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Abstract
Cardiovascular diseases are the leading cause of mortality, morbidity, and hospitalization around the world. Recent techno-
logical advances have facilitated analyzing, visualizing, and monitoring cardiovascular diseases using emerging computa-
tional fluid dynamics, blood flow imaging, and wearable sensing technologies. Yet, computational cost, limited spatiotem-
poral resolution, and obstacles for thorough data analysis have hindered the utility of such techniques to curb cardiovascular 
diseases. We herein discuss how leveraging machine learning techniques, and in particular deep learning methods, could 
overcome these limitations and offer promise for translation. We discuss the remarkable capacity of recently developed 
machine learning techniques to accelerate flow modeling, enhance the resolution while reduce the noise and scanning time 
of current blood flow imaging techniques, and accurate detection of cardiovascular diseases using a plethora of data col-
lected by wearable sensors.
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Introduction

Cardiovascular diseases (CVDs) refer to a broad range 
of pathologies caused by disorders in the heart (i.e., car-
diomyopathy, valvular diseases, and arrhythmia) or in the 
blood vessels (i.e., coronary artery disease, cerebrovascular 
disease, deep vein thrombosis, and peripheral arterial dis-
ease), potentially leading to heart attack, heart failure, and 
stroke (Nabel 2003). CVDs are the major cause of universal 

mortality, morbidity, and hospitalization (Virani et al. 2020), 
claiming the lives of 18.6 million people globally in 2019 
(Roth et al. 2020), equivalent to one death in roughly every 
two seconds. Modern life habits such as obesity, lack of 
physical activities, unhealthy nutrition, high cholesterol, 
stress, and smoking as well as genetic disorders are among 
the major risk factors.

A diverse range of diagnostic means have been employed 
for early detection and monitoring of CVDs in clinical set-
tings (Celermajer et al. 2012), including regular blood test, 
blood pressure monitoring, electrocardiogram, echocardio-
gram, stress test, chest x-ray, cardiac computerized tomog-
raphy (CT) scan, and cardiac magnetic resonance imaging 
(MRI) (Hunter 2016).

In recent decades, substantial advancements in comput-
ing power, mathematical models, imaging techniques, data 
acquisition and analysis, microfabrication, and biomateri-
als have facilitated the introduction of new approaches for 
curbing CVDs. Notably, computational fluid dynamic (CFD) 
simulations, recent blood flow imaging techniques such as 
4D-flow MRI, and wearable sensors are among the means 
which can significantly enhance our ability to model, moni-
tor, and predict CVDs. Yet, these pioneer means to explore 
hemodynamics bear their inherent limitations.
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CFD modules leverage advanced computational tech-
niques to solve differential equations governing the balance 
of mass and momentum in hemodynamics, enabling the 
prediction of flow patterns and associated shear matrices on 
the vessel walls and circulating cells (Bazilevs et al. 2009; 
Rikhtegar et al. 2012). However, excessive computational 
cost impedes the ability of CFD techniques for real-time 
analysis of blood flow, especially in complex 3D geometries. 
4D-flow MRI allows for visualization and quantification of 
complex blood flow patterns through the heart chambers/
valves and large vessels, enabling the identification of patho-
physiological flows caused by various cardiovascular disor-
ders (Markl et al. 2012; Stankovic et al. 2014). This tech-
nique is also limited in clinical translation as obtaining high 
spatial and temporal resolution images over large volumes 
requires long scan times.

Emerging wearable sensors facilitate the non-invasive and 
continuous monitoring of vital cardiovascular signals such 
as heartbeat, heart rhythm, and blood pressure in real-time 
amassing invaluable wealth of data for research and clinical 
use (Chen et al. 2021). Yet, in-depth analysis of the col-
lected signals to detect meaningful patterns and facilitate 
the early detection and monitoring of disease progression 
using conventional statistical approaches is still an unre-
solved challenge.

These limitations warrant the development and imple-
mentation of new strategies to maximize the utility of 
CFD, 4D-flow MRI, and wearable sensors to tackle CVDs, 
wherein machine learning methods have been recently lev-
eraged to help. Early roots of machine learning go back to 
1950s, when Arthur Samuel of IBM developed a computer 
program to play checkers. This program was able to make 
non-programmed decisions based on scoring an early prede-
cessor machine learning algorithm (Samuel 1959). Machine 
learning can predict outcomes and make decisions based on 
a given dataset without explicitly coding each of the input 
possibilities. This is a major advancement over traditional 
programming, where the code cannot evolve to solve unseen 
problems. To achieve this, algorithms based on machine 
learning build a model from the given training data and can, 
in many cases, automatically extract the prominent features 
(patterns) from the training data to make the needed predic-
tions (Sidey-Gibbons and Sidey-Gibbons 2019).

Machine learning is a collection of tens of methods that 
have been developed over the decades under various names 
such as statistical signal processing, pattern recognition, and 
computer vision (Theodoridis 2020). Many of the classical 
machine learning methods employ the Bayesian approach, 
which is the use of Bayes’ theorem in inferring the proba-
bility of an outcome based on a set of measurements (data) 
(van de Schoot, et al. 2021). Neural networks, on the other 
hand, use relatively simple building blocks (neurons) that are 
typically organized in layers, where the level of abstraction is 

increased in each of the neural layers. The use of artificial neu-
rons as building blocks is also not new and can be dated back 
to the 40’s; however, it was until the development of the back 
propagation algorithms in the 70’s that training neural net-
works become practical. With the exponential increase in the 
computational power and the further developments in neural 
network architectures, the training of such networks become 
feasible with the ability to handle larger number of layers (i.e., 
deeper networks); hence, the term deep learning started to be 
widely adopted (Chollet 2018).

Currently, two major applications are extensively assumed 
for machine learning in the field of biology. The first is using 
genome sequencing to take large geometric data sets and create 
predictive models that transcribe the data and identify dis-
eases. The second is image processing and computer vision to 
classify cells based on their morphology. Both methods require 
a large amount of raw data and create a predictive model based 
on computer detected patterns buried within. Once completely 
trained, the model can analyze and detect those patterns to 
either classify or identify the new data (Webb 2018). Continu-
ous learning is also possible, where the model continuously 
evolves as more data is fed to the system.

In this paper, we discuss recent developments in the appli-
cation of machine learning methods for improving numerical 
analysis, visualization, and monitoring of CVDs. We highlight 
the ability to reduce the computational time of CFD simula-
tions using deep learning methods to make them amenable 
for clinical applications. We describe methods for enhanc-
ing the resolution while reducing the noise and scan time of 
4D-flow MRI using deep learning. We also present the ability 
for accurate detection and classification of CVDs based on 
data collected by wearable sensors. Finally, we provide some 
recommendations to facilitate further utilization of machine 
learning in our fight against CVDs.

Hemodynamics and CVD monitoring

Computational fluid dynamics (CFD)

CFD techniques generally leverage finite difference, finite ele-
ment, or finite volume methods to solve the partial differen-
tial equations governing the balance of mass and momentum 
(also known as Navier–Stokes equations) in fluidic domains, 
as given below for incompressible flow of blood (Chung 2010; 
Versteeg and Malalasekera 2007):

in which ��⃗Ublood is the velocity vector of blood through the 
blood vessels, �blood and �blood are the density and viscosity 

Balance of mass ∶ ∇.��⃗Ublood = 0

Balance of momentum ∶ 𝜌
blood

D��⃗U
blood

Dt
= −∇P + 𝜌

blood �⃗g + 𝜇
blood

∇2 ��⃗U
blood
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of blood, respectively, t is time, P is pressure, and �⃗g is the 
gravitational acceleration.

Solving these equations allows for predicting the dis-
tribution of velocity and pressure within the blood flow, 
which can be further processed to obtain the flow stream-
lines, shear stress, pressure drop, and or solute exchange 
across the vessels. The process involves creation of geom-
etry, mesh generation, applying boundary conditions, set-
ting thermophysical properties of the blood, and solving dif-
ferential equations (Fig. 1a). Simulations can be performed 
in 2D/3D, highly complex/simplified geometries and under 
steady/transient, and laminar/turbulent conditions. As such, 

the geometry, transport properties, and boundary conditions 
of the CFD model can be customized to mimic tailored 
physiological or pathophysiological conditions (Baratchi 
et al. 2020; Duenas-Pamplona et al. 2021; Gijsen, et al. 
1999; Kim, et  al. 2013). In a more complicated setup, 
simulations can also be conducted in movable structures 
such as heart valves (Hoeijmakers et al. 2021; Weinberg and 
Kaazempur Mofrad 2008) as well as soft, deformable struc-
tures such as pulsating blood vessels (Chen et al. 2010). 
In such scenarios, fluidic equations should be coupled to 
the solid mechanics equations describing the structural 
dynamics. These so-called fluid–structure-interaction (FSI) 

Fig. 1  Some common methods 
for analyzing and monitoring 
of cardiovascular diseases: (a) 
computational fluid dynam-
ics (CFD) pipeline (adapted 
from (Randles et al. 2017)), (b) 
4D-flow magnetic resonance 
imaging (MRI) (adapted from 
(Allen et al. 2013)), and (c) 
cardiovascular wearable sen-
sors (adapted from (Chen et al. 
2021))
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models, on top of hemodynamic measures, can also predict 
the strain in cardiac tissue and vasculature as well as loco-
motion and constant deformation of red blood cells through 
the human circulatory system (Cetin and Sahin 2019; Liu 
and Liu 2006).

The rapid advancement of computer processing capabili-
ties along with the availability of commercial CFD software 
such as Fluent (ANSYS Inc.), COMSOL (COMSOL Inc.), 
Simcenter STAR-CCM + (Siemens) or open-access platforms 
such as Open Foam (OpenFOAM Foundation Inc.), and Sim-
vascular (a dedicated software for performing cardiovascular 
CFD simulations) (Updegrove et al. 2017) have facilitated 
the unprecedented progress of CFD simulations over the past 
20 years. Nevertheless, there are some limitations which hin-
der the capability of CFD techniques in the cardiovascular 
domain. The generation of geometry and 3D elements might 
be challenging in complex structures. The simulations can 
be time-consuming, particularly for transient or FSI simula-
tions, taking from a few hours to days. The computational 
time is proportional to the number of elements implemented 
in the model and the number of differential equations that 
need to be solved. Mesh-free CFD techniques aim to reduce 
the computational time (Monaghan 2005); however, the prob-
lems associated with the stability and accuracy of such tech-
niques can significantly limit their utility in cardiovascular 
research. Patient-specific CFD simulations can be even more 
challenging due to the limitations in the reconstruction of the 
geometry and setting boundary conditions (Tse et al. 2011; 
Zhong et al. 2018). Additionally, the accuracy of CFD calcu-
lations strongly depends on the models used to formulate the 
complex hemodynamics and mechanobiology of the human 
vessels (e.g., models to predict the blood viscosity or defor-
mation of red blood cells). The lack of experimental platforms 
for collecting enough data from the patients to create such 
models has limited the ability of existing CFD models. The 
emerging of microfluidic organ-on-chip models of the human 
cardiovascular system (Nguyen et al. 2021) can potentially 
address this limitation.

Blood flow imaging

Doppler echocardiography, a non-invasive modality using 
ultrasound, has been widely used for measuring the direction 
and velocity of blood flow through the heart chambers and 
large vessels (Anavekar and Oh 2009) as well as abnormal, 
regurgitant jets in pathologic heart valves (Nishimura et al. 
1985). This technique measures the velocity of moving red 
blood cells based on the frequency shift between the trans-
mitted and the reflected ultrasound wave. The frequency 
shift is proportional to the velocity of red blood cells accord-
ing to Doppler equation (Nishimura et al. 1985):

in which Δf  is the frequency shift, fo is the frequency of 
the transmitted wave, Ublood is the average velocity of blood 
through the vessel, � is the angle between the wave and the 
vessel axis, and c is the velocity of sound in human tissues 
(~ 1,560 m/s). The measurements are made at arbitrary dis-
crete points, and therefore, this technique has a limited spa-
tiotemporal resolution.

In comparison, phase-contrast magnetic resonance imag-
ing (PC-MRI) enables capturing and encoding of one-direc-
tional velocity vectors across imaging planes normal to the 
vessel. This technique measures the velocity of moving red 
blood cells based on the net phase shift when exposed to a 
pair of bipolar magnetic field gradients. The net phase shift 
is proportional to the velocity of red blood cells along the 
vessel, as expressed below (Wymer et al. 2020):

wherein Δ∅ is the phase shift, � is the gyromagnetic ratio 
(defined as the ratio of magnetic moment to angular momen-
tum), Ucell is the velocity of blood cells through the vessel, 
and ΔM

1
 is the change in the magnetic moment. A series of 

time-resolved images can be taken to capture the dynamics 
of blood flow during the cardiac cycle at each plane (Pelc 
et al. 1991).

Advances in PC-MRI have led to capturing and encod-
ing of three-directional flow vectors across a 3D volume 
throughout the cardiac cycle. This technique, which is 
known as 4D (3D + time) flow MRI, enables 3D visualiza-
tion and quantification of blood flow dynamics in the heart 
and vessels (Markl et al. 2012; Soulat et al. 2020) (Fig. 1b). 
4D flow MRI, with its rising interest in clinical research, is 
used for evaluating various CVDs such as congenital heart 
disease, cardiac valvular disease, aortic stenosis and aneu-
rysm, and pulmonary hypertension (Azarine et al. 2019).

Despite these advantages, low spatiotemporal resolution, 
bias noise, velocity aliasing, and eddy current-induced phase 
offset artifacts (Jiang et al. 2015) along with time-consum-
ing image segmentation, post-processing, and analysis steps 
(Leiner et al. 2019) can adversely impact the accuracy and 
utility of 4D flow MRI for the visualization and quantifica-
tion of blood flow.

Wearable sensors

Commercial wearable sensors such as smartwatches (Apple 
Inc.), necklaces (toSense, Inc.), and rings (Motiv Inc.) 
have enabled constant, non-invasive monitoring of useful 
cardiovascular signals such as heart rate, blood pressure, 
blood oxygen saturation level, and even blood glucose 

Δ f =
2 fo Ublood cos�

c

Δ ∅ = � Ucell Δ M
1
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level without using routine clinical setups and out of clin-
ics (Fig. 1c) (Bayoumy et al. 2021). These wearable sen-
sors are extremely useful for early detection of common 
cardiovascular conditions such as heart failure, heart valve 
disease, arrhythmia, hypertension, anoxia, and hypoxia as 
well as comorbid conditions such as diabetes (Bayoumy 
et al. 2021). Advances in microfabrication technologies and 
materials sciences have also facilitated the development of 
textile-based (also known as e-textile) (Fan et al. 2020) and 
skin-like (also known as epidermal, e-skin or e-tattoo) (Li 
et al. 2020) wearable sensors, as comprehensively reviewed 
in (Khoshmanesh et al. 2021). These sensors leverage a 
variety of opto-electric, mechano-electric, bio-electric, 
ultrasonic, and bio-chemical mechanisms for monitoring of 
vital cardiovascular signals (Chen et al. 2021). This is facili-
tated by incorporation of miniaturized actuating and sens-
ing elements into a smartwatch, cloths, or skin-like patches. 
Regardless of the sensing mechanism and the way that 
they are interfaced with the body, wearable sensors might 
be equipped with filters, amplifiers, and analog-to-digital 
converters to facilitate the smooth translation of the signals 
into meaningful patterns. Wireless transmission components 
such as Bluetooth modules might be required to transmit the 
collected signals to a nearby smartphone for further analysis, 
which might be challenging when dealing with large data.

Artificial intelligence and machine learning

The use of artificial intelligence (AI) has been steadily 
expanding in many fields including cardiovascular diseases, 
where the primary aim of such methods is to make auto-
mated decisions that can assist or completely replace human 
operators. This unprecedented progress in AI is mainly due 
to the rapid advancement of computational power, including 
graphical processing units and the development of various 
algorithms for effective training (Russell and Norvig. 2002). 
The applications in healthcare field cover many aspects 
including diagnosis, prognosis, and treatment (Graves 2013; 
Miller and Brown 2018).

Artificial intelligence has different subsets such as 
machine learning, which specifically aims to train the 
computer to learn and gain experience through the use 
of data without being programmed to solve each of the 
input combinations (Jordan and Mitchell 2015). Broadly, 
machine learning can be classified into two main catego-
ries: supervised and unsupervised machine learning (Tarca 
et al. 2007). Supervised machine learning relies on labeled 
training data as a targeted criterion for the algorithm, for 
example, a description of an object in an image or keywords 
in a document. It is extensively being used for data classifi-
cation or diagnostic predictions. Also, supervised machine 
learning methods are effectively used in solving regression 

problems, where the output is a numeric value rather than a 
discrete class. For example, the enhancement of CFD spa-
tiotemporal resolution falls under regression problems cat-
egory. On the other hand, unsupervised machine learning 
aims to organize unlabeled data and find hidden patterns 
or similarities without the necessary prior knowledge. For 
example, unsupervised machine learning can figure out that 
patients’ symptoms are clustered into few groups without 
knowing the underlaying mechanism and processes of the 
disease. Inherently, the performance of unsupervised learn-
ing is much harder to judge, as there is no discernable goal 
and more susceptible to biases in training data (Jordan and 
Mitchell 2015; Sidey-Gibbons and Sidey-Gibbons 2019).

Neural networks are a subset of machine learning 
approaches with basic building blocks called artificial 
neurons. The fundamental idea of the artificial neuron is a 
mathematical operation that receives inputs from multiple 
other neurons, compiles them with different weights, and 
then fires an output when the input combination reaches a 
certain level. As such, the output of a simple artificial neuron 
can be mathematically expressed as follows:

where xi is the input i to the neuron, wi is the associated 
weight, b is a constant bias, N is the total number of inputs, 
and g(.) is a non-linear activation function. The essence of 
training an artificial neural network (ANN) is to iteratively 
adjust the weights and biases such that the desired output is 
obtained. An example of a simple ANN is a single hidden 
layer feedforward network (fully connected), which consists 
of (i) an input layer (neurons that each accept a single input), 
(ii) a hidden layer where each neuron is connected to all 
input neurons and to all output layer neurons, and (iii) an 
output layer where each neuron is connected to all hidden 
layer neurons (Skaria et al. 2019). However, in more com-
plicated ANN networks such as the convolutional neural net-
work (CNN), a sequence of basic mathematical operations 
is performed at each layer.

For example, if a CNN network has an input of 2D 
echocardiogram intensity images of width w and a height 
h along with a Doppler overlay having the same dimen-
sions, accordingly, the overall input size in this example 
is w × h × 2 (Fig. 2). A typical CNN network has multiple 
convolutional layers each composed of a convolution opera-
tion, a rectified linear unit (ReLU) operation, and a pooling 
operation. The output of these convolutional layers is then 
flatted (converted into a vector) and then passed through 
a fully connected neural network with a final layer hav-
ing outputs equal to the number of echocardiogram image 
classes that needs to be classified. It is worth mentioning 
that the results from the output are typically normalized by 

y = g

(

N
∑

i=1

wixi + b

)
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a Softmax function which provides an exponential normali-
zation to the arbitrarily scaled real-value outcomes of the 
neural network; the resulting values from the Softmax layer 
indicate the different probability of matching each of the 
classes. An overview of a typical CNN architecture along 
with the different mathematical operations involved in each 
layer is illustrated in Fig. 2.

To improve the performance of neural networks, many 
cascaded layers are added with various intermediary ele-
ments to simplify the training process. Such deeper archi-
tecture (referred as deep learning (Skaria et al. 2019)) can 
automate much of the feature extraction phase of machine 
learning without the need for the designer to explicitly select 

the prominent measures (features) that needs to be fed to 
the classifier. For example, deep learning can autonomously 
identify certain regions in an MRI image that are the main 
clue for detecting an abnormal function. The drawback of 
this method is the typical need for large amount of training 
data to identify the prominent features (LeCun et al. 2015).

There are several common architectures of deep learn-
ing networks, including CNNs, recurrent neural networks 
(RNNs), and physics informed neural networks (PINNs) 
(Fig. 3). CNNs use convolutional filters to search for pat-
terns at different abstraction levels, it also uses several 
polling layers to reduce the spatial dimensionality as pat-
terns progress to the output. CNNs are commonly used for 

Fig. 2  A typical convolutional 
neural network architecture for 
classifying multi-dimensional 
images (e.g., echocardiogram 
with Doppler overlay) along 
with the main mathematical 
operations at each stage

Fig. 3  Application of artificial intelligence for analysis and moni-
toring of cardiovascular diseases: (a) relationship between artificial 
intelligence, machine learning, neural networks, and deep learning 

and (b) incorporation of machine learning and deep learning into 
CFD, 4D-flow MRI, and wearable sensors

24 Biophysical Reviews (2023) 15:19–33
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recognizing patterns in 2D and 3D spatial data, including 
image classification (Gu et al. 2018) and wearable sensors 
pattern recognition (Hendy et al. 2022; Skaria et al. 2020). 
RNNs can store, remember, and use the previous data and 
are commonly used for speech recognition and natural lan-
guage processing (Graves 2013). PINNs incorporate physi-
cal laws described as differential equations into the learn-
ing process of the neural network and are extremely useful 
for solving multi-dimensional problems (Karniadakis et al. 
2021; Raissi et al. 2019).

Artificial intelligence is a powerful tool in the field of 
cardiovascular imaging and has been used in specialized and 
time-consuming tasks such as anomaly identification, image 
segmentation, and increasing image resolution. Moreover, 
machine learning algorithms can analyze the raw informa-
tion of patients such as their heart rate, blood pressure, vas-
cular diameter, age, and sex to deduce any hidden or com-
plex patterns for diagnosis of CVDs or risk prediction of 
surgical procedures (Gupta et al. 2021; Kilic 2020; Podrat 
et al. 2021). Importantly, machine learning can be used for 
patient-specific risk stratification of future cardiovascular 
conditions (death, heart attack, and stroke), diagnosis, prog-
nosis, and treatment of various CVDs (Al'Aref et al. 2019; 
Arzani et al. 2022; Dey et al. 2019; Krittanawong et al. 2017; 
Shameer et al. 2018). Machine learning can be incorporated 
into CFD, 4D-flow MRI, and wearable sensors to facilitate 
modeling, identification, prediction, and pattern recognition 
of cardiovascular conditions (Fig. 3).

Incorporation of machine learning 
for cardiovascular disease monitoring

Computational fluid dynamics (CFD)

A novel approach in cardiovascular medicine is the use of 
CFD models on a patient-specific basis for diagnostic evalu-
ation (Mousavi et al. 2019; Tajeddini et al. 2020; Williams 
et al. 2022) and the design of cardiovascular devices such 
as ventricular assist device (Ghadimi, et al. 2019; Lin et al. 
2019), artificial heart valve (Soltany Sadrabadi et al. 2021; 
Zakerzadeh et  al. 2017), and extracorporeal membrane 
oxygenation (Nezami et al. 2021a, b; Nezami et al. 2021a, 
b). However, CFD models involving complex structures 
and dynamic conditions require high computational cost 
and time. Thus, conventional CFD models do not allow for 
real-time computations, which might be needed for surgical 
guidance (real-time analysis of the results during surgery). 
Therefore, it is essential to devise new strategies to acceler-
ate CFD calculations while maintaining the model accuracy, 

and machine learning methods and especially deep learning 
are increasingly being leveraged to this end.

An elegant example is a work by Li et al. (Li et al. 2021), 
which incorporates deep learning in a CFD model for pre-
dicting the flow dynamics in the aorta and coronary artery 
branches. The training dataset was created by obtaining the 
geometric details of the aorta and coronary artery branches 
of 110 patients using computed tomography angiography 
(CTA) scanning. The dataset was further augmented to 
1100 cases and CFD simulations were performed under 
identical boundary conditions. The simulation results were 
used to create a neural network model, which could predict 
with 90% accuracy the hemodynamic state of a new patient 
almost 600 times faster than a conventional CFD model. A 
similar approach has been used by Liang et al. (Liang et al. 
2020) for modeling the flow dynamics in the thoracic aorta 
and Wang et al. (Wang et al. 2020) for calculation of myo-
cardial fractional flow reserve.

Though promising, the above approach requires a large 
number of training samples limiting its utility motivat-
ing the introduction of a new approach, coined as physics 
informed neural networks (PINNs), by Raisei et al. (Raissi 
et al. 2019, 2020) (Fig. 4). These networks are trained by 
synergic combination of data and mathematical equations, 
which govern various physical phenomena. In this regard, 
the incorporation of Navier–Stokes equations into the PINNs 
model allows for surrogate modeling of the flow field with 
minimized or total absence of simulated data (Sun et al. 
2020), significantly reducing the number of samples to five 
while achieving an average accuracy of 92%. The PINNs 
model was later employed by Sun et al. (Sun et al. 2020) 
for modeling blood flow in stenosed vessel and Yin et al. 
(Yin et al. 2021) for obtaining of thrombus viscoelastic 
and permeability properties. The unique features of PINNs 
model for studying pathophysiological blood flow dynam-
ics have been recently highlighted through calculation of 
wall shear stress in atherosclerotic vessels or aneurysm by 
simply measuring the velocity of a few points away from 
the vessel walls (Arzani et al. 2021). This strategy is par-
ticularly important for studying patient-specific blood flow 
dynamics (Vardhan and Randles 2021), in which access to 
the boundary conditions is limited due to clinical constraints 
and ethical concerns.

Blood flow imaging

4D-flow MRI has been utilized for non-invasive imag-
ing of blood flow over a large volume (Markl et al. 2012; 
Stankovic et al. 2014). This technique is subjected to mul-
tiple limitations, associated with spatiotemporal resolution, 
signal-to-noise ratio, phase offset errors, velocity aliasing, 
and velocity encoding (Cibis et al. 2015; Rispoli et al. 2015; 
Vali, et al. 2017), which further impacts the accuracy of 
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calculating secondary hemodynamic parameters such as 
wall shear stress (WSS), oscillatory shear index (OSI), and 
relative residence time (RRT) (Boussel et al. 2009; Fathi 
et al. 2020). Importantly, long scan time is a major limi-
tation of existing 4D flow MRI. Processing 4D-flow MRI 
outcome requires roughly half an hour of time, limiting its 
immediate clinical application, and thus neural networks 
can play an important role to make clinical use viable by 
providing predictive interpolation and extrapolation to the 
measurements.

For example, Hammernik et al. (Hammernik et al. 2018) 
have proposed a novel method for fast MRI reconstruction 
with high-quality using variational network, followed up by 
Vishnevskiy et al. (Vishnevskiy et al. 2020), which uses a 
deep neural network. The network can rapidly reconstruct 
and transform unsampled data into MRI data. A deep vari-
ational neural networks approach enabled researchers to use 
undersampled data with their network. Researchers used 
images from 11 healthy subjects to train their model initially 
and, by using an iterative image reconstruction architecture, 
were able to reconstruct 4D-flow MRI data in less than one 
minute. In a similar study, Gong et al. (Gong et al. 2019) 
used a deep learning method to reconstruct tomographic 
images which allowed for imaging within the reconstruction 

providing high resolution images to easily detect diseases such 
as Alzheimer's.

Alternatively, Ferdian et al. (Ferdian et al. 2020) leveraged 
CFD simulations to generate synthetic 4D-flow MRI data in 
thoracic aorta. These synthetic images were further downsam-
pled and injected with white Gaussian noise for using them 
as the test dataset. A deep learning network, solely trained by 
such synthetic images, was then able to denoise the synthetic 
low-resolution dataset to produce low noise 4D flow MRI out-
put images with higher resolution than the input ones. A simi-
lar strategy was implemented by Rutkowski et al. (Rutkowski 
et al. 2021) for denoising velocity contours in the cerebral blood 
vessels.

To eliminate the need for CFD analysis, Fathi et al. (Fathi 
et al. 2020) utilized a PINNs model to enhance the resolution 
and denoise 4D flow MRI results (Fig. 5a). Complex Cartesian 
images containing the magnitude and direction of velocity vec-
tors are generated using low-resolution MRI data, following 
which regularization terms are defined to enforce flow phys-
ics (Navier–Stokes and continuity equations) within the flow 
domain. A loss function was introduced to produce high resolu-
tion and noise-free images, and the developed deep neural net-
work increased the algorithm’s efficiency. The model yielded a 
100-fold improvement in spatial resolution, a fivefold increase 

Fig. 4  Application of physics informed neural networks (PINNs) for 
cardiovascular hemodynamics: (a) carotid artery with an aneurysm 
with the training dataset (pressure and velocity field) being gener-
ated by CFD, (b) incorporation of Navier–Stokes equations into the 

neural network, (c) comparison of flow streamlines obtained by CFD 
and PINNs, and (d) comparison of velocity and pressure contours 
obtained by CFD and PINNs (adapted from (Raissi et al. 2020))
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in temporal resolution, and a 50% reduction in velocity normal-
ized root mean square error and ultimately were verified against 
particle image velocimetry results (Fig. 5b and c).

Wearable sensors

Wearable technologies have facilitated continuous monitor-
ing and collection of cardiovascular bio-signals (Chen et al. 
2021). However, analysis and classification of the collected 
data using standard statistical methods remain challenging 
(Ghosh et al. 2020). For example, cardiac disorders such 

as atrial fibrillation, atrial flutter, ventricular tachycardia, 
ventricular fibrillation, and myocardial infarction all lead 
to irregular heartbeats (arrhythmia) and abnormal electro-
cardiogram signals (Bayoumy et al. 2021; Krittanawong 
et al. 2021). Although an experienced cardiologist can dis-
tinguish the above cardiac disorders, the automated clas-
sification of these cardiac diseases, especially in the pres-
ence of noise, is challenging and prone to inaccuracy using 
statistical methods (Austin et al. 2013; Luo et al. 2016; Park 
et al. 2018). This can be even more challenging when dealing 
with multiple bio-signals such as heart rate, blood pressure, 
skin temperature, and electrocardiogram signals (Ge et al. 
2021; Martin et al. 2021; Tadesse et al. 2021) or mental 
stress (Patlar Akbulut et al. 2020). Additionally, the variety 
and complexity of bio-signals (Fig. 6) along with the diverse 
frequency and amplitude range thereof (Table 1) make it 
challenging for conventional analysis methods to discover 
any meaningful patterns within these signals, which corre-
spond to specific medical conditions (Martinek et al. 2021).

To address this limitation, the cardiovascular bio-signals 
collected by wearable sensors could be wirelessly transferred 
to a more powerful analytical platform to be processed using 
various machine learning algorithms. Any meaningful patterns 
in the data, which might correspond to the diagnosis, risk pre-
diction or prognosis of cardiovascular diseases, can be shared 
with the patient or their healthcare provider (Fig. 7). The data 
collected from thousands of individuals can also be collated 
to make data-driven decisions (Krittanawong et al. 2021; Quer 
et al. 2021).

Recent published literature has demonstrated the viability 
of accurate detection and classification of cardiovascular dis-
eases using commercial wearable technologies. For instance, 
Tison et  al. (Tison et  al. 2018) developed a deep neural 
network model to detect atrial fibrillation (irregular heart 
rhythm) based on photoplethysmography signals obtained 
by wrist-worn smartwatches (Apple Inc.). Comparing the 
results against standard 12-lead electrocardiography revealed 
a 98% sensitivity and a 90% specificity for a population of 51 
patients. Likewise, Green et al. (Green et al. 2019) developed a 
machine learning based classifier for detection of hypertrophic 
cardiomyopathy (a genetic disorder characterized by thicken-
ing of the cardiac muscle) based on photoplethysmography 
signals obtained by a wrist-worn sensor (Wavelet Health). 
More recently, Stehlik et al. (Stehlik et al. 2020) developed a 
similarity-based machine learning model to predict the risk of 
heart failure based on heart rate, electrocardiography wave-
forms, and temperature obtained by a commercial chest-worn 
sensor (Vital Connect). Analysis of results in 100 patients aged 
between 58 and 78 over a three-month period enabled the pre-
diction of the risk of imminent heart failure hospitalization 
with an 88% sensitivity and 85% specificity.

Fig. 5  Application of physics-informed neural networks (PINNs) for 
enhancing the resolution of 4D-flow MRI results: (a) flow chart of the 
algorithm composed of training and using phases, (b) representative 
images showing the conversion of low-resolution velocity contours 
obtained by 4D-flow MRI to high-resolution images using PINNs, 
and (c) experimental results verified against particle image velocime-
try (adapted from (Fathi et al. 2020))
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Conclusions and future steps

In this paper, we briefly discussed the incorporation of 
machine learning in hemodynamic analysis and monitor-
ing, showcasing its application in studies with compu-
tational fluid dynamics, blood flow imaging, and wear-
able sensors for enhanced diagnosis, prognosis, and 
therapy. Highlighting the potential of machine learning 
for reducing computational cost and time, we presented 
its promise in improving the resolution and quality of 
images while keeping long scan time at bay. We as well 
depicted the promising application of machine learning 

for early detection and risk stratification of cardiovas-
cular diseases to motivate the promise that machine 
learning with its accelerated rate of development can 
significantly improve cardiovascular monitoring, care, 
and management.

We ultimately outline the following suggestions to facili-
tate more effective translation of machine learning models 
for cardiovascular research:

Further interaction: given the multidisciplinary nature of 
this field, a closer collaboration between the stakeholders, 
including experts in the areas of computational fluid dynam-
ics, blood flow imaging, cardiology, wearable sensors, and 
machine learning experts, is required to close the remaining 

Fig. 6  Human bio-signals: 
(a) schematics showing the 
diversity and complexity of bio-
signals and (b) the frequency 
range of various bio-signals 
(adapted from (Martinek et al. 
2021))

Table 1  A brief overview of bio-signals along with their frequency and amplitude range

Bio-signal Descriptions Frequency (Hz) Voltage 
amplitude 
(V)

Electroencephalogram (EEG) (Jurcak et al. 2007) Electrical signal/activity of the brain 0.5–100 0.005–10
Electrocardiogram (ECG) (Clifford, et al. 2006) Electrical signal/activity of the heart 0.05–250 0.01–5
Fetal electrocardiogram (fECG) (Sameni and Clifford 

2010)
Electrical signal/activity of the fetal heart 0.05–150 0.01–0.02

Vectorcardiogram (VCG) (Vozda and Cerny 2015) Spatial and temporal cardiac electrical activities - -
Electromyogram (EMG) (Reaz et al. 2006) Electrical signal/activity in muscles in response to 

neural stimulation
50–10,000 0.05–0.3

Electrooculogram (EOG) (López et al. 2020) Electrical signal corresponding to the movement of the 
eye

0.1–20 0.05–3.5

Electroretinogram (ERG) (Heckenlively and Arden 
2006)

Electrical signal/activity of the retina in response to 
light stimulation

5–35 0.005–1

Electrohysterogram (EHG) (Rabotti et al. 2008) Uterine electrical activity 0.1–3 0.1–1
Electrocorticogram (ECoG) (Nakasatp et al. 1994) Electrical signal/activity of the cerebral cortex 0.1–100 0.005–10
Electroneurogram (ENG) (Cogan 2008) Electrical signal/activity of axons in peripheral nerves 100–1000 0.005–10
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gaps. This can be facilitated by organizing special issues in 
cardiovascular journals, organizing dedicated conferences, 
symposiums, and meetings as well as dedicating research 
grants and designing post-graduate courses to maximize the 
interaction between engineers, computer scientists, cardiolo-
gists, clinicians, and vascular biologists.

User-friendly platforms: machine learning algorithms are 
advancing rapidly. However, the lack of user-friendly plat-
forms makes it challenging for users with limited knowl-
edge and expertise in computer and data sciences to employ 
such algorithms. Development of user-friendly machine 
learning platforms with comprehensive libraries facilitates 
the adoption of such models by the experts working in the 
areas of computational fluid dynamics, blood flow imag-
ing, and wearable sensors. A successful role model in this 
regard is the open-source ImageJ software, supported by 
the National Institutes of Health funding, which provides a 
user-friendly platform for processing of microscopic images 
to calculate cells’ density, morphology, and viability by 
cellular biologists who are not necessarily expert in image 
processing. We believe that the adoption of similar machine 
learning platforms can significantly improve the diagnosis, 
prognosis, and risk prediction of CVDs.

Dedicated physic-informed neural networks mod-
els for cardiovascular diseases: the PINN models have 
proven their capability for solving complex flow fields. We 

envisage that the development of dedicated hemodynamics 
informed neural network models is necessary for better 
understanding of the complex hemodynamics of human 
vessels under various physiological and pathophysiologi-
cal conditions. Such models can be further improved by 
incorporating fluid–structure-interaction models to predict 
the deformation of blood vessels under pulsatile flows, 
movement of blood cells inside the vessels, as well as the 
complex dynamics of blood cells at the vicinity of heart 
valves.

Author contribution H.M. wrote the manuscript and prepared the 
figures. A.H., G.C., F.K., F.R.N., and S.N. wrote and reviewed the 
manuscript. S.B. and K.K. conceptualized and led the work, wrote, 
and reviewed the manuscript.

Funding S.N., S.B., and K.K. acknowledge the Australian Research 
Council (ARC) for the Linkage grant (LP190100728).

Declarations 

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Conflict of interest The authors declare no competing interests.

Fig. 7  Application of machine 
learning for the analysis of 
cardiovascular bio-signals col-
lected by wearable sensors: (a) 
in situ collection of patient’s 
bio-signals and transfer to a 
data center, (b) analysis using 
deep learning algorithms to 
predict and diagnose potential 
cardiovascular diseases, and (c) 
communication of the results 
with the patients and/or health-
care providers (adapted from 
(Krittanawong et al. 2021))

29Biophysical Reviews (2023) 15:19–33



1 3

References

Al'Aref SJ et al (2019) Clinical applications of machine learning in 
cardiovascular disease and its relevance to cardiac imaging. Eur 
Heart J 40:1975–1986. https:// doi. org/ 10. 1093/ eurhe artj/ ehy404

Allen BD, Barker AJ, Kansal P, Collins JD, Carr JC, Malaisrie SC, 
Markl M (2013) Impact of aneurysm repair on thoracic aorta 
hemodynamics. Circulation 128:e341–e343. https:// doi. org/ 10. 
1161/ CIRCU LATIO NAHA. 112. 000850

Anavekar NS, Oh JK (2009) Doppler echocardiography: a contem-
porary review. J Cardiol 54:347–358. https:// doi. org/ 10. 1016/j. 
jjcc. 2009. 10. 001

Arzani A, Wang J-X, D'Souza RM (2021) Uncovering near-wall 
blood flow from sparse data with physics-informed neural 
networks. Phys Fluids 33:071905. https:// doi. org/ 10. 1063/5. 
00556 00

Arzani A, Wang J-X, Sacks MS, Shadden SC (2022) Machine learn-
ing for cardiovascular biomechanics modeling: challenges and 
beyond. Ann Biomed Eng 50:615–627. https:// doi. org/ 10. 1007/ 
s10439- 022- 02967-4

ATmega32-avr. https:// atmeg a32- avr. com/. Accessed Oct 2021
Austin PC, Tu JV, Ho JE, Levy D, Lee DS (2013) Using methods from 

the data-mining and machine-learning literature for disease clas-
sification and prediction: a case study examining classification 
of heart failure subtypes. J Clin Epidemiol 66:398–407. https:// 
doi. org/ 10. 1016/j. jclin epi. 2012. 11. 008

Azarine A, Garcon P, Stansal A, Canepa N, Angelopoulos G, Silvera 
S, Sidi D, Marteau V, Zins M (2019) Four-dimensional flow 
MRI: principles and cardiovascular applications. Radiographics 
39:632–648. https:// doi. org/ 10. 1148/ rg. 20191 80091

Baratchi S et al (2020) Transcatheter aortic valve implantation repre-
sents an anti-inflammatory therapy via reduction of shear stress–
induced, Piezo-1–mediated monocyte activation. Circulation 
142:1092–1105. https:// doi. org/ 10. 1161/ CIRCU LATIO NAHA. 
120. 045536

Bayoumy K et al (2021) Smart wearable devices in cardiovascular 
care: where we are and how to move forward. Nat Rev Cardiol 
18:581–599. https:// doi. org/ 10. 1038/ s41569- 021- 00522-7

Bazilevs Y, Hsu MC, Benson DJ, Sankaran S, Marsden AL (2009) 
Computational fluid–structure interaction: methods and applica-
tion to a total cavopulmonary connection. Comput Mech 45:77–
89. https:// doi. org/ 10. 1007/ s00466- 009- 0419-y

Boussel L, Rayz V, Martin A, Acevedo-Bolton G, Lawton MT, 
Higashida R, Smith WS, Young WL, Saloner D (2009) Phase-
contrast magnetic resonance imaging measurements in intrac-
ranial aneurysms in vivo of flow patterns, velocity fields, and 
wall shear stress: comparison with computational fluid dynam-
ics. Magn Reson Med 61:409–417. https:// doi. org/ 10. 1002/ mrm. 
21861

Celermajer DS, Chow CK, Marijon E, Anstey NM, Woo KS (2012) 
Cardiovascular disease in the developing world: prevalences, pat-
terns, and the potential of early disease detection. J Am Coll Car-
diol 60:1207–1216. https:// doi. org/ 10. 1016/j. jacc. 2012. 03. 074

Cetin A, Sahin M (2019) A monolithic fluid-structure interaction 
framework applied to red blood cells. Int J Numer Method 
Biomed Eng 35:e3171. https:// doi. org/ 10. 1002/ cnm. 3171

Chen HY, Zhu L, Huo Y, Liu Y, Kassab GS (2010) Fluid–structure 
interaction (FSI) modeling in the cardiovascular system. In: 
Guccione JM, Kassab GS, Ratcliffe MB (eds) Computational 
cardiovascular mechanics: modeling and applications in heart 
failure. Springer US, Boston, MA, pp 141–157. https:// doi. org/ 
10. 1007/ 978-1- 4419- 0730-1_9

Chen S, Qi J, Fan S, Qiao Z, Yeo JC, Lim CT (2021) Flexible wearable 
sensors for cardiovascular health monitoring. Adv Healthc Mater 
10:e2100116. https:// doi. org/ 10. 1002/ adhm. 20210 0116

Chollet F (2018) Deep learning with Python. In: Manning Publications 
Co. (in English) N/A

Chung TJ (2010) Computational fluid dynamics. Cambridge University 
Press. https:// doi. org/ 10. 1017/ cbo97 80511 606205

Cibis M, Jarvis K, Markl M, Rose M, Rigsby C, Barker AJ, Wentzel JJ 
(2015) The effect of resolution on viscous dissipation measured 
with 4D flow MRI in patients with Fontan circulation: evaluation 
using computational fluid dynamics. J Biomech 48:2984–2989. 
https:// doi. org/ 10. 1016/j. jbiom ech. 2015. 07. 039

Clifford, G. D., Azuaje, F., and McSharry, P., Advanced methods and 
tools for ECG data analysis. Artech house Boston, 2006. N/A

Cogan SF (2008) Neural stimulation and recording electrodes. Annu 
Rev Biomed Eng 10:275–309. https:// doi. org/ 10. 1146/ annur ev. 
bioeng. 10. 061807. 160518

Dey D, Slomka PJ, Leeson P, Comaniciu D, Shrestha S, Sengupta 
PP, Marwick TH (2019) Artificial intelligence in cardiovascu-
lar imaging: JACC state-of-the-art review. J Am Coll Cardiol 
73:1317–1335. https:// doi. org/ 10. 1016/j. jacc. 2018. 12. 054

Duenas-Pamplona J, Garcia JG, Sierra-Pallares J, Ferrera C, Agujetas 
R, Lopez-Minguez JR (2021) A comprehensive comparison of 
various patient-specific CFD models of the left atrium for atrial 
fibrillation patients. Comput Biol Med 133:104423. https:// doi. 
org/ 10. 1016/j. compb iomed. 2021. 104423

Elkworks. https:// elkew orks. com/ produ ct/_ 15009 46. html. Accessed 
Oct 2021)

Fan W, He Q, Meng K, Tan X, Zhou Z, Zhang G, Yang J, Wang ZL 
(2020) Machine-knitted washable sensor array textile for precise 
epidermal physiological signal monitoring. Sci Adv 6:eaay2840. 
https:// doi. org/ 10. 1126/ sciadv. aay28 40

Fathi MF, Perez-Raya I, Baghaie A, Berg P, Janiga G, Arzani A, D'Souza 
RM (2020) Super-resolution and denoising of 4D-flow MRI using 
physics-informed deep neural nets. Comput Methods Prog Biomed 
197:105729. https:// doi. org/ 10. 1016/j. cmpb. 2020. 105729

Ferdian E, Suinesiaputra A, Dubowitz DJ, Zhao D, Wang A, Cowan 
B, Young AA (2020) 4DFlowNet: super-resolution 4D flow MRI 
using deep learning and computational fluid dynamics. Front 
Phys 8. https:// doi. org/ 10. 3389/ fphy. 2020. 00138

Ge R, Shen T, Zhou Y, Liu C, Zhang L, Yang B, Yan Y, Coatrieux JL, 
Chen Y (2021) Convolutional squeeze-and-excitation network 
for ECG arrhythmia detection. Artif Intell Med 121. https:// doi. 
org/ 10. 1016/j. artmed. 2021. 102181

Ghadimi B, Nejat A, Nourbakhsh SA, Naderi N (2019) Shape opti-
mization of a centrifugal blood pump by coupling CFD with 
metamodel-assisted genetic algorithm. J Artif Organs 22:29–36. 
https:// doi. org/ 10. 1007/ s10047- 018- 1072-z

Ghosh SK, Tripathy RK, Paternina MRA, Arrieta JJ, Zamora-Mendez 
A, Naik GR (2020) Detection of atrial fibrillation from single 
Lead ECG signal using multirate cosine filter Bank and deep 
neural network. J Med Syst 44:114. https:// doi. org/ 10. 1007/ 
s10916- 020- 01565-y

Gijsen FJH, van de Vosse FN, Janssen JD (1999) The influence of the 
non-Newtonian properties of blood on the flow in large arteries: 
steady flow in a carotid bifurcation model. J Biomech 32:601–
608. https:// doi. org/ 10. 1016/ s0021- 9290(99) 00015-9

Gong K, Catana C, Qi J, Li Q (2019) PET image reconstruction using 
deep image prior. IEEE Trans Med Imaging 38:1655–1665. 
https:// doi. org/ 10. 1109/ TMI. 2018. 28884 91

Graves A (2013) Generating sequences with recurrent neural networks. 
arXiv:1308.0850v5. https:// doi. org/ 10. 48550/ arXiv. 1308. 0850

Green EM, van Mourik R, Wolfus C, Heitner SB, Dur O, Semigran MJ 
(2019) Machine learning detection of obstructive hypertrophic 
cardiomyopathy using a wearable biosensor. NPJ Digit Med 2:57. 
https:// doi. org/ 10. 1038/ s41746- 019- 0130-0

Gu J et al (2018) Recent advances in convolutional neural networks. 
Pattern Recogn 77:354–377. https:// doi. org/ 10. 1016/j. patcog. 
2017. 10. 013

30 Biophysical Reviews (2023) 15:19–33

https://doi.org/10.1093/eurheartj/ehy404
https://doi.org/10.1161/CIRCULATIONAHA.112.000850
https://doi.org/10.1161/CIRCULATIONAHA.112.000850
https://doi.org/10.1016/j.jjcc.2009.10.001
https://doi.org/10.1016/j.jjcc.2009.10.001
https://doi.org/10.1063/5.0055600
https://doi.org/10.1063/5.0055600
https://doi.org/10.1007/s10439-022-02967-4
https://doi.org/10.1007/s10439-022-02967-4
https://atmega32-avr.com/
https://doi.org/10.1016/j.jclinepi.2012.11.008
https://doi.org/10.1016/j.jclinepi.2012.11.008
https://doi.org/10.1148/rg.2019180091
https://doi.org/10.1161/CIRCULATIONAHA.120.045536
https://doi.org/10.1161/CIRCULATIONAHA.120.045536
https://doi.org/10.1038/s41569-021-00522-7
https://doi.org/10.1007/s00466-009-0419-y
https://doi.org/10.1002/mrm.21861
https://doi.org/10.1002/mrm.21861
https://doi.org/10.1016/j.jacc.2012.03.074
https://doi.org/10.1002/cnm.3171
https://doi.org/10.1007/978-1-4419-0730-1_9
https://doi.org/10.1007/978-1-4419-0730-1_9
https://doi.org/10.1002/adhm.202100116
https://doi.org/10.1017/cbo9780511606205
https://doi.org/10.1016/j.jbiomech.2015.07.039
https://doi.org/10.1146/annurev.bioeng.10.061807.160518
https://doi.org/10.1146/annurev.bioeng.10.061807.160518
https://doi.org/10.1016/j.jacc.2018.12.054
https://doi.org/10.1016/j.compbiomed.2021.104423
https://doi.org/10.1016/j.compbiomed.2021.104423
https://elkeworks.com/product/_1500946.html
https://doi.org/10.1126/sciadv.aay2840
https://doi.org/10.1016/j.cmpb.2020.105729
https://doi.org/10.3389/fphy.2020.00138
https://doi.org/10.1016/j.artmed.2021.102181
https://doi.org/10.1016/j.artmed.2021.102181
https://doi.org/10.1007/s10047-018-1072-z
https://doi.org/10.1007/s10916-020-01565-y
https://doi.org/10.1007/s10916-020-01565-y
https://doi.org/10.1016/s0021-9290(99)00015-9
https://doi.org/10.1109/TMI.2018.2888491
https://doi.org/10.48550/arXiv.1308.0850
https://doi.org/10.1038/s41746-019-0130-0
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1016/j.patcog.2017.10.013


1 3

Gupta T, Joseph DT, Goel SS, Kleiman NS (2021) Predicting and 
measuring mortality risk after transcatheter aortic valve replace-
ment. Expert Rev Cardiovasc Ther 19:247–260. https:// doi. org/ 
10. 1080/ 14779 072. 2021. 18887 15

Hammernik K, Klatzer T, Kobler E, Recht MP, Sodickson DK, Pock 
T, Knoll F (2018) Learning a variational network for reconstruc-
tion of accelerated MRI data. Magn Reson Med 79:3055–3071. 
https:// doi. org/ 10. 1002/ mrm. 26977

Heckenlively JR, Arden GB (2006) Principles and practice of clinical 
electrophysiology of vision. MIT Press. https:// doi. org/ 10. 7551/ 
mitpr ess/ 5557. 001. 0001

Hendy N, Fayek HM, Al-Hourani A (2022) Deep learning approaches 
for air-writing using single UWB radar. IEEE Sensors J:1. https:// 
doi. org/ 10. 1109/ JSEN. 2022. 31727 27

Hoeijmakers M, Huberts W, Rutten MCM, van de Vosse FN (2021) 
The impact of shape uncertainty on aortic-valve pressure-drop 
computations. Int J Numer  Method Biomed Eng 37:e3518. 
https:// doi. org/ 10. 1002/ cnm. 3518

Hunter J (2016) Cardiovascular diseases: pathophysiology, diagnosis 
and treatment, 1st edn, Foster Academics N/A

Jiang J, Kokeny P, Ying W, Magnano C, Zivadinov R, Mark Haacke 
E (2015) Quantifying errors in flow measurement using phase 
contrast magnetic resonance imaging: comparison of several 
boundary detection methods. Magn Reson Imaging 33:185–193. 
https:// doi. org/ 10. 1016/j. mri. 2014. 10. 009

Jordan MI, Mitchell TM (2015) Machine learning: trends, perspec-
tives, and prospects. Science 349:255–260. https:// doi. org/ 10. 
1126/ scien ce. aaa84 15

Jurcak V, Tsuzuki D, Dan I (2007) 10/20, 10/10, and 10/5 systems 
revisited: their validity as relative head-surface-based positioning 
systems. Neuroimage 34:1600–1611. https:// doi. org/ 10. 1016/j. 
neuro image. 2006. 09. 024

Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L 
(2021) Physics-informed machine learning. Nat Rev Phys 3:422–
440. https:// doi. org/ 10. 1038/ s42254- 021- 00314-5

Khoshmanesh F, Thurgood P, Pirogova E, Nahavandi S, Baratchi S 
(2021) Wearable sensors: at the frontier of personalised health 
monitoring, smart prosthetics and assistive technologies. Bios-
ens Bioelectron 176:112946. https:// doi. org/ 10. 1016/j. bios. 2020. 
112946

Kilic A (2020) Artificial intelligence and machine learning in cardio-
vascular health care. Ann Thorac Surg 109:1323–1329. https:// 
doi. org/ 10. 1016/j. athor acsur. 2019. 09. 042

Kim SK, Na Y, Kim JI, Chung SK (2013) Patient specific CFD models 
of nasal airflow: overview of methods and challenges. J Biomech 
46:299–306. https:// doi. org/ 10. 1016/j. jbiom ech. 2012. 11. 022

Krittanawong C, Rogers AJ, Johnson KW, Wang Z, Turakhia MP, Hal-
perin JL, Narayan SM (2021) Integration of novel monitoring 
devices with machine learning technology for scalable cardio-
vascular management. Nat Rev Cardiol 18:75–91. https:// doi. 
org/ 10. 1038/ s41569- 020- 00445-9

Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T (2017) Artificial 
Intelligence in Precision Cardiovascular Medicine. J Am Coll 
Cardiol 69:2657–2664. https:// doi. org/ 10. 1016/j. jacc. 2017. 03. 
571

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–
444. https:// doi. org/ 10. 1038/ natur e14539

Leiner T, Rueckert D, Suinesiaputra A, Baessler B, Nezafat R, Isgum I, 
Young AA (2019) Machine learning in cardiovascular magnetic 
resonance: basic concepts and applications. J Cardiovasc Magn 
Reson 21:61. https:// doi. org/ 10. 1186/ s12968- 019- 0575-y

Li G, Wang H, Zhang M, Tupin S, Qiao A, Liu Y, Ohta M, Anzai H 
(2021) Prediction of 3D cardiovascular hemodynamics before 
and after coronary artery bypass surgery via deep learning. Com-
mun Biol 4:99. https:// doi. org/ 10. 1038/ s42003- 020- 01638-1

Li H et al (2020) Wearable skin-like optoelectronic systems with sup-
pression of motion artifacts for cuff-less continuous blood pres-
sure monitor. Natl Sci Rev 7:849–862. https:// doi. org/ 10. 1093/ 
nsr/ nwaa0 22

Liang L, Mao W, Sun W (2020) A feasibility study of deep learning for 
predicting hemodynamics of human thoracic aorta. J Biomech 
99:109544. https:// doi. org/ 10. 1016/j. jbiom ech. 2019. 109544

Lin WCP, Doyle MG, Roche SL, Honjo O, Forbes TL, Amon CH 
(2019) Computational fluid dynamic simulations of a cavopul-
monary assist device for failing Fontan circulation. J Thorac 
Cardiovasc Surg 158:1424–1433 e5. https:// doi. org/ 10. 1016/j. 
jtcvs. 2019. 03. 008

Liu Y, Liu WK (2006) Rheology of red blood cell aggregation by 
computer simulation. J Comput Phys 220:139–154. https:// doi. 
org/ 10. 1016/j. jcp. 2006. 05. 010

López A, Ferrero F, Villar JR, Postolache O (2020) High-performance 
analog front-end (AFE) for EOG systems. Electronics 9:970. 
https:// doi. org/ 10. 3390/ elect ronic s9060 970

Luo J, Wu M, Gopukumar D, Zhao Y (2016) Big data application in 
biomedical research and health care: a literature review. Biomed 
Inform Insights 8:1–10. https:// doi. org/ 10. 4137/ BII. S31559

Markl M, Frydrychowicz A, Kozerke S, Hope M, Wieben O (2012) 
4D flow MRI. J Magn Reson Imaging 36:1015–1036. https:// doi. 
org/ 10. 1002/ jmri. 23632

Martin H, Morar U, Izquierdo W, Cabrerizo M, Cabrera A, Adjouadi 
M (2021) Real-time frequency-independent single-Lead and sin-
gle-beat myocardial infarction detection. Artif Intell Med 121. 
https:// doi. org/ 10. 1016/j. artmed. 2021. 102179

Martinek R, Ladrova M, Sidikova M, Jaros R, Behbehani K, Kahank-
ova R, Kawala-Sterniuk A (2021) Advanced bioelectrical signal 
processing methods: past, present and future approach—part I: 
cardiac signals. Sensors 21:5186. https:// doi. org/ 10. 3390/ s2115 
5186

Miller DD, Brown EW (2018) Artificial intelligence in medical prac-
tice: the question to the answer? Am J Med 131:129–133. https:// 
doi. org/ 10. 1016/j. amjmed. 2017. 10. 035

Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 
68:1703–1759. https:// doi. org/ 10. 1088/ 0034- 4885/ 68/8/ r01

Mousavi SJ, Farzaneh S, Avril S (2019) Patient-specific predictions 
of aneurysm growth and remodeling in the ascending thoracic 
aorta using the homogenized constrained mixture model. Bio-
mech Model Mechanobiol 18:1895–1913. https:// doi. org/ 10. 
1007/ s10237- 019- 01184-8

Nabel EG (2003) Cardiovascular disease. N Engl J Med 349:60–72. 
https:// doi. org/ 10. 1056/ NEJMr a0350 98

Nakasatp N, Levesque MF, Barth DS, Baumgartner C, Rogers RL, 
Sutherling WW (1994) Comparisons of MEG, EEG, and ECoG 
source localization in neocortical partial epilepsy in humans. 
Electroencephalogr Clin Neurophysiol 91:171–178. https:// doi. 
org/ 10. 1016/ 0013- 4694(94) 90067-1

Nezami FR, Khodaee F, Edelman ER, Keller SP (2021a) A compu-
tational fluid dynamics study of the extracorporeal membrane 
oxygenation-failing heart circulation. ASAIO J 67:276–283. 
https:// doi. org/ 10. 1097/ MAT. 00000 00000 001221

Nezami FR, Ramezanpour M, Khodaee F, Goffer E, Edelman ER, 
Keller SP (2021b) Simulation of fluid-structure interaction 
in extracorporeal membrane oxygenation circulatory support 
systems. J Cardiovasc Transl Res. https:// doi. org/ 10. 1007/ 
s12265- 021- 10143-7

Nguyen N, Thurgood P, Sekar NC, Chen S, Pirogova E, Peter K, 
Baratchi S, Khoshmanesh K (2021) Microfluidic models of the 
human circulatory system: versatile platforms for exploring 
mechanobiology and disease modeling. Biophys Rev. https:// 
doi. org/ 10. 1007/ s12551- 021- 00815-8

Nishimura RA, Miller FA, Callahan MJ, Benassi RC, Seward JB, Tajik 
AJ (1985) Doppler echocardiography: theory, instrumentation, 

31Biophysical Reviews (2023) 15:19–33

https://doi.org/10.1080/14779072.2021.1888715
https://doi.org/10.1080/14779072.2021.1888715
https://doi.org/10.1002/mrm.26977
https://doi.org/10.7551/mitpress/5557.001.0001
https://doi.org/10.7551/mitpress/5557.001.0001
https://doi.org/10.1109/JSEN.2022.3172727
https://doi.org/10.1109/JSEN.2022.3172727
https://doi.org/10.1002/cnm.3518
https://doi.org/10.1016/j.mri.2014.10.009
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1016/j.neuroimage.2006.09.024
https://doi.org/10.1016/j.neuroimage.2006.09.024
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1016/j.bios.2020.112946
https://doi.org/10.1016/j.bios.2020.112946
https://doi.org/10.1016/j.athoracsur.2019.09.042
https://doi.org/10.1016/j.athoracsur.2019.09.042
https://doi.org/10.1016/j.jbiomech.2012.11.022
https://doi.org/10.1038/s41569-020-00445-9
https://doi.org/10.1038/s41569-020-00445-9
https://doi.org/10.1016/j.jacc.2017.03.571
https://doi.org/10.1016/j.jacc.2017.03.571
https://doi.org/10.1038/nature14539
https://doi.org/10.1186/s12968-019-0575-y
https://doi.org/10.1038/s42003-020-01638-1
https://doi.org/10.1093/nsr/nwaa022
https://doi.org/10.1093/nsr/nwaa022
https://doi.org/10.1016/j.jbiomech.2019.109544
https://doi.org/10.1016/j.jtcvs.2019.03.008
https://doi.org/10.1016/j.jtcvs.2019.03.008
https://doi.org/10.1016/j.jcp.2006.05.010
https://doi.org/10.1016/j.jcp.2006.05.010
https://doi.org/10.3390/electronics9060970
https://doi.org/10.4137/BII.S31559
https://doi.org/10.1002/jmri.23632
https://doi.org/10.1002/jmri.23632
https://doi.org/10.1016/j.artmed.2021.102179
https://doi.org/10.3390/s21155186
https://doi.org/10.3390/s21155186
https://doi.org/10.1016/j.amjmed.2017.10.035
https://doi.org/10.1016/j.amjmed.2017.10.035
https://doi.org/10.1088/0034-4885/68/8/r01
https://doi.org/10.1007/s10237-019-01184-8
https://doi.org/10.1007/s10237-019-01184-8
https://doi.org/10.1056/NEJMra035098
https://doi.org/10.1016/0013-4694(94)90067-1
https://doi.org/10.1016/0013-4694(94)90067-1
https://doi.org/10.1097/MAT.0000000000001221
https://doi.org/10.1007/s12265-021-10143-7
https://doi.org/10.1007/s12265-021-10143-7
https://doi.org/10.1007/s12551-021-00815-8
https://doi.org/10.1007/s12551-021-00815-8


1 3

technique, and application. Mayo Clin Proc 60:321–343. https:// 
doi. org/ 10. 1016/ s0025- 6196(12) 60540-0

Park C, Took CC, Seong JK (2018) Machine learning in biomedical 
engineering. Biomed Eng Lett 8:1–3. https:// doi. org/ 10. 1007/ 
s13534- 018- 0058-3

Patlar Akbulut F, Ikitimur B, Akan A (2020) Wearable sensor-based 
evaluation of psychosocial stress in patients with metabolic syn-
drome. Artif Intell Med 104. https:// doi. org/ 10. 1016/j. artmed. 
2020. 101824

Pelc NJ, Herfkens RJ, Shimakawa A, Enzmann DR (1991) Phase con-
trast cine magnetic resonance imaging. Magn Reson Q 7:229–
254 N/A

Podrat JL, Del Val FR, Pei KY (2021) Evolution of risk calculators and 
the Dawn of artificial intelligence in predicting patient compli-
cations. Surg Clin N Am 101:97–107. https:// doi. org/ 10. 1016/j. 
suc. 2020. 08. 012

Quer G, Arnaout R, Henne M, Arnaout R (2021) Machine learning and 
the future of cardiovascular care. J Am Coll Cardiol 77:300–313. 
https:// doi. org/ 10. 1016/j. jacc. 2020. 11. 030

Rabotti C, Mischi M, van Laar JO, Oei GS, Bergmans JW (2008) Esti-
mation of internal uterine pressure by joint amplitude and fre-
quency analysis of electrohysterographic signals. Physiol Meas 
29:829. https:// doi. org/ 10. 1088/ 0967- 3334/ 29/7/ 011

Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neu-
ral networks: a deep learning framework for solving forward and 
inverse problems involving nonlinear partial differential equa-
tions. J Comput Phys 378:686–707. https:// doi. org/ 10. 1016/j. 
jcp. 2018. 10. 045

Raissi M, Yazdani A, Karniadakis GE (2020) Hidden fluid mechanics: 
learning velocity and pressure fields from flow visualizations. 
Science 367:1026–1030. https:// doi. org/ 10. 1126/ scien ce. aaw47 
41

Randles A, Frakes DH, Leopold JA (2017) Computational fluid dynam-
ics and additive manufacturing to diagnose and treat cardiovas-
cular disease. Trends Biotechnol 35:1049–1061. https:// doi. org/ 
10. 1016/j. tibte ch. 2017. 08. 008

Reaz MBI, Hussain MS, Mohd-Yasin F (2006) Techniques of EMG 
signal analysis: detection, processing, classification and appli-
cations. Biol Proced Online 8:11–35. https:// doi. org/ 10. 1251/ 
bpo115

Rikhtegar F, Knight JA, Olgac U, Saur SC, Poulikakos D, Marshall 
W Jr, Cattin PC, Alkadhi H, Kurtcuoglu V (2012) Choosing 
the optimal wall shear parameter for the prediction of plaque 
location-a patient-specific computational study in human left 
coronary arteries. Atherosclerosis 221:432–437. https:// doi. org/ 
10. 1016/j. ather oscle rosis. 2012. 01. 018

Rispoli VC, Nielsen JF, Nayak KS, Carvalho JL (2015) Computa-
tional fluid dynamics simulations of blood flow regularized by 
3D phase contrast MRI. Biomed Eng Online 14:110. https:// doi. 
org/ 10. 1186/ s12938- 015- 0104-7

Roth GA et al (2020) Global burden of cardiovascular diseases and risk 
factors, 1990–2019. J Am Coll Cardiol 76:2982–3021. https:// 
doi. org/ 10. 1016/j. jacc. 2020. 11. 010

Russell S, Norvig P (2002) Artificial intelligence: a modern approach. 
Prentice Hall N/A

Rutkowski DR, Roldan-Alzate A, Johnson KM (2021) Enhancement 
of cerebrovascular 4D flow MRI velocity fields using machine 
learning and computational fluid dynamics simulation data. Sci 
Rep 11:10240. https:// doi. org/ 10. 1038/ s41598- 021- 89636-z

Sameni R, Clifford GD (2010) A review of fetal ECG signal process-
ing; issues and promising directions. The Open Pacing, Elec-
trophysiology & Therapy Journal 3:4. https:// doi. org/ 10. 2174/ 
18765 36X01 00301 0004

Samuel AL (1959) Some studies in machine learning using the game 
of checkers. IBM J Res Dev 3:210–229. https:// doi. org/ 10. 1147/ 
rd. 33. 0210

Shameer K, Johnson KW, Glicksberg BS, Dudley JT, Sengupta PP 
(2018) Machine learning in cardiovascular medicine: are we 
there yet? Heart 104:1156–1164. https:// doi. org/ 10. 1136/ heart 
jnl- 2017- 311198

Sidey-Gibbons JAM, Sidey-Gibbons CJ (2019) Machine learning in 
medicine: a practical introduction. BMC Med Res Methodol 
19:64. https:// doi. org/ 10. 1186/ s12874- 019- 0681-4

Simvascular software. https:// simva scular. github. io/. Accessed Oct 
2021

Skaria S, Al-Hourani A, Evans RJ (2020) Deep-learning methods 
for hand-gesture recognition using ultra-wideband radar. IEEE 
Access 8:203580–203590. https:// doi. org/ 10. 1109/ ACCESS. 
2020. 30370 62

Skaria S, Al-Hourani A, Lech M, Evans RJ (2019) Hand-gesture recog-
nition using two-antenna Doppler radar with deep convolutional 
neural networks. IEEE Sensors J 19:3041–3048. https:// doi. org/ 
10. 1109/ JSEN. 2019. 28920 73

Soltany Sadrabadi M, Hedayat M, Borazjani I, Arzani A (2021) Fluid-
structure coupled biotransport processes in aortic valve disease. 
J Biomech 117:110239. https:// doi. org/ 10. 1016/j. jbiom ech. 2021. 
110239

Soulat G, McCarthy P, Markl M (2020) 4D flow with MRI. Annu 
Rev Biomed Eng 22:103–126. https:// doi. org/ 10. 1146/ annur 
ev- bioeng- 100219- 110055

Stankovic Z, Allen BD, Garcia J, Jarvis KB, Markl M (2014) 4D flow 
imaging with MRI. Cardiovasc Diagn Ther 4:173–192. https:// 
doi. org/ 10. 3978/j. issn. 2223- 3652. 2014. 01. 02

Stehlik J et al (2020) Continuous wearable monitoring analytics pre-
dict heart failure hospitalization: the LINK-HF multicenter study, 
circulation. Heart Failure 13:e006513. https:// doi. org/ 10. 1161/ 
CIRCH EARTF AILURE. 119. 006513

Sun L, Gao H, Pan S, Wang J-X (2020) Surrogate modeling for fluid 
flows based on physics-constrained deep learning without simu-
lation data. Comput Methods Appl Mech Eng 361. https:// doi. 
org/ 10. 1016/j. cma. 2019. 112732

Tadesse GA, Javed H, Weldemariam K, Liu Y, Liu J, Chen J, Zhu 
T (2021) DeepMI: deep multi-lead ECG fusion for identifying 
myocardial infarction and its occurrence-time. Artif Intell Med 
121. https:// doi. org/ 10. 1016/j. artmed. 2021. 102192

Tajeddini F, Nikmaneshi MR, Firoozabadi B, Pakravan HA, Ahmadi 
Tafti SH, Afshin H (2020) High precision invasive FFR, low-
cost invasive iFR, or non-invasive CFR?: optimum assessment 
of coronary artery stenosis based on the patient-specific compu-
tational models. Int J Numer Methods Biomed Eng 36:e3382. 
https:// doi. org/ 10. 1002/ cnm. 3382

Tarca AL, Carey VJ, Chen X-w, Romero R, Drăghici S (2007) Machine 
learning and its applications to biology. PLoS Comput Biol 
3:e116. https:// doi. org/ 10. 1371/ journ al. pcbi. 00301 16

Theodoridis S (2020) Chapter 1 - introduction. In: Theodoridis S (ed) 
Machine learning, Second edn. Academic Press, pp 1–17. https:// 
doi. org/ 10. 1016/ B978-0- 12- 818803- 3. 00010-6

Tison GH et al (2018) Passive detection of atrial fibrillation using a com-
mercially available smartwatch. JAMA Cardiol 3:409–416. https:// 
doi. org/ 10. 1001/ jamac ardio. 2018. 0136

Tse KM, Chiu P, Lee HP, Ho P (2011) Investigation of hemodynam-
ics in the development of dissecting aneurysm within patient-
specific dissecting aneurismal aortas using computational fluid 
dynamics (CFD) simulations. J Biomech 44:827–836. https:// doi. 
org/ 10. 1016/j. jbiom ech. 2010. 12. 014

Updegrove A, Wilson NM, Merkow J, Lan H, Marsden AL, Shadden 
SC (2017) SimVascular: An Open Source Pipeline for Cardio-
vascular Simulation. Ann Biomed Eng 45:525–541. https:// doi. 
org/ 10. 1007/ s10439- 016- 1762-8

Vali A, Abla AA, Lawton MT, Saloner D, Rayz VL (2017) Computa-
tional fluid dynamics modeling of contrast transport in basilar 

32 Biophysical Reviews (2023) 15:19–33

https://doi.org/10.1016/s0025-6196(12)60540-0
https://doi.org/10.1016/s0025-6196(12)60540-0
https://doi.org/10.1007/s13534-018-0058-3
https://doi.org/10.1007/s13534-018-0058-3
https://doi.org/10.1016/j.artmed.2020.101824
https://doi.org/10.1016/j.artmed.2020.101824
https://doi.org/10.1016/j.suc.2020.08.012
https://doi.org/10.1016/j.suc.2020.08.012
https://doi.org/10.1016/j.jacc.2020.11.030
https://doi.org/10.1088/0967-3334/29/7/011
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1126/science.aaw4741
https://doi.org/10.1126/science.aaw4741
https://doi.org/10.1016/j.tibtech.2017.08.008
https://doi.org/10.1016/j.tibtech.2017.08.008
https://doi.org/10.1251/bpo115
https://doi.org/10.1251/bpo115
https://doi.org/10.1016/j.atherosclerosis.2012.01.018
https://doi.org/10.1016/j.atherosclerosis.2012.01.018
https://doi.org/10.1186/s12938-015-0104-7
https://doi.org/10.1186/s12938-015-0104-7
https://doi.org/10.1016/j.jacc.2020.11.010
https://doi.org/10.1016/j.jacc.2020.11.010
https://doi.org/10.1038/s41598-021-89636-z
https://doi.org/10.2174/1876536X01003010004
https://doi.org/10.2174/1876536X01003010004
https://doi.org/10.1147/rd.33.0210
https://doi.org/10.1147/rd.33.0210
https://doi.org/10.1136/heartjnl-2017-311198
https://doi.org/10.1136/heartjnl-2017-311198
https://doi.org/10.1186/s12874-019-0681-4
https://simvascular.github.io/
https://doi.org/10.1109/ACCESS.2020.3037062
https://doi.org/10.1109/ACCESS.2020.3037062
https://doi.org/10.1109/JSEN.2019.2892073
https://doi.org/10.1109/JSEN.2019.2892073
https://doi.org/10.1016/j.jbiomech.2021.110239
https://doi.org/10.1016/j.jbiomech.2021.110239
https://doi.org/10.1146/annurev-bioeng-100219-110055
https://doi.org/10.1146/annurev-bioeng-100219-110055
https://doi.org/10.3978/j.issn.2223-3652.2014.01.02
https://doi.org/10.3978/j.issn.2223-3652.2014.01.02
https://doi.org/10.1161/CIRCHEARTFAILURE.119.006513
https://doi.org/10.1161/CIRCHEARTFAILURE.119.006513
https://doi.org/10.1016/j.cma.2019.112732
https://doi.org/10.1016/j.cma.2019.112732
https://doi.org/10.1016/j.artmed.2021.102192
https://doi.org/10.1002/cnm.3382
https://doi.org/10.1371/journal.pcbi.0030116
https://doi.org/10.1016/B978-0-12-818803-3.00010-6
https://doi.org/10.1016/B978-0-12-818803-3.00010-6
https://doi.org/10.1001/jamacardio.2018.0136
https://doi.org/10.1001/jamacardio.2018.0136
https://doi.org/10.1016/j.jbiomech.2010.12.014
https://doi.org/10.1016/j.jbiomech.2010.12.014
https://doi.org/10.1007/s10439-016-1762-8
https://doi.org/10.1007/s10439-016-1762-8


1 3

aneurysms following flow-altering surgeries. J Biomech 50:195–
201. https:// doi. org/ 10. 1016/j. jbiom ech. 2016. 11. 028

van de Schoot R et  al (2021) Bayesian statistics and modelling. 
Nat Rev Methods Primers 1:1. https:// doi. org/ 10. 1038/ 
s43586- 020- 00001-2

Vardhan M, Randles A (2021) Application of physics-based flow mod-
els in cardiovascular medicine: current practices and challenges. 
Biophys Rev 2:011302. https:// doi. org/ 10. 1063/5. 00403 15

Versteeg HK, Malalasekera W (2007) An introduction to computational 
fluid dynamics, 2 ed. Pearson N/A

Virani SS et al (2020) Heart disease and stroke Statistics-2020 update: 
a report from the American Heart Association. Circulation 
141:e139–e596. https:// doi. org/ 10. 1161/ CIR. 00000 00000 000757

Vishnevskiy V, Walheim J, Kozerke S (2020) Deep variational net-
work for rapid 4D flow MRI reconstruction. Nat Mach Intell 
2:228–235. https:// doi. org/ 10. 1038/ s42256- 020- 0165-6

Vozda M, Cerny M (2015) Methods for derivation of orthogonal leads 
from 12-lead electrocardiogram: a review. Biomedical signal 
processing and control 19:23–34. https:// doi. org/ 10. 1016/j. bspc. 
2015. 03. 001

Wageningen University & Research. https:// www. wur. nl/ en/ show/ 3t- 
magne tic- reson ance- imagi ng- 3t- mri. htm. Accessed Oct 2021

Wang G, Ye JC, De Man B (2020) Deep learning for tomographic 
image reconstruction. Nat Mach Intell 2:737–748. https:// doi. 
org/ 10. 1038/ s42256- 020- 00273-z

Webb S (2018) Deep learning for biology. Nature 554:555–557. https:// 
doi. org/ 10. 1038/ d41586- 018- 02174-z

Weinberg EJ, Kaazempur Mofrad MR (2008) A multiscale compu-
tational comparison of the bicuspid and tricuspid aortic valves 
in relation to calcific aortic stenosis. J Biomech 41:3482–3487. 
https:// doi. org/ 10. 1016/j. jbiom ech. 2008. 08. 006

Williams JG et al (2022) Aortic dissection is determined by specific 
shape and hemodynamic interactions. Ann Biomed Eng. https:// 
doi. org/ 10. 1007/ s10439- 022- 02979-0

World Health Organization: Cardiovascular diseases. https:// www. who. 
int/ health- topics/ cardi ovasc ular- disea ses# tab= tab_1. Accessed 
Oct 2021

Wymer DT, Patel KP III, Burke WF, Bhatia VK (2020) Phase-contrast 
MRI: physics, techniques, and clinical applications. RadioGraph-
ics 40:122–140. https:// doi. org/ 10. 1148/ rg. 20201 90039

Yin M, Zheng X, Humphrey JD, Em Karniadakis G (2021) Non-inva-
sive inference of Thrombus material properties with physics-
informed neural networks. Comput Methods Appl Mech Eng 
375. https:// doi. org/ 10. 1016/j. cma. 2020. 113603

Zakerzadeh R, Hsu MC, Sacks MS (2017) Computational methods 
for the aortic heart valve and its replacements. Expert Rev Med 
Devices 14:849–866. https:// doi. org/ 10. 1080/ 17434 440. 2017. 
13892 74

Zhong L, Zhang J-M, Su B, Tan RS, Allen JC, Kassab GS (2018) 
Application of patient-specific computational fluid dynamics 
in coronary and intra-cardiac flow simulations: challenges and 
opportunities. Front Physiol 9. https:// doi. org/ 10. 3389/ fphys. 
2018. 00742

Further reading

"ATmega32-avr." https:// atmeg a32- avr. com/ (accessed October 2021)
"Elkworks." https:// elkew orks. com/ produ ct/_ 15009 46. html (accessed 

October 2021)
"https:// www. docwi renews. com/ docwi re- pick/ future- of- medic ine- 

picks/ resea rchers- use- ai- and- wrist- worn- sensor- to- detect- heart- 
disea se/." (accessed October 2021)

"Simvascular software." https:// simva scular. github. io/ (accessed Octo-
ber 2021)

"Wageningen University & Research." https:// www. wur. nl/ en/ show/ 3t- 
magne tic- reson ance- imagi ng- 3t- mri. htm (accessed October 2021)

"World Health Organization: Cardiovascular diseases." https:// 
www. who. int/ health- topics/ cardi ovasc ular- disea ses# tab= tab_1 
(accessed October 2021)

Publisher's note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

33Biophysical Reviews (2023) 15:19–33

https://doi.org/10.1016/j.jbiomech.2016.11.028
https://doi.org/10.1038/s43586-020-00001-2
https://doi.org/10.1038/s43586-020-00001-2
https://doi.org/10.1063/5.0040315
https://doi.org/10.1161/CIR.0000000000000757
https://doi.org/10.1038/s42256-020-0165-6
https://doi.org/10.1016/j.bspc.2015.03.001
https://doi.org/10.1016/j.bspc.2015.03.001
https://www.wur.nl/en/show/3t-magnetic-resonance-imaging-3t-mri.htm
https://www.wur.nl/en/show/3t-magnetic-resonance-imaging-3t-mri.htm
https://doi.org/10.1038/s42256-020-00273-z
https://doi.org/10.1038/s42256-020-00273-z
https://doi.org/10.1038/d41586-018-02174-z
https://doi.org/10.1038/d41586-018-02174-z
https://doi.org/10.1016/j.jbiomech.2008.08.006
https://doi.org/10.1007/s10439-022-02979-0
https://doi.org/10.1007/s10439-022-02979-0
https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1
https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1
https://doi.org/10.1148/rg.2020190039
https://doi.org/10.1016/j.cma.2020.113603
https://doi.org/10.1080/17434440.2017.1389274
https://doi.org/10.1080/17434440.2017.1389274
https://doi.org/10.3389/fphys.2018.00742
https://doi.org/10.3389/fphys.2018.00742
https://atmega32-avr.com/
https://elkeworks.com/product/_1500946.html
https://www.docwirenews.com/docwire-pick/future-of-medicine-picks/researchers-use-ai-and-wrist-worn-sensor-to-detect-heart-disease/
https://www.docwirenews.com/docwire-pick/future-of-medicine-picks/researchers-use-ai-and-wrist-worn-sensor-to-detect-heart-disease/
https://www.docwirenews.com/docwire-pick/future-of-medicine-picks/researchers-use-ai-and-wrist-worn-sensor-to-detect-heart-disease/
https://simvascular.github.io/
https://www.wur.nl/en/show/3t-magnetic-resonance-imaging-3t-mri.htm
https://www.wur.nl/en/show/3t-magnetic-resonance-imaging-3t-mri.htm
https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1
https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1

	Recent developments in modeling, imaging, and monitoring of cardiovascular diseases using machine learning
	Abstract
	Introduction
	Hemodynamics and CVD monitoring
	Computational fluid dynamics (CFD)
	Blood flow imaging
	Wearable sensors

	Artificial intelligence and machine learning
	Incorporation of machine learning for cardiovascular disease monitoring
	Computational fluid dynamics (CFD)
	Blood flow imaging
	Wearable sensors

	Conclusions and future steps
	References


