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Genome-wide association studies (GWAS) of complex traits, that 
is, phenotypes that are influenced by many genetic variants, 
have discovered thousands of genetic loci [1] underlying blood 
pressure, diabetes, lipids, psychiatric, and other traits, includ-
ing sleep-related phenotypes [2]. However, studies of obstructive 
sleep apnea (OSA) have been less fruitful in that fewer discoveries 
have been made. Two major factors have limited OSA GWAS. First, 
few epidemiologic studies have measured OSA, and those that 
did so often studied a subset of participants rather than the full 
sample of large cohort studies, resulting in low sample sizes for 
GWAS (in comparison with other phenotypes) [3–6]. Second, while 
the availability of large biobanks that collected genotyping data 
in conjunction with electronic health records, including the UK 
Biobank (UKB), FinnGen, and Biobank Japan, accelerated GWAS of 
many phenotypes, including OSA [7], challenges lingered because 
OSA is underdiagnosed [8, 9]. As a result, many individuals with 
OSA are misclassified as “controls”. Thus, while current estimates 
of OSA prevalence in the United States are around 17% in women 
and 34% in men [10], and similarly, high prevalence is reported 
elsewhere, the prevalence of OSA status in the UKB is only about 
1% [11] and about 8% in FinnGen [7] (gender combined).

Misclassification of OSA reduces the power to discover genetic 
associations and biases effect-size estimates, in a manner 
depending on the OSA prevalence and on the misclassification 
rate. Figure 1 provides a schematic tabulation of the true OSA 
status compared to the OSA status observed in a population. Out 
of n1s = n10 + n11 individuals with OSA in the population, n11 individ-
uals are indeed observed to have OSA, and n10 individuals appear 
to have no OSA, despite having OSA. Define the misclassification 
rate as π= n10/n1s, the proportion of individuals with OSA who are 
erroneously classified. Using the same notation, the prevalence 
of OSA in the healthcare system or study is n1s/(n1s + n0s) = n1s/n. 
I performed a simulation study to demonstrate how misclas-
sification of OSA may bias genetic effect estimates and reduce 
power (see https://github.com/tamartsi/OSA_misclassification 
for code). Using a simple logistic regression model, I assumed 
that OSA probability depends on a population-based constant, 

the intercept β0 (which may be thought of as the average of many 
factors, including genetic ones), and on a single-modeled genetic 
variant g via the standard logistic model equation:

logit (Pr (OSA = 1)) = β0 + g× βg.

The simulations had βg, the log odds ratio (OR), set to 0.1, cor-
responding to an OR of 1.10, while β0 took the values −1.5, −1, and 
−0.5, corresponding to true underlying OSA prevalence of about 
19%, 28%, and 39%. The genetic variant g was sampled from a 
binomial distribution with probability 0.3 and a count of 0, 1, 
or 2, representing a genetic allele with frequency 0.3 across two 
chromosomes. Using the equation above, in each iteration of the 
simulation OSA probability was computed, and next true OSA 
status was sampled from the resulting probability. The next step 
induced misclassification, where individuals with true OSA = 1 
had observed OSA with probability 1 − π. Misclassification rate 
took the values 0.4, 0.6, and 0.8. For context, if the true OSA pop-
ulation prevalence in the UKB and FinnGen is 25%, their misclas-
sification rates are 96% and 68%, respectively. The simulations 
iterated 1000 times for each combination of true OSA prevalence 
and misclassification rate, with a total sample size of n = 20 000 in 
each simulation iteration.
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Figure 1. True OSA status versus observed OSA status. Tabulation of the 
observed OSA status against the true, underlying OSA in a given study. 
The number of individuals in the study is decomposed into individuals 
in each of the table cells. The marginal, dark gray, cells sum the 
individuals in the rows and in the columns. In health records, typically 
we expect that the number of individuals who in truth do not have OSA 
yet are observed as having OSA is near zero.
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Table 1 provides the simulation results. Indeed, the power to 
detect the association of the genetic variant with OSA is reduced 
as the misclassification rate is increased: for a modest OSA prev-
alence of about 19%, a misclassification rate of π = 0.4 results in 
0.76 power while with π = 0.8, the power is reduced to 0.29. When 
the true OSA prevalence is higher, the power is higher (when 
using both the true and the misclassified OSA). Yet, even with a 
true OSA prevalence of 39%, with π = 0.8, the power is still very 
low at 0.37. Further, the estimated variant effect size is reduced 
toward the null as the misclassification rate increases, with a 
higher reduction when the true OSA prevalence is higher.

To address the reduced power caused by OSA misclassifica-
tion, Campos et al. [12] performed a multi-trait analysis, combin-
ing OSA GWAS with a GWAS of snoring, and discovered 49 loci 
associated with OSA, snoring, or both. Multi-trait analyses have 
been used to discover genetic associations with other trait groups, 
including blood pressure, anthropometric, psychiatric traits, and 
others [13–15]. Such approaches are limited in that identified 
genetic associations cannot be attributed with confidence to any 
one trait. Importantly, Campos et al. [12] addressed this limita-
tion via an OSA-specific replication analysis. They replicated 29 
of the 49 discovered associations in a BMI-adjusted OSA GWAS in 
23andMe, which had an OSA prevalence of ~11%. This suggests 
that the 29 replicated loci are indeed associated with OSA, and 
not only with snoring. This replication rate is higher than the rep-
lication rate reported when using US-based healthcare systems 
to estimate the genetic association of variants that were reported 
in OSA-focused studies with substantially smaller sample sizes 
[16].

The principle of leveraging genetic associations with OSA-
related traits to discover OSA-specific genetic associations is use-
ful. It could be extended to excessive daytime sleepiness (EDS), 
the most common presenting symptom of OSA [17], to insomnia, 
as we recently found that a polygenic risk score of insomnia is 
associated with OSA [18], and to other OSA-associated pheno-
types. However, it remains important to validate associations 
with OSA in independent studies, and preferably in studies that 
correctly classify OSA cases and controls (as much as possible 
given the variability in OSA indices such as the apnea–hypopnea 
index [19]).

As shown in Table 1, the misclassification of OSA results in 
biased genetic effect estimates. The simulated example is sim-
plistic, as it assumes that OSA misclassification does not depend 
on the genetic variant. In reality, it is expected that misclassifi-
cation will be more or less severe depending on the mechanism 
underlying the genetic variant’s association with OSA, and how it 
manifests in other phenotypes. OSA is heterogeneous, and some 
OSA subtypes manifest in higher daytime sleepiness or other 
symptoms [20, 21], leading to higher likelihood of diagnosis. The 
study of Campos et al. may have better captured genetic variants 
corresponding to OSA subtypes that also manifest in snoring.

Knowledge about the specific OSA consequences associated 
with the variant can be leveraged, with the development of an 
appropriate statistical method, to compute unbiased effect 
size estimates for the variant-OSA association. Figure 2 shows 
a directed acyclic graph where a genetic variant g is known to 
be associated with EDS, with an estimated odds ratio OReds

g . In 
a given population, it should be possible to estimate the associ-
ation of OSA with EDS: OReds

osa. Assuming that g is associated with 
EDS only via its effect on OSA, that is, OSA completely mediates 
the association of g with EDS, one should be able to “reverse” the 
standard mediation analysis to estimate ORosa

g . Whether such an 
estimate will be more accurate than an estimate of variant–OSA 

association obtained in a small study with unbiased OSA classi-
fication, is a topic that warrants further statistical and empiri-
cal research. Nonetheless, obtaining more accurate estimates of 
OSA effect sizes, that are not biased by OSA misclassification, is 
important for downstream applications such as Mendelian rand-
omization analysis.
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Table 1. Simulation results demonstrating bias and power loss 
caused by misclassification of OSA cases

π

Misclassification 
rate 

Mean 
estimated 
βg (true 
OSA) 

Mean 
estimated 
βg (observed 
OSA) 

Bias of βg 
estimates 
(observed 
OSA) 

Power 
(true 
OSA) 

Power 
(observed 
OSA) 

True OSA prevalence 19%

  0.4 0.100 0.090 0.010 0.96 0.76

  0.6 0.100 0.086 0.014 0.96 0.57

  0.8 0.099 0.081 0.019 0.95 0.29

True OSA prevalence 28%

  0.4 0.100 0.086 0.014 0.99 0.84

  0.6 0.099 0.080 0.020 0.98 0.65

  0.8 0.101 0.077 0.023 0.98 0.38

True OSA prevalence 39%

  0.4 0.099 0.079 0.021 0.99 0.86

  0.6 0.100 0.071 0.029 0.99 0.64

  0.8 0.099 0.065 0.035 1.00 0.37

For each combination of parameters determining OSA prevalence and its rate 
of misclassification, the simulations compare the estimated effect size (log odds 
ratio) when using the real OSA status and when using the observed OSA status, 
that suffers from misclassification, as mean estimates across 1000 simulation 
repetitions. The power is computed as the proportion of simulations in which 
the p-value of the genetic variant effect estimate was <.05.

Figure 2. Directed acyclic graph connecting OSA, excessive day time 
sleepiness, and a genetic variant. The directed acyclic graph presents a 
potential mediation relationship between a genetic variant, OSA, and 
excessive daytime sleepiness (EDS). Assuming that the effect of g on 
EDS is only mediate through OSA, given appropriate methodology one 
can use the estimated association of g with EDS OReds

g and the estimated 
association of OSA with EDS OReds

osa to estimate ORosa
g .
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