Herenger Y, Kress A, Stoetzel C, Piton A, Dollfus H, et al. AnnotSV:
an integrated tool for structural variations annotation. Bioinformatics 2018;34:
3572–4.

18. Glessner JT, Bick AG, Ito K, Homsy J, Rodriguez-Murillo L, Fromer M, et al.
Increased frequency of de novo copy number variants in congenital heart disease
by integrative analysis of single nucleotide polymorphism array and exome
sequence data. Circ Res. 2014;115:884–96.

19. Fromer M, Purcell SM. Using XHMM software to detect copy number variation in
whole-exome sequencing data. Curr Protoc Hum Genet. 2014;81:7 23 1–1.

20. Elia J, Glessner JT, Wang K, Takahashi N, Shtir CJ, Hadley D, et al. Genome-wide
copy number variation study associates metabotropic glutamate receptor gene
networks with attention deficit hyperactivity disorder. Nat Genet. 2011;44:78–84.

21. Aguirre M, Rivas MA, Priest J. Phenome-wide burden of copy-number variation in
the UK Biobank. Am J Hum Genet. 2019;105:373–83.

22. Li YR, Glessner JT, Coe BP, Li J, Mohebnasab M, Chang X, et al. Rare copy number
variants in over 100,000 European ancestry subjects reveal multiple disease
associations. Nat Commun. 2020;11:1–9.

23. Chaisson MJP, Sanders AD, Zhao X, Malhotra A, Porubsky D, Rausch T, et al. Multi-
platform discovery of haplotype-resolved structural variation in human genomes.
Nat Commun. 2019;10:1784.

24. Greenside P, Zook J, Salit M, Cule M, Poplin R, DePristo M. CrowdVariant: a
crowdsourcing approach to classify copy number variants. Pac Symp Biocomput.
2019;24:224–35.

25. Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of
intersecting sets and their properties. Bioinformatics 2017;33:2938–40.

ACKNOWLEDGEMENTS
We thank the study participants who allowed for the use of genotyping, sequencing,
and disease phenotype data for this study, and to testers of the codes used in this
study. Funding This work was supported in part by CHOP’s Endowed Chair in
Genomic Research (Hakonarson), by 5U01HG011175-03 and U01-HG006830 (NHGRI-
sponsored eMERGE Network), by a sponsored research agreement from Aevi
Genomic Medicine Inc. (HH), Intellectual and Developmental Disabilities Research

Center (IDDRC), Kids First Gabriella Miller Pediatric Research Program, and by an
Institutional Development Award from Children’s Hospital of Philadelphia (HH).

AUTHOR CONTRIBUTIONS
JTG conceived, designed, and implemented the code and wrote the paper. JL
provided strategic guidance and ran other CNV association tools in benchmarking. YL
provided and ran WES and WGS data CNV calls for validation of the ParseCNV2
algorithm and wrote those sections. MK compared ParseCNV2 with ParseCNV original
version outputs to delineate reproducibility vs. new associations based on feature
improvement. XC designed experiments and helped write the manuscript. PMAS
contributed to data extraction. HH provided feedback on the report.

ETHICAL APPROVAL
All subjects were recruited through IRB-approved protocols. Participants enrolled in
various studies and completed a broad informed consent, including consent for
prospective analyses of EHRs. Confidentiality is guarded to address issues of privacy
and insurability. Each subject is assigned a study number upon recruitment, using
complex algorithms to remove personal identification. Encrypted patient data is
integrated into the lab’s custom phenotype browser, where it can be coupled with
genotyping and sequencing data.

COMPETING INTERESTS
The authors declare no competing interests. Unrelated to this manuscript, we
disclose that HH and CHOP own stock in Aevi Genomic Medicine.

ADDITIONAL INFORMATION
Correspondence and requests for materials should be addressed to Joseph T.
Glessner.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to
this article under a publishing agreement with the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of this article is solely
governed by the terms of such publishing agreement and applicable law.

J.T. Glessner et al.

312

European Journal of Human Genetics (2023) 31:304 – 312

http://www.nature.com/reprints
http://www.nature.com/reprints

	ParseCNV2: efficient sequencing tool for copy number variation genome-wide association studies
	Introduction
	Methods
	Upfront quality control: SNP microarray data
	Upfront quality control: exome or genome sequencing data
	Upfront quality control: modulating metric thresholds
	Input files
	Probe-based CNV statistics
	Association statistic options
	Merging probe-based statistics into Copy Number Variable Regions (CNVRs)
	Review of association signals by quality tracking
	Multiple testing correction
	CNV validation by quantitative Polymerase Chain Reaction (QPCR)
	Clinical
	Comparison to other methods
	Whole Exome Sequencing (WES) data for validation
	Whole Genome Sequencing (WGS) data for validation

	Results
	Development of a unified CNV VCF parser for diverse applications
	Validation based on real NGS data

	Discussion
	Conclusion
	References
	Acknowledgements
	Author contributions
	Ethical approval
	Competing interests
	ADDITIONAL INFORMATION




