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ABSTRACT

Memory T (Tm) cells protect against Ags that they have previously contacted with a fast and 
robust response. Therefore, developing long-lived Tm cells is a prime goal for many vaccines 
and therapies to treat human diseases. The remarkable characteristics of Tm cells have led 
scientists and clinicians to devise methods to make Tm cells more useful. Recently, Tm cells 
have been highlighted for their role in coronavirus disease 2019 vaccines during the ongoing 
global pandemic. The importance of Tm cells in cancer has been emerging. However, 
the precise characteristics and functions of Tm cells in these diseases are not completely 
understood. In this review, we summarize the known characteristics of Tm cells and their 
implications in the development of vaccines and immunotherapies for human diseases. In 
addition, we propose to exploit the beneficial characteristics of Tm cells to develop strategies 
for effective vaccines and overcome the obstacles of immunotherapy.
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INTRODUCTION

One remarkable feature of immunity is that immune cells can remember the Ags they 
experienced before (1-3). Immunological memory can be manifested in various forms, 
including long-lived plasma cells, Tm cells, and memory B cells. Among these cells, Tm cells, 
which develop from effector T cells after Ag clearance, are well-documented for their robust 
response to previously experienced (2). Tm cells are also long-lived without further antigenic 
stimulation and maintain homeostasis via steady self-renewal in a cytokine-dependent 
manner (4,5). Owing to these characteristics, Tm cells have been considered effective in 
fighting secondary infections or tumors (6,7).

In recent years, Tm cells have attracted considerable attention in vaccine development 
and immunotherapy to treat tumors. Since numerous infectious diseases require new or 
improved vaccines, the paradigm has shifted to employing the robust T cell response to fight 
these diseases effectively (8,9). In addition, the burgeoning field of cancer immunotherapy 
has benefited from the technology that can generate tumor-infiltrating lymphocytes (TILs) 
(10-12).
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This review provides an overview of the basic features of Tm cells and the emerging research 
trends in Tm cells related to vaccines and immunotherapy. First, we aimed to revisit the roles 
of Tm cells and summarize the reports on their fundamental properties. Second, based on 
our knowledge of Tm cells, we propose strategies to utilize Tm cells or modified Tm cells to 
mount effective defense mechanisms mediated by vaccines or immunotherapy.

CARDINAL FEATURES OF Tm CELLS

Differentiation of memory CD8+ T cells
When foreign agents enter the body, Ag-presenting cells (APCs) ingest the Ags and present 
the peptides of these Ags to CD8+ T cells through MHC class I molecules (13). Triggered 
by TCR signaling, naïve T (Tn) cells start to expand clonally and differentiate into effector 
CD8+ T (Teff ) cells, also called CTLs, to perform critical effector functions such as inducing 
target cell death using cytotoxic molecules (14). Teff cells can also be distinguished from 
Tn cells based on their phenotypes, such as the differential expression of surface markers, 
including CD44, IL-7 receptor alpha-chain (IL-7Rα, CD127), L-selectin (CD62L), CC-
chemokine receptor 7 (CCR7), KLRG1, CD27, and other markers. These molecules modulate 
Teff cell’s localization, effector functions, and potential to become Tm cells. A majority of 
the activated Teff cells are short-lived following Ag clearance and die via apoptosis. However, 
a small Teff cell population survives to differentiate into Tm cells that persist in the host. 
This phenomenon is illustrated by the cell fate decision model during acute viral infections 
(15). According to this model, Teff cells can be distinguished by two major surface markers: 
KLRG1 and CD127 (IL-7Rα). Short-lived effector T cells (SLECs) display a KLRG1hiCD127lo 
phenotype and perform cytotoxic effector functions to eliminate invading Ags. On the other 
hand, memory precursor effector T cells (MPECs) are KLRG1loCD127hi and develop into long-
lived Tm cells.

Altogether, the fates of Teff cells have already been determined during T cell activation by 
Ags, and MPECs distinguished by KLRG1 and CD127 markers are precursors of Tm cells. 
Thus, effectively producing a larger number of MPECs has been a popular strategy that can 
utilize engineered Tm cells for immunotherapy with enhanced efficacy.

Subsets of memory CD8+ T cells
When Tm cells develop from MPECs, they differentiate into three major subsets, which can 
be distinguished based on their phenotypes and distinct roles. First, circulating Tm cells are 
either central memory T (Tcm; CD62LhiCCR7hi) cells that can circulate through secondary 
lymphoid organs (16) or effector memory T (Tem; CD62LloCCR7lo) cells that circulate among 
peripheral tissues (16,17). As these subsets differ in their migratory capacities, they survey 
different organs to detect secondary infections. In addition, these 2 subsets of Tm cells 
express distinct transcription factors that guide the development of Tem and Tcm cells. 
Transcription factors such as TCF1, BCL6, EOMES, and ID3 help Tcm cells retain their 
stemness and comparatively low cytotoxic activity. In contrast, transcription factors in Tem 
cells, including T-BET, BLIMP-1, and ID2, lead to the rapid acquisition of strong effector 
functions in target sites (18,19). These surface molecules and transcription factors imply that 
these two circulating T cells specialize in different roles despite having migratory features (3).

In contrast to circulating Tm cells, the third subset, tissue-resident memory T (Trm) cells, is 
located in non-lymphoid tissues and does not enter the blood. Trm cells are the first line of 
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defense against reinfections owing to their rapid cytotoxicity at the target sites (20,21). The 
transcription factors HOBIT, EOMES, and BLIMP-1, are shown to regulate the differentiation 
of Trm cells and were identified based on the expression of CD103 and CD69 on the surfaces 
of these cells, which promote tissue retention (22).

In addition to traditional Tm subsets, two Tm cell subsets expressing CD45RA were found 
in humans. Although CD45RO which is the shorter isoform of CD45 on Ag encountered 
Tm cells and CD45RA, the long isoform of CD45, is expressed on Tn cells in humans, 
newly discovered Tm cells express CD45RA after TCR-dependent activation. One of these 
subsets consists of stem cell-like memory T (CD45RA+CD62LhiCCR7hi) cells which have 
more naïve-like phenotype such as enhanced homeostatic self-renewal, proliferative 
capacity, and multipotent differentiation potentials compared to Tcm and Tem cells 
(23,24). The other CD45RA re-expressing Tm cells discovered in circulation of humans are 
called as CD45RA expressed terminally differentiated effector memory T cells and they are 
CD45RA+CD62LloCCR7lo (3,17,25). These subsets are considered terminally differentiated 
with low proliferative capacities, but they are highly cytotoxic by enhanced production of 
cytotoxic molecules such as granzyme and perforin (25,26). These cells may be differentiated 
from Teff and Tem cells by undergoing repetitive proliferation (27) but detailed mechanisms 
of this differentiation pathways are yet to be determined.

Other subsets including CX3CR1int peripheral memory T cells (28), CD27loCD43lo Tm cells 
(29), and IFN-γhi Tem cells (T death intermediate memory) (30) have also been found and 
their roles were suggested, but these populations have been relatively less examined.

Altogether, Tm cells are classified into different subsets depending on their migratory 
capacities, cytotoxicity, and lifespan; thus, regulating the Tm cell subset population is 
important for developing vaccines and T cell-based immunotherapy.

Homeostasis of memory CD8+ T cells
Tm cells can sustain their state, called a quiescent stage, so homeostatic signals are required 
to maintain the signature of Tm cells for longer periods. The best-known drivers for this 
phenomenon are homeostatic cytokines, such as IL-7 and IL-15 (Fig. 1A) (31-34). IL-7 is 
produced locally within the T cell zone of secondary lymphoid organs (16) by fibroblastic 
reticular cells wrapped around the conduits. These cells also secrete CCL19 and CCL21 
(ligands for CCR7), thereby attracting CCR7+ Tm cells and possibly providing survival 
signals to these recruited cells (35). T cell responses to IL-7 occur through the modulation of 
the IL-7Rα (CD127) chain receptor, which dimerizes with the γc (common gamma, CD132) 
chain and initiates the activation of JAK1 and JAK3, which are associated with the IL-7Rα and 
γc chains, respectively (36). Thus, IL-7 binding recruits and activates STAT5A and STAT5B 
to induce heterodimerization, resulting in the translocation of STAT5 into the nucleus to 
transcribe cell survival-associated genes.

IL-15 is expressed by diverse cell types, including non-lymphoid cells, such as stromal cells, 
myeloid cells, and dendritic cells (37). This cytokine boosts the basal Tm cell homeostatic 
proliferation rate depending on signals from cells that come in contact with IL-15 expressed 
on APCs, such as dendritic cells (DCs) (38). Tm cells express high levels of IL-15 receptors, 
composed of IL-15Rβ (CD122) and γc chains that activate JAK1 and JAK3, respectively.
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Upon stimulation with IL-7 and IL-15, Tm cells promote cell survival by preventing the 
mitochondrial pathway of apoptosis (Fig. 1A). In this respect, the pro-survival proteins BCL-2 
and MCL-1 play a dominant role. BCL-2 and MCL-1 function by directly blocking the activity 
of the key apoptotic regulators Bax and Bak, which are derived from activating Bim and Bid, 
respectively (39). Thus, Tm cells terminally inhibit apoptosis by releasing cytochrome C and 
other molecules from the mitochondria to initiate caspase activation (40).

IL-21 is another member of the γc chain cytokine family that has been shown to have 
favorable effects on Tm differentiation and maintenance (41). IL-21 cooperates with IL-
10 to promote the maturation of Tm cells, especially Trm cells, which is mediated by the 
transcription factor STAT3. On the other hand, IL-21 also stimulates the activation and clonal 
expansion of Ag-specific CD8+ Tm cells (42). For these reasons, the function of IL-21 in Tm 
cell differentiation remains controversial as to whether it induces the quiescent state of Tm 
cells or whether it influences the active form of Tm cells.

Taken together, the homeostatic cytokines IL-7 and IL-15 maintain the survival of Tm cells 
through the JAK and STAT signaling pathways and by preventing the mitochondrial pathway 
of apoptosis. These homeostatic cytokines can boost treatment using Tm cells, which induce 
active and passive immune responses.
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Figure 1. The components for enhancing CD8+ Tm cell homeostasis and functions. Simplified representation of the three requirements of CD8+ Tm cells for 
development and homeostasis: (A) homeostatic cytokines such as IL-7, IL-15, and IL-21, (B) metabolites, and (C) metabolic pathways. (A) Cytokine stimulation 
maintains homeostatic proliferation by increasing the expression of survival-associated genes and inhibiting mitochondrial-mediated apoptosis. In addition, 
these cytokines enhance the surface expression of fatty acid transporters to enhance the uptake of FAs into cells and convert metabolism from glycolysis to FAO, 
a hallmark of Tm cells. (B) Metabolites: FAs produced by microbiota or other fuel for FAO in mitochondria for Tm cells. (C) The metabolism of Tm cells relies 
mainly on FAO, which is induced by (A) homeostatic cytokines and (B) metabolites.



Memory CD8+ T cell metabolism
The metabolic pathway in T cells is regulated by the stages of T cell activation and 
differentiation, such as quiescent Tn and Tm cells, activated Teff cells, and exhausted T 
(Tex) cells (43). Both Tn and Tm cells are in a quiescent stage during the steady state, but 
only Tm cells rely on catabolic metabolism for low-energy consumption, which mainly uses 
long-chain or short-chain fatty acids (LCFAs or SCFAs, respectively) for long-term survival 
until they respond upon re-exposure to foreign Ags in the body (Fig. 1B) (44). Since these 
findings have attracted attention, several reports have indicated that changes in cellular 
lipid metabolism have critical effects on Tm cell proliferation and fate decisions (45). For 
instance, glucose, glutamine, LCFAs, and SCFAs can be acquired by Tm cells to fuel oxidative 
phosphorylation (OXPHOS). For these reasons, the intrinsic pathways of glycolysis or fatty 
acid oxidation (FAO) have been considered potential targets for the modulation of Tm cell 
development. However, heterogeneous Tm populations differ in their preferential usage 
of different metabolites and, subsequently, T cell metabolic pathways; therefore, carefully 
design to target one of these pathways are needed.

Tcm and Trm cells use different substrates, although all Tm cells rely primarily on FAO for 
their energy demands. For example, Tcm cells engage in a futile cycle with the uptake of 
glucose and glutamine to generate fatty acids (FAs) for FAO fuel under ex vivo conditions. 
However, this subset of Tm cells uses lower amounts of FAs compared to Teff or Trm cells and 
even persists in a lipid-depleted medium (46). Tem cells are metabolically active, employing 
diverse substrates, including glucose and FAs, to fuel glycolysis and OXPHOS, respectively. 
However, they rely less on OXPHOS than Tcm or Trm cells do. During their development into 
Trm cells, these Trm cell precursors upregulate the expression of lipid chaperones, including 
fatty acid-binding proteins 4/5 and a lipid-scavenger cell-surface receptor, CD36 (47). These 
lipid chaperones facilitate the acquisition of more FAs directly from the microenvironment, 
providing sufficient exogenous FAs to fuel mitochondrial respiration compared to Tcm cells.

Cytokines also play a central role in Tm metabolism and homeostasis. IL-7 promotes the 
expression of the glycerol channel aquaporin 9, which mediates glycerol import into Tm 
cells (Fig. 1B) (48). Imported glycerol fuels the synthesis and storage of FAs and triglycerides 
within Tm cells for survival. Another homeostatic cytokine, IL-15, also contributes to Tm 
cell metabolism. By employing in vitro differentiation systems in which IL-2 or IL-15 induces 
CD44hiCD62Llo Teff cells or CD44hiCD62Lhi Tcm cells, respectively, CD44hiCD62Lhi Tcm cells 
not only have impaired glucose uptake to generate FAs, but they also contain elongated 
mitochondria (49). Because mitochondrial elongation accelerates the metabolic shift from 
glycolysis to OXPHOS (50), IL-15 provides a favorable metabolic switch for Tm cells. In 
contrast, IL-2-induced Teff cells displayed fragmented mitochondria. Taken together, these 
studies signify that metabolites such as FAs are available for Tm cells and that FAO-related 
pathways in Tm cells play vital roles in the homeostasis and functional activity of these cells.

Correlation between the microbiota and memory CD8+ T cells
The microbiota is composed of various living organisms, such as bacteria and viruses, which 
influence Tm cell homeostasis and survival mediated by microbial metabolic products such 
as SCFAs (51). SCFAs induce the switching of Tm cell metabolism toward OXPHOS and 
FAO after binding to the SCFA receptors GPR41 and GPR43 and induce the transition from 
activated T cells into long-lived Tm cells (52). This finding was confirmed by showing that 
Teff cells in germ-free mice failed to transition into long-lived Tm cells, suggesting that 
SCFA-producing microbiota instructed transition into Tm cells and provided fundamental 
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metabolites for Tm cell homeostasis; however, it was difficult to identify specific strains 
of microbiota to produce these SCFAs (52). Another study highlighted the role of the 
microbiota in the development of Tm cells based on their finding that SCFAs also promote 
IL-10 production mediated by CD4+ regulatory T cells, which contribute differentiation into 
CD8+ Tm cells during acute viral infection (53). Taken together, these microbiota-derived 
components can influence Tm cell differentiation and survival.

MEMORY CD8+ T CELLS AS KEY DRIVERS FOR 
IMMUNOTHERAPY AND VACCINE
Over the past few decades, T cells have been studied as a useful tool for treating various 
disorders, especially infectious diseases, and cancers. In this section, we discuss recent 
research on T cell-mediated therapies and describe the potential of Tm or memory-like T 
cells as therapeutics for these diseases.

Memory CD8+ T cells correlate with vaccine efficacy
One important rationale for using Tm cells as a therapeutic is their fundamental feature that 
they react faster and more strongly than Tn cells do. Recently, people who have a weakened 
immune system, especially those aged 65 years or older, have been found to be more likely 
to experience severe symptoms of coronavirus disease 2019 (COVID-19) for a longer period 
compared to younger people (54). This phenomenon is explained by the reduced immune 
response in the elderly, known as immunosenescence. Due to immunosenescence, elderly 
people experience difficulties in producing effector and memory cells after vaccination; thus, 
they are vulnerable to disorders caused by infections and tumors. One explanation for the 
development of immunosenescence can be traced to the study of hematopoietic stem cells 
(HSCs), which can differentiate into progenitor cells of myeloid and lymphoid lineages in 
primary lymphoid organs (55). As all lymphocytes are derived from HSCs, they can lose their 
ability to differentiate into lymphoid lineages and generate functional lymphocytes such as 
Teff and Tm cells as they age. Another suggested explanation is the abnormality in functional 
lymphocyte differentiation. Increased inflammatory cytokine microenvironments in the 
elderly induces the expansion of CD28loCD8+ T cells, a hallmark of senescent T cells (56). 
Therefore, the Ag-induced proliferation of senescent T cells is profoundly impaired; however, 
their proliferative response to homeostatic cytokines is normal (57). Furthermore, CD8+ T cell 
clonal expansion was observed after influenza vaccination in older adults who were limited 
to vaccine-specific Ab production (58,59). For these reasons, the vaccines that trigger active 
adaptive immune responses can elicit different effects depending on the individual’s immune 
system. Therefore, we suggest the effective generation of vaccine-induced memory cells, 
especially Tm cells is important to minimize the variations of immune response to infections.

Memory CD8+ T cells correlate with cancer immunotherapies
The numbers of infiltrating Tm cells into tumor cells, especially Trm cells, in various clinical 
tumor samples, such as melanoma, non-small cell lung cancer, breast cancer, cervical cancer, 
and ovarian cancer, were positively correlated with improved outcomes (60). In addition, 
Trm cells express high levels of T cell intracellular Ag 1 and perforin, indicating increased 
cytotoxic activity compared to non-resident CD103lo T cells from the same patient. It was 
also shown that the numbers of circulating T cells, such as Tcm and Teff cells, were positively 
correlated with immune responses and positive therapeutic progress to immune checkpoint 
inhibitors (ICIs) in some patients with cancer (61,62). Although circulating T cells still 
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need to infiltrate tumor sites to fight against tumors, the presence of Tm cells in the blood 
determines whether patients will have favorable outcomes or responses to ICIs.

Memory CD8+ T cell dysfunction
Although T cells possess great potential to fight against various diseases, including infectious 
diseases and cancers, CD8+ T cells occasionally have difficulties in curing these diseases. 
Although many diverse reasons have been presented to explain this, we want to focus 
on exhausted T cells. Exhaustion is a dysfunctional T cell state caused by persistent Ag 
stimulation, including chronic viral infection and tumor cells (63,64).

Only a few studies have investigated the exhaustion of Tm cells. West et al. (65) revealed that 
CD8+ Tm cells rapidly disappeared during high viral loads or persistent Ag stimulation. As 
Tm cells become exhausted, they have a decreased ability to proliferate and produce effector 
cytokines (65). One major hypothesis for Tm cell exhaustion is that Tm cells are intensively 
regulated to prevent excessive immune responses, even though the same strength or duration 
of Ag signals could induce the normal activation of Tn cells. Because Tm cells have more 
and larger TCR oligomers at their surface, Tm cells are ready to respond to Ag re-exposure; 
increased TCR expression levels are directly responsible for the enhanced sensitivity of Tm 
cells compared to Tn cells (66). Similarly, another study showed that TCR strength altered 
the functional activity of tumor specific CD8+ T cells. As TCR signal strength increased, the 
anti-tumor effector functions of Tm cells were reduced, and the transcriptional programming 
of exhaustion increased (67). Thus, fine-tuning the optimal TCR signal strength for Tm cells 
is proposed to be vital for blocking T cell exhaustion.

On the other hand, it was also suggested that Tm cells develop from a different lineage (64) 
so it remains controversial whether Tm cells are exhausted; hence, it is critical to understand 
how Tm cells react to chronic Ag stimulation. In particular, tumor microenvironments 
containing immunosuppressive receptors and cytokines such as IL-10 and TGF-β secreted by 
myeloid-derived suppressor cells, Tregs, and other cells alter recall responses (68,69).

APPLICATION OF MEMORY CD8+ T CELLS AS 
IMMUNOTHERAPY AND VACCINE
In the wake of the COVID-19 pandemic, numerous studies have been conducted on immune 
responses against this virus in humans. Of particular interest is vaccine development using 
Tm cells.

Vaccine development goals
Until recently, the focus of vaccines was to elicit B cells to produce large amounts of 
neutralizing Abs; however, efforts to overcome the limitations of Abs and treat more diseases 
accompanied by clinical demands in the era of new infectious diseases with pandemic 
potential focused on studying Tm cells and novel Tm cell-based strategies.

In recent years, mRNA vaccines, a novel vaccine platform, have been established against 
COVID-19 (70). Here, mRNAs encoding viral proteins are delivered within cells via 
endocytosis and translated into target proteins by ribosomes in host cells. Because of this 
process, mRNA vaccines have more advantages in activating T cells than other vaccines do. 
First, mRNA can be recognized as a pathogen-associated molecular pattern, serving as an 
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adjuvant that elicits costimulatory signals (71). In addition, translated proteins derived from 
mRNA vaccines are degraded by the 26S proteasome within the cytoplasm and presented on 
MHC class I molecules to activate CD8+ T cells. For this reason, the roles of T cells against 
COVID-19 infections have emerged, particularly against viruses that mutate their genes to 
escape neutralizing Abs (72,73). Many ongoing studies have focused on evaluating vaccine-
induced T cell responses to variants such as Omicron (B.1.1.529), which carries over 30 
mutations in its spike proteins (74,75). Researchers have revealed that the Omicron variant 
cannot completely escape from both CD8+ Teff and Tm cell responses because the dominant 
virus epitopes recognized by CD8+ T cells are conserved in the original wild-type virus and 
that T cells are cross-reactive to variants (74). In addition, the effective recognition of the 
Omicron variant by polyfunctional T cells can produce multiple cytokines, such as IFN-γ, 
IL-2, and TNF-α, in vaccinated individuals after 6 to 7 months. Furthermore, vaccine-induced 
T cells recognize little difference between Omicron and the original strain of COVID-19 (75). 
Hence, mRNA vaccines are likely to produce effective long-lived Tm cells for a long time, 
regardless of viral mutations.

In addition to mRNA vaccines, traditional vaccines have also been shown to have enhanced 
efficacy by administering homeostatic cytokines for Tm cells. In a mouse model wherein 
administered with recombinant human (rh) IL-7 and rhIL-15, Melchionda et al. (76) reported that 
the number of Ag-specific Teff cells was not only significantly increased, but the survival of resting 
T cells was prolonged until day 120. The impact of increasing vaccine efficacy via cytokines has 
also been confirmed on other vaccine platforms, similar to those applied to humans (77).

Adaptive cell therapy (ACT) with memory CD8+ T cells
To employ effective T cells in immunotherapy, direct infusion of Tm cells that recognize 
cancer neoantigens through ACT is a promising strategy (Fig. 2) (78). Traditional ACTs 
utilize circulating or tissue-resident immune cells harvested from patients, expand them 
exponentially in in vitro culture systems, and re-infuse these cells into patients to mediate 
the clearance of infections or tumor destruction. Previously, genetically unmodified 
immune cells had been applied for therapy, such as circulating T cells, TILs, γδ T cells, NK 
cells, lymphokine-activated killer cells, and cytokine-induced killer cells (79). Because ACT 
employs self-derived T cells, also called autologous T cells, the biggest advantage of using 
patient-driven immune cells is that the transferred T cells are seldom rejected.

There are 2 primary ways to prepare endogenous T cells as ACTs for clinical applications: 
in vitro-stimulated Teff cells derived from Tn cells with specific Ags and tissue-infiltrating 
Ag-reactive T cells (Fig. 2A). First, T cell differentiation is induced in vitro, in which Tn cells 
become Teff or Tm cells against desired Ags, such as tumor Ags, and then re-transferred 
into patients. An advantage of using this protocol is that the TCRs of these T cells are highly 
diverse, allowing tumor Ags to stimulate at least a portion of these T cell pools (80-82). Thus, 
it is likely that Tn cells can differentiate into Teff or Tm cells in vitro and respond to various 
agents. Additionally, Teff or Tm cell differentiation in vitro using several cytokines has been 
attempted to obtain specific cell subsets with the desired number of cells. ACT was applied 
using Tn cells to patients with cancer in 2002 (83).

Circulating CD8+ T cells have also been collected from patients with metastatic melanoma 
and transformed into functional effector T cells using autologous DCs with melanoma-
specific peptides in vitro. These cells were then transferred to patients with subsequent IL-2 
administration for further T cell expansion in vivo (83). Teff cells administered to patients 
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were shown to infiltrate into tissues containing tumor cells with cognate Ags. Despite these 
theoretically anticipated advantages, the functions of T cells differentiated in culture and in 
patients varied, so T cell administration cannot be fully implemented in vivo. Moreover, the 
mechanism by which these T cells are activated in vitro are not completely understood. For 
example, in vitro-differentiated Tm cells stimulated with a mixture of IL-7 and IL-15 were more 
effective in anti-tumor immunity than Tm cells induced only with IL-2 (84). Therefore, it is 
essential to fully examine the factors influencing Tm cell differentiation in vitro.

Another method of ACT is to employ tissue-infiltrating cells, particularly Trm cells, which 
have been intensively studied for cancer therapy (Fig. 2B) (85). Although this method 
has limitations of Ags compared to Tn cells, it is more effective than other T cell subsets 
because the isolated cells are functional cells that recognize and clear specific Ags in 
patients. Twenty years ago, Dudley et al. (86) isolated TILs from patients with metastatic 
melanoma who received immunodepleting chemotherapy and expanded their cells in vitro. 
After transplantation of T cells into patients treated with high-dose IL-2, rapid clonal TIL 
expansion in vivo resulted in the impairment of tumor metastasis (86). In addition, the 
number of transferred T cells rapidly decreased to less than 30% after 3–4 wk, even though 
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to become CAR-T cells that have Ag receptors that recognize cancer. These CAR-T cells can also be expanded in vitro in the laboratory and then reinfused into 
patients for use in immunotherapy.



the Ag-specific T cells survived for over 4 months. These reports suggest that in vitro-
expanded TILs have functional effects against Ags and have the potential to differentiate into 
Tm cells in vivo.

Until now, the ACT method using Tm cells has not been reported much compared to that 
using Teff cells. However, if further research provides more information regarding the 
differentiation of Tm cells and the modulation of Tm cell functionality in vitro and in vivo, Tm 
cells will probably possess more therapeutic benefits than other subsets.

ACT with memory-like chimeric antigen receptor (CAR)-T cells
The experience and knowledge gained from ACT have triggered the advent of CAR-T cell 
therapy (Fig. 2C). Recent advances in CAR-T therapy are currently available worldwide and 
extensive challenges are being addressed (79,87). CAR-T cells are modified T cells with 
artificial Ag receptors that are more therapeutically effective when they are less differentiated 
and exhausted (88,89). Recently, the use of CD8+ CAR-T cells for cancer treatment has been 
rapidly increasing. However, the limitations of the cytolytic reactive efficiency of CAR-T 
cells have not yet been closely examined. One of the hurdles to using CAR-T cells is the lack 
of or weak response to the killing activity of CAR-T cells in preclinical studies, particularly 
in patients with solid tumors. This is probably due to the limited expansion and survival 
of CAR-T cells in tumors, as even these T cells undergo exhaustion, suggesting that new 
protocols to treat these patients are clinically on demand (90-92).

One important attempt differentiated CAR-T cells into memory or memory-like T cells with in 
vitro or in vivo stimulation, and this approach has shown promising clinical outcomes (93). For 
example, factors such as homeostatic cytokines and intracellular metabolism for generating 
memory CAR-T cells have been applied in clinical trials. First, IL-7 and IL-15 were evaluated 
to determine whether these homeostatic cytokines increased the proliferation, survival, and 
cytotoxicity of CAR-T cells, as in Tm cells. CAR-T cells incubated with a mixture of IL-7 and 
IL-15 in vivo differentiated more into CD8+CD45RA+CCR7+ CAR-T cells with a Tcm phenotype 
than CAR-T cells treated with mock or IL-2 (16,94). Moreover, these CAR-T cells had increased 
proliferative capacity and CTL activity for anti-tumor effects and decreased Tex cell markers, 
such as the inhibitory receptor PD-1. These cells retained their memory phenotype even 
after subsequent in vivo expansion (16,95). When IL-7- or IL-7R-expressing CAR-T cells were 
adoptively transferred via genetic modifications, they also persisted longer with enhanced 
anti-tumor activity for expansion and effector functions compared to controls (96,97).

The second attempt to alter differentiation into memory-like CAR-T cells is to switch the 
metabolism of these CAR-T cells between glycolysis, FAO, and OXPHOS (98). For example, 
CAR-T cells cultured in a glutamine metabolism inhibitory condition not only retained more 
highly proliferative subsets, such as Tn (CCR7+CD45RA+) or Tcm (CCR7+ CD45RA−), in vitro 
but also had accelerated cytotoxic activities to eliminate tumor cells in vivo. These cells also 
undergo metabolic reprogramming of mitochondrial OXPHOS, utilizing FAs and reduced 
glycolysis (99).

Altogether, CAR-T cells with a Tm cell phenotype have great potential to be more effective 
for cancer therapy than any other subsets, but the current basic understanding of Tm cell 
development and function remains limited. Thus, further studies and attempts at utilizing 
Tm cells as therapeutics, which will bring a bright future for cancer therapies, are required.
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CONCLUSION AND FUTURE PERSPECTIVES

Despite recent remarkable advances in medical science and technology, there are still 
inadequate vaccines or immunological therapies for pandemic infectious diseases or various 
cancers. In this review, we summarized the features of Tm cells and suggested the reasons 
why Tm cells should be used as immunotherapy. Although the most important factor in 
preventing infectious diseases and cancers is to increase the potency of an individual’s Tm 
cells. Unfortunately, many vaccines and therapies cannot take advantage of these cells due 
to our limited understanding of Tm cell biology. Thus, we mapped out potential protocols 
for differentiating and maintaining Tm cells in terms of the interaction between cytokines, 
microbiota, and intrinsic metabolism. Finally, to overcome the efficiency and limitations of 
conventional therapy, a better understanding and study of Tm cells, the most potent cells in 
our body, will be needed.
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