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One-shot 13C15N-metabolic flux analysis for
simultaneous quantification of carbon and
nitrogen flux
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Abstract

Metabolic flux is the final output of cellular regulation and has
been extensively studied for carbon but much less is known about
nitrogen, which is another important building block for living
organisms. For the tuberculosis pathogen, this is particularly
important in informing the development of effective drugs target-
ing the pathogen’s metabolism. Here we performed 13C15N dual
isotopic labeling of Mycobacterium bovis BCG steady state cultures,
quantified intracellular carbon and nitrogen fluxes and inferred
reaction bidirectionalities. This was achieved by model scope
extension and refinement, implemented in a multi-atom transition
model, within the statistical framework of Bayesian model averag-
ing (BMA). Using BMA-based 13C15N-metabolic flux analysis, we
jointly resolve carbon and nitrogen fluxes quantitatively. We
provide the first nitrogen flux distributions for amino acid and
nucleotide biosynthesis in mycobacteria and establish glutamate
as the central node for nitrogen metabolism. We improved resolu-
tion of the notoriously elusive anaplerotic node in central carbon
metabolism and revealed possible operation modes. Our study pro-
vides a powerful and statistically rigorous platform to simultane-
ously infer carbon and nitrogen metabolism in any biological
system.
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Introduction

In recent decades, a great deal of progress has been made in unrav-

eling the complexity of intracellular metabolism in microbial, ani-

mal, and plant cells by measuring metabolic fluxes through the

reactions that constitute central metabolism. The state-of-the-art

technique is 13C-Metabolic Flux Analysis (MFA) in which cells, at

metabolic steady-state, are fed a mixture of 12C and 13C-labeled sub-

strates that are incorporated into the central carbon (C) metabolism

to yield stable end products, such as the proteinogenic amino acids.

The method infers in vivo metabolic reaction rates (fluxes) by using

a system-wide biochemical reaction model that tracks C atom rear-

rangements throughout the metabolic pathways and by fitting these

fluxes to the emerging labeling patterns (typically isotopically 12C

and 13C labeled fractional enrichments measured by mass spectrom-

etry (MS) or nuclear magnetic resonance (NMR); Wiechert, 2001;

Nielsen, 2003; Zamboni et al, 2009; Niedenführ et al, 2015). 13C-

MFA resolves the activity of biochemical reactions through compu-

tational modeling which can differentiate between parallel pathways

and determine bidirectional fluxes (mass exchange of reactions that

proceed forwards and backwards at the same time; Sonntag

et al, 1993; Wiechert & de Graaf, 1997).

Besides central C metabolism, nitrogen (N) metabolism plays a

key role, not only in amino acid and nucleotide metabolism, but also

in the synthesis of many cofactors (Chubukov et al, 2014). In many

microbes including the pathogenic Mycobacterium tuberculosis,

nitrate acts as a terminal oxygen acceptor in addition to molecular

oxygen during hypoxic respiration (Tan et al, 2010). Although N fixa-

tion and assimilation play a key role in medical research, agriculture,

and biotechnology, quantitative insights into N metabolism are cur-

rently limited. Consequently, only a few drugs have been developed

that target N metabolism (Kurmi & Haigis, 2020). The progress in

quantifying Nmetabolism has been challenging, mostly because there

is limited information derived from the isotopic labeling profiles of N
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versus C atoms. The equivalent of 13C-MFA, namely 15N-MFA there-

fore needs to involve time-resolved labeling data and the measure-

ment of intracellular intermediate metabolite concentrations (pool

sizes) to deploy the isotopically non-stationary (INST) MFA frame-

work (Nöh & Wiechert, 2011; Wiechert & Nöh, 2013). This technique

was utilized to study ammonium assimilation in Corynebacterium glu-

tamicum by quantifying central N fluxes in vivo (Tesch et al, 1999).

C and N metabolism are interdependent in all organisms (Goel

et al, 2016; Naliwajski & Skłodowska, 2018). For instance, the tricar-

boxylic acid cycle (TCA), glycolysis, and pentose phosphate path-

way (PPP), which are C based, synthesize amino acids and

nucleotides. Biosynthesis of amino acids primarily involves addition

of N to the C backbone, requiring reductants and energy, generated

primarily from C metabolism (Fig 1). To understand C and N co-

assimilation, a systems-based analysis is required which includes

both central C and N metabolism. The information about 13C label-

ing enrichments of the intermediates in amino acid biosynthesis

alone is limited, because such measurements cannot resolve alterna-

tive pathways in which no C scrambling occurs, as in the case of

arginine biosynthesis pathway (Fig 1, Appendix Fig S1). The key for

quantification of C and N fluxes simultaneously is to administer 13C

and 15N isotopic tracers. Using 13C6
15N4 labeled arginine as the

tracer, this co-labeling strategy was implemented to study arginine

metabolism in Kluyveromyces lactis (Romagnoli et al, 2014); this

study showed that 13C incorporation into the amino acids proceeded

at a slower timescale than the 15N-label. The time-deconvolution of

C and N label incorporation allowed approximation of C and N

fluxes using a “staggered” INST 13C-MFA and 15N-MFA approach.

However, the efficacy of this approach critically depends on the

validity of the underlying timescale separation, which is induced by

the efficacious choice of C- and N-labeling sources. Here we have

established an approach that simultaneously quantifies C and N

metabolic fluxes independently of the co-labeling strategy applied.

Our 13C15N-MFA platform specifically tracks C and N atom intercon-

versions throughout the entire metabolic network, without the need

to acquire the pool sizes of metabolic intermediates or the deconvo-

lution of 13C and 15N isotopologues using time-deconvolution or

specialized analytical measurement platforms. We demonstrate the

capability of this platform by quantifying intracellular C and N

fluxes of the vaccine strain of mycobacteria Mycobacterium bovis

BCG, as a model for one of the world’s most important pathogens,

Mycobacterium tuberculosis (Mtb) that causes tuberculosis (TB).

Tuberculosis is one of the leading causes of human mortality

from a single infectious agent that kills over a million people every

year (World Health Organization, 2020). Drug resistance is a major

problem affecting TB therapy (Palomino & Martin, 2014; Kurz

et al, 2016), so new drugs are urgently needed. Measurement of N

metabolic fluxes has the potential to identify novel anti-TB drug tar-

gets, but the current progress is hampered by the limitation of tools

and technology to measure N along with C fluxes in vivo. We previ-

ously developed 13C-flux spectral analysis (FSA) and 15N-flux spec-

tral ratio analysis (FSRA) for identifying the probable spectrum of C

and N substrates in Mtb ex vivo (Beste et al, 2013; Borah et al, 2019).

Using FSRA, we found aspartate, glutamate, and glutamine to be the

primary nitrogen sources for intracellular Mtb (Borah et al, 2019).

Although 13C-FSA and 15N-FSRA provided qualitative conclusions

about C and N sources, the available measurements did not allow

for flux quantification. Multiple studies have successfully measured

C fluxes in Mtb growing as batch cultures (de Carvalho et al, 2010;

Borah et al, 2021). We also applied 13C-MFA to quantify intracellular

C fluxes of Mtb and BCG during slow and fast growth in a chemostat

(Beste et al, 2011). Here, using C and N isotopic co-labeling, meta-

bolic modeling, and Bayesian statistics we resolved the central C and

N co-metabolism with an increased resolution.

The measurement of N metabolic fluxes, simultaneously with the

C fluxes in a principled, system-wide manner has not been attempted

in Mtb or in any organism. The simultaneous measurement of C and

N fluxes requires constructing an enlarged metabolic reaction model

that describes both central C and N metabolism along with multi-

atom transitions. As a result, the number of unknown flux parame-

ters to be inferred from the experimental measurements, increases

significantly. The increase in dimensionality stems primarily from

the reaction steps for CN co-assimilation (mainly reactions catalyzed

by transaminases) as these reactions must be modeled bidirectional

to adequately describe the co-labeling enrichments (Wiechert & de

Graaf, 1997). In this situation, the ensuing model flexibility renders

the standard best-fit approach, commonly used in 13C-MFA, prone to

overfitting (Zamboni et al, 2009). This problem is exacerbated when

measurements cannot distinguish between labeling contributions

stemming from 13C and 15N tracers, such as data obtained from sin-

gle quadrupole MS instruments with insufficient mass resolution. To

overcome the impediments of current single-model 13C-MFA

approaches, and to provide reliable flux uncertainty estimates under

these circumstances, we used a statistically rigorous multi-model

inference approach (Theorell & Nöh, 2020), which we here general-

ize to 13C15N-MFA. Applying Bayesian multi-model 13C15N-MFA to

analyze co-labeling data sets enabled us to measure intracellular

metabolic fluxes for the central C and N metabolism in M. bovis BCG

under steady-state conditions.

Results

Roadmap for Bayesian multi-model 13C15N-metabolic
flux analysis

The 13C15N-MFA co-labeling general workflow is summarized in

Fig 2. Cultivation experiments are performed under metabolic

(pseudo) steady state conditions, in a C or N limited chemostat.

Steady state cultures are switched to media containing 13C- and 15N-

labeled substrates, and samples are drawn after an isotopic steady

state labeling is achieved for both C and N. The samples are then

analyzed by MS, providing mass isotopomer distributions (MIDs;

Nilsson & Jain, 2016). In terms of mass shifts, low-resolution gas-

chromatography (GC–MS) and liquid-chromatography mass spec-

trometry (LC–MS) are often not sufficiently sensitive to distinguish

between 13C and 15N isotopomers, resulting in convoluted univari-

ate (13C15N) MIDs (Kappelmann et al, 2017). For example, in lysine

with six C (#C ¼ 6) and two N (#N ¼ 2) atoms, #C þ #N þ 1 ¼ 9

univariate MIDs exist. More advanced analytical platforms such as

high-resolution LC–MS (orbitrap; Nilsson & Jain, 2016), FT-ICR-MS

(Blank et al, 2012), multi-reflection time-of-flight (ToF) MS or tai-

lored derivatization approaches combined with two-stage LC–MS

(Kappelmann et al, 2019) can distinguish between 13C and 15N iso-

topomers, providing multivariate MIDs. In the lysine example, there

are #C þ 1ð Þ � #N þ 1ð Þ ¼ 21 multivariate mass isotopomers. Ultra-
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Figure 1. Metabolic network showing carbon and nitrogen metabolism.

Pathways of carbon and nitrogen metabolism include glycolysis (EMP), pentose phosphate pathway (PPP), tricarboxylic acid (TCA) cycle, and anaplerotic reactions (ANA).
Nitrogen source ammonium; carbon source glycerol. Reactions and metabolites involving nitrogen are shown in red. The inset (Appendix Fig S1 enlarged version) shows
the last bifurcated step of the arginine biosynthesis, according to the genome-scale metabolic model sMTB2.0 (L�opez-Agudelo et al, 2020). Citrulline is aminated either
by free nitrogen to form arginine (arginine deiminase, ARCA), or aspartate is acting as nitrogen donor and arginine is formed via a two-step reaction with the intermedi-
ate argininosuccinate (argininosuccinate synthase (ARGG) and argininosuccinate lyase (ARGH)). Because the carbon backbone is the same for both branches, 13C labeling
alone is not able to resolve the fluxes of either of these pathways.
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high-resolution orbitrap and FT-ICR analysers allow resolving the

full spectrum. In practice, however, those analytical platforms oper-

ate at a trade-off between resolving power and acquisition speed.

Also, low intracellular metabolite concentrations often limit the pre-

cise measurements of multivariate MIDs. Therefore, we opted to

measure univariate MIDs from the co-labeling experiment using a

single-quadrupole GC–MS system, which is a robust and often used

analytical device for MID analysis (Zamboni et al, 2009; Sundqvist

et al, 2022). Although we focus on MS as mainstream analytics,

our workflow is transferable and equally applicable to other analyti-

cal platforms such as for NMR delivering heteronuclear NMR moi-

eties (Borkum et al, 2017), or a combination of MS and NMR

measurements.

Mass isotopomer distributions corrected for natural abundance,

along with the extracellular rates and biomass proportions, are

incorporated into a metabolic network model that precisely specifies

the transition of C and N atoms throughout the intracellular reac-

tions. Tracking N in addition to C requires not only an extension of

C mappings by N mappings and the addition of the reactions

of nitrogen metabolism, but also requires a refined formulation of

biosynthesis reactions that are usually lumped in 13C-MFA (an

example is shown in Appendix Fig S1). These extensions enable

inference of C and N fluxes from the co-labeling data. In addition to

the transition network, information on the mass exchange between

intermediates of these biosynthetic reactions, that is, whether the

mass flow through these reversible reactions is unidirectional or

bidirectional is required (Wiechert & de Graaf, 1997). For instance,

transaminases are suspected to operate at near thermodynamic

equilibrium, but quantitative evidence regarding their activity in

most biological systems including Mtb are largely missing (Grotkjær

et al, 2004). As such all transaminase catalyzed biochemical reac-

tions carrying CN fluxes should be considered potentially bidirec-

tional (Wiechert, 2007), implying that they are characterized by two

flux parameters, a net and a (typically not well determinable) label-

ing exchange flux, instead of a unidirectional reaction, which is

described by a net flux only. Consequently, this introduces addi-

tional model flexibility that challenges the identification of flux

parameters in the CN model, because it renders the model suscepti-

ble to overfitting. A general solution for dealing with model under-

determinacy in a statistically rigorous manner, while making as few

assumptions as possible about the model formulation, has been pro-

posed within the statistical framework of Bayesian Model Averaging

(BMA; Hoeting et al, 1999). Technically, when applied to 13C15N-

MFA, BMA determines the probability distributions of net fluxes vð Þ
given the data Dð Þ, in the Bayesian paradigm expressed as p vjDð Þ,
by averaging the flux posterior probabilities over all possible models

(Mi; i ¼ 1; . . .N), weighted by the model probability in view of the

data p MijDð Þ:

p vjDð Þ ¼ ∑
N

i¼1

p vMi
jMi;Dð Þ∙p MijDð Þ (1)

Here, models Mi are structural variants that differ in their bidirec-

tionality setting and, hence, number of flux parameters (vMi
).

Equation (Equation 1) is solved computationally by using a

recently developed tailored Markov chain Monte Carlo (MCMC)

approach (Theorell & Nöh, 2020; see Materials and Methods for

details). This results in so-called posterior probability distributions

Figure 2. General workflow of 13C15N-MFA.

Labeling data are collected from a 13C and 15N isotope co-labeling experiment, performed for a continuous culture in a chemostat setting to achieve metabolic (pseudo)
steady state conditions. Cells are harvested at isotopic steady state for the analysis of intracellular metabolites using mass spectrometry along with natural abundance
correction. A CN metabolic model is constructed and together with extracellular (uptake, secretion) rates and the labeling data, C and N fluxes are inferred. To this end, a
multi-model inference strategy using Bayesian Model Averaging (BMA) is executed. Here, any specific combination of uni- and bidirectional reactions constitutes a model,
giving rise to combinatorically many possible model variants. BMA is a statistical procedure to draw inferences from the set of model variants by weighting individual
model inferences based on their likelihood to explain the labeling data. The result is the Bayesian flux map that shows the resulting expected values of net fluxes, result-
ing from marginal posterior probability distributions, along with the probabilities of the reversible reactions to operate uni- or bidirectionally.
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for the net fluxes, as well as the probabilities of reversible reac-

tions being uni- or bidirectional. The marginal posterior probability

distributions provide credible intervals (CrI) and expected values

(EV) for the net fluxes. In addition, two-dimensional marginal pos-

terior probability distributions give insights into possibly non-

linear net flux correlations. Finally, the flux estimation outcome,

derived under consideration of data and model formulation uncer-

tainty, is visually summarized in a Bayesian flux map (Fig 2). It

should be noted that all traditional flux maps, including those in

our previous work (Beste et al, 2011), instead consider data uncer-

tainty only and report maximum likelihood-based point estimates

and confidence intervals, whereas flux correlations are exclusive to

the Bayesian framework.

BMA-based 13C15N-MFA validates and refines carbon fluxes in
mycobacteria and reveals new insights into the anaplerotic node

We applied the 13C15N-MFA workflow to the mycobacterial model

system M. bovis BCG. The experimental conditions were comparable

to those described in Beste et al (2011). M. bovis BCG was cultivated

in continuous culture with glycerol and ammonium chloride as sole

C and N sources respectively at a dilution rate of 0.03 h−1 (Tables 1

and EV1, Appendix Fig S2A–C). Cultures were grown with 12.5%

[13C3]-glycerol (GLYC) and 20% [15N1]-ammonium chloride

(NH4Cl) until an isotopic steady state was reached, as confirmed by

GC–MS of amino acids (Appendix Fig S2C). Harvested samples were

analyzed using GC–MS, providing univariate MID measurements

(MIDs that do not distinguish between 13C and 15N isotopomers) of

15 proteinogenic amino acids.

The resulting Bayesian flux map is shown in Fig 3 with net fluxes

relative to the glycerol (GLYC) uptake rate, while the CrIs of the

absolute fluxes are given in Fig 4 (see also Appendix Fig S3 for the

marginal flux posterior probability distributions). The primary C

metabolic route is directed from GLYC over lower glycolysis

towards lipid and fatty acid synthesis (via the acetyl-CoA drain

flux). While glycolytic fluxes were the highest, the TCA cycle, PPP,

and anaplerotic fluxes are significantly lower. The fluxes through

the decarboxylating arm of the TCA cycle, oxoglutarate ferredoxin

oxidoreductase (kor) and succinyl-CoA synthetase (scs) reactions

are reduced. Rv2454c-Rv2455c encoding kor and Rv0951-Rv0952

encoding scs in Mtb participates in the decarboxylating steps of the

TCA cycle, which are bypassed using glyoxylate shunt, instantiating

the GAS pathway (Beste et al, 2011). The GAS pathway utilizes the

glyoxylate shunt and anaplerotic reaction for oxidation of pyruvate.

The operation of this pathway has been measured using our current

BMA analysis, consistent with the results derived previously using
13C-MFA (Beste et al, 2011). The net C fluxes through the upper gly-

colysis, the TCA and anaplerosis for BCG at a growth rate of

0.03 h−1 measured using Bayesian 13C15N-MFA are qualitatively

very similar to those derived by traditional 13C-MFA in our previous

study (Beste et al, 2011; Appendix Fig S4).

There are, however, also differences in the flux maps of central C

metabolism. Our previous flux map showed cyclic fluxes around

fructose 6-phosphate (F6P) node, involving the fluxes pgi, gnd, tkt2,

tal, and tkt1. This cycle is also confirmed by the present 13C15N-

MFA study, but with fluxes lower than previously reported. Notice,

however, that the previously reported fluxes of the PPP represent

best-fit values that were fixed in the statistical analysis due to their

non-identifiability, and thus lacking uncertainty estimates. Accentu-

ated differences are found for the pdh flux in lower glycolysis. We

attribute this discrepancy to the differences in the experimental

setup between the two studies: in this study, tyloxapol was used as

dispersant in the medium as replacement for tween-80 or oleic acid,

which was a medium component in our previous study, and is

known to be a carbon source for mycobacteria (Pietersen

et al, 2020). By comparing the two flux analyses using tween or

tyloxapol in the medium, we concluded that only discrepancies in

lower glycolytic fluxes, but no “global” effects on central carbon

metabolism were found under the investigated conditions.

As in our former 13C-MFA analysis (22), net fluxes of the

anaplerotic reactions, pyruvate carboxylase (pca), PEP carboxyki-

nase (pck), and malic enzyme (mez), could not be resolved as seen

from their large CrIs in Fig 4. This is a consequence of the cyclic net-

work topology of the anaplerotic node (Kappelmann et al, 2016). In

our previous analysis pca and mez were aggregated by lumping

oxaloacetate (OAA) and malate (MAL). In this study, the three

anaplerotic reactions were modeled in detail without imposing any

assumption on their reaction directionalities or bidirectionalities.

Despite limited information in the co-labeling data for identifi-

cation of the directionalities of the anaplerotic reactions, we were

able to refine the resolution of the flux map and limit the absolute

flux values to a range of �0.06 mmol g biomass−1 h−1 (approx.

10% of glycerol uptake). However, the two-dimensional (2D)

marginal posterior probability distributions shown in Fig 5, and in

the extended version Appendix Fig S5, show that the information

contained in the 13C15N data set effectively narrows down the joint

space of possible values considerably further to concise, ring-like

regions within the flux space. With these inferences, many flux

constellations are ruled out. For instance, given the data set at

hand, it is very unlikely that the reaction pairs pca and pck, pca

and mez, or pck and mez, carry zero fluxes. This insight, which

was not implemented in the flux model a priori, is indeed experi-

mentally supported: the mentioned anaplerotic reactions catalyze

gluconeogenic utilization of carbons to replenish the TCA cycle

and operation of these fluxes has been demonstrated to be impor-

tant for the survival of Mtb (Basu et al, 2018). In the previous

analysis in Beste et al (2011), we were unable to derive such pre-

cise information due to model simplifications enforced by flux

non-identifiabilities (Beste et al, 2011).

From the 2D marginal posterior flux probability distributions in

Fig 5A–C we further see that the flux pairs pck/mez and pck/pca are

largely positively correlated, meaning that a larger value of one flux

implies a larger value of the other. In contrast, pca and mez are

Table 1. Chemostat growth parameters of Mycobacterium bovis BCG
continuous cultures. The measurements were done for chemostat
cultures at metabolic and isotopic steady state. Measurements are
mean � SD from two independent chemostat cultures each with three
to four technical replicates.

Specific consumption/production rate

Glycerol 0.81 � 0.28 mmol g biomass−1 h−1

NH4Cl 0.84 � 0.11 mmol g biomass−1 h−1

Dry weight 1.41 � 0.12 g l−1

Dilution rate (fixed) 0.03 h−1
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Figure 3. Bayesian flux map for BCG growing at 0.03 h−1 inferred with 13C15N-MFA.

The line strengths code for the expected values of the net flux marginal posterior probability distributions (Appendix Fig S3). Their associated 95% credible intervals (CrIs)
are given in hexagons, where thin black and thick dark red borders indicate reactions that involve carbon- or nitrogen-only and mixed carbon and nitrogen transfer,
respectively. Values are given relative to the glycerol uptake flux (set to 100). The associated absolute net flux CrIs are provided in Fig 4. The nominal reaction direction,
indicated by the arrowhead, is given according to a positive EV. Color indicates pathway association of the reactions. Associated probabilities of reversible reactions being
bidirectional are found in Appendix Fig S7.
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Figure 4. Credible intervals and expected values of absolute fluxes for BCG growing at 0.03 h−1 inferred with 13C15N-MFA.

Colors indicate pathways and colored bars specify 95% credible intervals (CrI) for net fluxes, with inscribed white line indicating the expected value (in case of very narrow CrIs
are not displayed). Notice that the flux values are bi-symmetrically log-transformed (Beau & Webber, 2013), which visually stretches CrIs of fluxes near 0. Although the
anaplerotic fluxes mez, pca and pck have CrIs ranging from −0.06 mmol g biomass−1 h−1 to 0.06 mmol g biomass−1 h−1, they are strongly correlated as shown in Fig 5A–C.
Source data are available online for this figure.
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largely negatively correlated. Thus, at least one of the three

anaplerotic reactions is operating in gluconeogenetic direction. In a

larger context, Appendix Fig S5 shows that mdh and pyk are highly

correlated with mez and pck, respectively.

Beyond such qualitative assessment of the flux inferences, Fig 5

shows the most likely flux operation modes, that is, flux constella-

tions that are located in the highest probability region. Here, we dis-

cuss the most likely flux mode, indicated by a circle (o) in Fig 5A–C.
In this mode, mez is 0.05 mmol g biomass−1 h−1 and pca is net posi-

tive, while the pck net flux is zero. Together, this operation mode,

shown in Fig 5D, poses a futile cycle: starting from phospho-

enolpyruvic acid, carbon flows via pyk and mez to form malate,

which is then transformed gluconeogenetically via mdh and pck

back to phosphoenolpyruvic acid. Alternatively, the slightly less

likely, flux operation modes for the anaplerotic node are detailed in

Appendix Fig S5.

In conclusion, the C flux profile for BCG growing at a faster

growth rate (0.03 h−1) inferred here by BMA-based 13C15N-MFA rep-

resents an independent replication of the previous 13C-MFA-derived

C fluxes. The C flux maps derived from the two labeling approaches

and the two MFA platforms are comparable, while our current Baye-

sian approach imposes fewer modeling assumptions, provides more

reliable flux uncertainties, and delivers an increased flux resolution,

in particular for the previously non-inferable anaplerotic node in

BCG. The results from our Bayesian analysis provide explanations

of the analyzed data set, which narrow down the range of likely

fluxes (Fig 4) to concise possible functional anaplerotic flux modes

(Fig 5).

13C15N-MFA quantifies C and N-fluxes

In addition to the C fluxes discussed in the previous section, 13C15N-

MFA together with the extended scope of the network allowed us,

for the first time, to quantify C and N net fluxes in M. bovis BCG

from a co-labeling data set, that is, reaction fluxes in the amino acid

and nucleotide biosynthetic pathways. These fluxes are shown in

Fig 3 (hexagons with thick red borders) and Fig 4 in relative and

absolute numbers. The largest biosynthetic flux involving C and N

is bsGLU (glutamate dehydrogenase), with an expected value of

0.072 mmol g biomass−1 h−1 (95% CrI: 0.071–0.074 mmol g

biomass−1 h−1), followed by bsGLN (glutamine synthetase), bsASP

(aspartate transaminase) and bsSER (serine deaminase). The fluxes

of the remaining amino acid and nucleotide synthesis including

adenosine monophosphate (AMP), guanosine monophosphate

(GMP), cytidine monophosphate (CMP), inosine monophosphate

(IMP) and uridine monophosphate (UMP), are one order of

Figure 5. Marginal posterior probabilities and operation modes of the anaplerotic node.

A–C Joint marginal flux posterior distributions for the three anaplerotic reactions pyruvate carboxylase (pca), PEP carboxykinase (pck), and malic enzyme (mez). Darker
(lighter) colors indicate regions of higher (lower) flux probability given the labeling data. The dashed lines indicate the 95% credible region, horizontal/vertical lines
indicate zero fluxes. For mez vs pca, mez vs pck, and pca vs pck fluxes ring-like shapes emerge, revealing complex correlations between the fluxes. Apparently, the
reaction pairs are unlikely to both carry zero flux. The symbol “o” marks the most likely flux values given the 13C15N data set.

D The metabolic network of the anaplerotic node, and the most likely fluxes labeled by “o” in A, B, C. Starting from phosphoenolpyruvic acid, carbon flows via pyk and
mez to malate, which is then transformed via mdh and pck back to phosphoenolpyruvic acid. See Appendix Fig S5 for an extended version of the figure, and the
interpretation of further, possible flux constellations.
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magnitude lower, with values rendering the proportion to which

they contribute to biomass formation (Fig 4).

When interpreting fluxes determined using 13C15N-MFA (Fig 4)

or comparing them with any previously reported flux values, it is

important to realize that fluxes always must be interpreted in rela-

tion to the actual material flows they represent. For example, it has

been previously reported (Beste et al, 2011), that alanine amino-

transferase (bsALA) is the largest biosynthetic net carbon flux, being

one order of magnitude larger than glutamate dehydrogenase

(bsGLU). In this study, we found that bsALA (95% CrI: 0.006–
0.007 mmol g biomass−1 h−1) is one order of magnitude lower than

bsGLU (95% CrI: 0.071–0.074 mmol g biomass−1 h−1). This appar-

ent discrepancy is explained by the nitrogen flux that is not within

the scope of 13C-MFA. More precisely, conventional 13C-MFA can

only give a lower bound on the nitrogen requirement of an amino

acid by summing up the (C) fluxes of reactions that incorporate

nitrogen from the donor. For example, adding the fluxes to alanine

(ALA), asparagine (ASN), glutamate, glutamine (GLN), leucine

(LEU), lysine (LYS), phenylalanine (PHE), serine (SER), tyrosine

(TYR), tryptophan (TRP), valine (VAL), ornithine (ORN), arginine

(ARG), and the contributions to nucleotide synthesis, gives a value

of 0.061 mmol g biomass−1 h−1, which underestimates the bsGLU

net CN flux expected value of 0.071 mmol g biomass−1 h−1 derived

by 13C15N-MFA in this study.

The strength of 13C15N-MFA is that it provides quantitative flux

measurements for N metabolism, along with the C fluxes. The N flux

map shown in Fig 6 highlights the central role of glutamate (GLU) as

an N donor. To a lesser extent, glutamine (GLN) and aspartate (ASP)

are also N donors, which explains their significantly higher CN flux

as compared to the C fluxes previously reported (Beste et al, 2011).

Glutamate donates its N to other amino acids through various

transamination reactions. The centrality of this node for N assimila-

tion was experimentally confirmed by examining substrate utiliza-

tion of a glutamate auxotroph of M. bovis BCG with a transposon

mutation in gltBD, a gene encoding glutamine oxoglutarate amino-

transferase (GOGAT) that catalyzes the synthesis of GLU from OXG

and GLN (Viljoen et al, 2013). Whereas the wild type M. bovis BCG

strain could grow with GLYC as sole C and NH3, ASP, GLU and GLN

as sole N sources (slope m > 0), the gltBD mutant was able to grow

only on glutamate as the N source (Fig 7). The CN-fluxes for GLU

and ASP-derived amino acids including ASN, threonine (THR),

isoleucine (ILE), LYS, methionine (MET), ARG and PRO and phos-

phoglyceric acid (PGA)/phosphoenlypuruvate (PEP) derived ALA,

SER, cysteine (CYS), VAL and leucine (LEU) are higher than the PPP-

derived amino acids (Fig 4). Interestingly, ALA had the largest pool

size amongst the protein-derived amino acids, but the alanine

aminotransferase flux was by far not the highest. Also, for the other

amino acids, no direct relationship between pool sizes and fluxes is

apparent, highlighting that pool size and fluxes are complementary

measures of metabolism (Fig 8; Appendix Fig S6; Buescher

et al, 2015; Wang et al, 2020; Wiechert & Nöh, 2021).

Bayesian multi-model 13C15N-MFA uncovers reversibility of
glycine biosynthesis and unidirectionality of leucine and
isoleucine biosynthesis

GLU and GLN serve as the main amino donors for the synthesis of

other amino acids in BCG (Figs 4 and 6). To meet the demands for

protein, RNA and DNA synthesis, the N net flux is principally

directed towards amination. However, the reversibility of the

enzymes responsible for catalyzing transaminases provide cells with

the ability to adapt rapidly to environmental conditions such as

changes in N availability. Indeed, fine-tuning the activities of

transaminases to modulate C flux has been demonstrated in the

CHO eukaryotic cell line (Wahrheit et al, 2014). This means that

while the biosynthetic net reaction flux is directed towards amina-

tion, a simultaneous forward and backward (bidirectional) flux is

possibly occurring in vivo.

Due to the lack of evidence about the reversibility of mycobacte-

rial transaminases, we set the transaminase reactions in the model

as potentially bidirectional to capture the flexibility of the amination

network and to avoid the risk of any bias that would arise from set-

ting a transamination reaction erroneously unidirectional. All

transamination reactions were modeled as bidirectional reaction

steps, resulting in a flux estimation problem with 86 degrees of free-

dom (71 fluxes and 15 measurement group scales) to be recovered

from 144 measurements (109 univariate MIDs and 34 rate and

biomass efflux measurements). Here, BMA was used to minimize

overfitting (see methods and protocols). This technique explores the

space of all possible combinations of uni- and bidirectional reactions

(each combination codes for an alternate model) and weights each

model variant by its ability to explain the labeling data (see also

Fig 2). In contrast to the conventionally used single-model

approaches, BMA-based 13C15N-MFA enables not only the rigorous

statistical inference of net fluxes, and thereby reaction directionality,

but also determines reaction bidirectionality (Theorell &

Nöh, 2020). The information contained in the given labeling data

did not allow all bidirectional reactions of biosynthesis to be classi-

fied as either bi- or unidirectional (Appendix Fig S7) with distinct

exceptions: glycine hydroxymethyltransferase (bsGLY) that cat-

alyzes glycine (GLY) biosynthesis was determined to be bidirec-

tional with 100 � 0% probability. In contrast, serine deaminase,

isoleucine, and leucine transaminase (bsSER, bsILE and bsLEU) were

found to be unidirectional with high probability (98.6 � 0.3% prob-

ability, 99.8 � 0.05%, and 100 � 0% probability, respectively).

Discussion

The interplay between C and N assimilation and dissimilation is

required to sustain cell metabolism and function. To date, the

knowledge about C and N co-assimilation and these fluxes within a

cell remains limited. For measuring metabolic fluxes, isotope tracing

studies in combination with computational modeling is a gold stan-

dard. Recently, multiple stable isotopic tracers have been used to

measure C and N enrichments and to derive insights into N assimi-

lation in eukaryotic systems including yeast, plant, and human

cancer cells (Blank et al, 2012; Nilsson & Jain, 2016). Two pioneer-

ing studies determined metabolic fluxes of the GS-GOGAT pathway

in C. glutamicum by INST 15N-MFA (Tesch et al, 1999) and the CN

fluxes for arginine metabolism in K. lactis (Romagnoli et al, 2014).

Both these studies had limitations; the former was limited to mea-

suring N fluxes in a small sub-network, and the latter 13C15N-flux

analysis relied on a tailored labeling strategy that exploited the fact

that the 13C tracer was incorporated faster into metabolites than the
15N tracer.
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Here we generalized the well-established methodology of 13C-

MFA towards 13C15N-MFA for deriving system-wide C and N fluxes

from a combination of isotopic co-labeling experiments and compre-

hensive multi-atom transition modeling. The generalization is

paired with the use of BMA, which provided rigorous quantification

of metabolic fluxes with low- and medium-resolution MS data by

measuring intracellular metabolic fluxes through the central C and

N network of M. bovis BCG. The application of BMA-based 13C15N-

MFA instead of the conventional single-model approach was moti-

vated by three factors:

• The Bayesian framework allows approximating the full posterior

probability distributions of the net fluxes from which accurate

nonlinear credible intervals (1D) and credibility regions (2D) are

derived.

• The multi-model approach captures flux parameter and model for-

mulation uncertainty, thereby providing consolidated flux uncer-

tainty quantification.

• BMA-based 13C15N-MFA reliably evaluates low-demand co-

labeling data, without the need of settling for potentially biasing

model reductions.

These key advantages of BMA-based 13C15N-MFA, together with

the extension of scope and refinement in terms of the C and N meta-

bolic network, enable us to estimate C and N fluxes in one consoli-

dated approach and provide reliable estimates for the uncertainties

in the parameters. This enabled the rigorous statistical assessment

of all reactions, even those with unknown bidirectionality and cyclic

network structures that were previously unresolvable.

Our previous work using 13C-MFA demonstrated conserved car-

bon flux distributions between BCG and Mtb during growth on glyc-

erol demonstrating metabolic consistency between the two

mycobacterial systems (Beste et al, 2011). Therefore, our BMA-

based C and N fluxes in BCG are relevant to studying the pathogenic

Mtb. We and others have demonstrated that the TB pathogen co-

metabolizes multiple host nutrients during infection (de Carvalho

Figure 6. Bayesian N-flux map for BCG growing at 0.03 h−1 inferred with 13C15N-MFA.

GLU-centric view with focus on amino acids. The line strengths code for the expected values of the net flux posterior probability distributions. Lower and upper limits of
their associated 95% credible intervals (CrIs) are given in hexagons. To maintain compatibility with Fig 3, values are given relative to the glycerol uptake flux (set to 100).
Glutamate (GLU) is the primary nitrogen donor for most amino acids, but also glutamine (GLN), aspartate (ASP), and serine (SER) are important nitrogen hubs.
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et al, 2010; Beste et al, 2013; Gouzy et al, 2013; Bottai et al, 2014;

Borah et al, 2019). Co-catabolism of C sources by mycobacteria and

the associated metabolic regulations have been previously demon-

strated by multiple studies using transcriptional, metabolomics

and genetic approaches (Pandey & Sassetti, 2008; de Carvalho

et al, 2010; Rhee et al, 2011; Eoh & Rhee, 2014; Bi et al, 2017; Rizvi

et al, 2019; Serafini et al, 2019, 42–47). Although multiple studies

have explored the C and N metabolism of Mtb in vitro and within

ex vivo and in vivo animal models, the information about C and N

fluxes and the key metabolic steps that could be targeted for drug

development remain limited. Here we used [13C3]-glycerol and

[15N1]-ammonium chloride dual isotopic labeling of steady state

BCG cultures to measure intracellular C and N fluxes. We provide

the first comprehensive intracellular C and N flux distributions in a

biological system. A comparison with our previously published

13C-MFA in Mtb and M. bovis BCG (Beste et al, 2011) showed a

broad agreement for the net fluxes of central C metabolism. C fluxes

through glycolysis and PPP including phosphoglucose isomerase

(pgi), fructose bisphosphatase (fbp), aldolase (fba), glucose-6-

phosphate dehydrogenase/glucolactonase (gnd), transketolase (tkt1,

tkt2) and transaldolase (tal) were not quantified accurately with our

previous 13C-MFA and recent 13C15N-MFA study because PPP reac-

tions lack of sufficient labeling information from proteinogenic

amino acids. Incorporating labeling information from glycogen,

ribose moiety of DNA, glucosamine moiety from peptidoglycan and

lipopolysaccharides, such as suggested by Kohlstedt and Witt-

mann (2019) is a promising approach to improve flux precision in

this area of metabolism. The fluxes of the three anaplerotic enzymes

pyruvate carboxylase (pca), PEP carboxy kinase (pck), and malic

enzyme (mez), which play an important role in metabolism

Figure 7. Growth of wild type and gltBD mutant BCG strain on minimal medium containing glycerol, GLU, ASP, GLN and NH4Cl.

A positive slope m > 0 indicates exponential growth. A negative slope (m < 0) indicates no exponential growth. Values are mean � s.e.m (n = 3 independent biological
replicates). * indicates statistically significant deviation of the slope from 0; ****P < 0.00001.
Source data are available online for this figure.
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connecting catabolism and anabolism with energy generation, are

notoriously difficult to determine in general (Basu et al, 2018).

Nonetheless, remarkably the information contained in the low

demand CN co-labeling data was sufficient, using BMA-based
13C15N-MFA, to narrow down the anaplerotic net fluxes, to reveal

precise net flux correlations, and to uncover conclusive modes pos-

sibly active operating in mycobacteria. The Bayesian flux map is

consistent with our previous results showing non-identifiability of

individual anaplerotic fluxes (Beste et al, 2011); however, the co-

labeling data in this study inform about distinct likely flux couplings

of pca, pck, and mez. From our analysis we conclude that at least

one of the three reactions is operating in the gluconeogenic direc-

tion, and it is unlikely that two or more of the associated fluxes are

zero at the same time.

We also measured fluxes to amino acid and nucleotide (purine

and pyrimidine) biosynthesis, providing novel information, which

cannot be deduced from our former 13C-MFA. We previously identi-

fied ASP, GLU and GLN as primary C and N sources for Mtb in

human host macrophages (Beste et al, 2013; Borah et al, 2019).

Here we quantified the fluxes for the biosynthesis of these amino

acids. We identified glutamate biosynthesis bsGLU as the primary

node for CN flux. This is consistent with the finding that ASP, GLN,

and NH4
+ as sole N sources in Roisin’s minimal medium failed to

rescue the growth of a M. bovis BCG mutant lacking functional

gltBD gene and thereby lacking de novo glutamate synthesis (Viljoen

et al, 2013; Gallant et al, 2016). GLU is a well-established N source

for in vitro and intracellular growth of mycobacteria. GLU metabo-

lism is also crucial in mycobacteria to resist acidic and nitric oxide

stress inside macrophages (Viljoen et al, 2013; Gallant et al, 2016)

and is therefore a prime metabolic and regulatory node. Further-

more, we were able to quantify bidirectionality probabilities. Specifi-

cally, glycine hydroxymethyltransferase (bsGLY) was found to be

bidirectional, whereas serine deaminase (bsSER) and isoleucine and

leucine transaminase (bsILE and bsLEU) were determined to be uni-

directional. C and N metabolic profiling has been attempted using

isotopic labeling by other studies. Blank et al (2012) investigated

simultaneous C and N incorporation in Saccharomyces cerevisiae

administering two different isotopic substrates 13C-glucose and 15N-

alanine and measured dual label incorporation in amino acids using

FT-ICR-MS. Our study demonstrates that conventional GC–MS,

which is the traditional workhorse for isotopomer analysis of amino

acids, in combination with dual labeling experiments is useful for

robust and reproducible flux quantification by BMA-based 13C15N-

MFA. Our CN metabolic network is currently limited to amino acid

Figure 8. Pool sizes vs. biosynthetic CN fluxes of protein-derived amino acids.

Values are mean � S.D. (n = 12 measurements; 4 biological replicates, 3 technical replicate each) for pool size measurements and 95% CrIs for flux values.
Source data are available online for this figure.
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and nucleotide biosynthesis, but there are further scopes for exten-

sion of this model through addition of biocomponents such as co-

factors NADH and NADPH, and lipids that requires CN assimilation

and dissimilation.

In summary, we have developed Bayesian 13C15N-MFA, a power-

ful tool for simultaneous quantification of intracellular C and N

metabolic fluxes in a living system. We applied it to M. bovis BCG.

BMA-based 13C15N-MFA identified glutamate as the central node of

nitrogen metabolism, revealed the most likely operational modes of

the anaplerotic fluxes, and resolved the uni/bidirectionalities of

glycine, serine, isoleucine, and leucine biosynthesis. Our 13C15N-

MFA workflow described here is applicable to any CN isotopic co-

labeling experiment, and the computational platform developed in

this work allows analyses of low demand, low- and medium-

resolution MS data to provide rigorous, consolidated quantification

of C and N metabolic fluxes in any biological system.

Materials and Methods

Reagents and Tools table

Reagent/resource Reference or source Identifier or catalog

Bacterial strains

Mycobacterium bovis BCG Pasteur American Type Culture Collection ATCC 35748

M. bovis BCG gltBD transposon mutant VIB – Vlaams Instituut voor Biotechnologie (BCG_3922c TnInsertion-8654)

Reagents

Middlebrook 7H11 Merck Life Science M0428-500G

Middlebrook 7H9 Merck Life Science M0178-500G

OADC Becton Dickenson 212351 (4312351)

Glycerol Merck Life Science G7893-1 L

Tyloxapol Merck Life Science T8761-50G

Brain heart infusion agar Merck Life Science 70138-500G

Rosins minimal media Beste et al (2011) N/A

[13C3] glycerol, 99% purity CK Isotopes CLM-1510-5

[15N1] NH4Cl, 98% atom purity Merck Life Science 299251

2 liter bioreactor Electrolab Fermac 310/60

Peristaltic pump Rainin Rabbit Plus N/A

Gas analyzer Electrolab Fermac 368

Glycerol assay kit Merck Life Science MAK117

Ammonia assay kit Merck Life Science MAK310

BCA assay kit Merck Life Science 71285-M

Ziehl neelsen stain Merck Life Science 1.09215

Mass spectrometry equipment

tert-butyldimethyl silyl chloride (TBDMSCl) Merck Life Science 00942-10ML

N-Methyl-N-(trimethylsilyl)trifluoroacetamide, MSTFA Merck Life Science M-132

GC–MS 7890-5795 Agilent Borah et al (2019)

VF-5 ms 30 m × 0.25 mm × 0.25 μm + 10 m EZ-Guard Agilent CP9013

Dionex UltiMate system (HPLC) Thermo Fisher Scientific 3000 RSLC

C18 and ZIC-pHILIC column (150 mm × 4.6 mm, 5 μm column) Merck Sequant 150461

Thermo Orbitrap Q Exactive Plus Thermo Fisher Scientific N/A

Software

Chemstation Agilent N/A

GraphPad Prism 8.0 GraphPad software N/A

Omix v.2.0.7 Omix Visualization GmbH & Co.KG, Lennestadt/Germany N/A

13CFLUX2 v2.2 Weitzel et al (2013) N/A

HOPS v2.0.0 Jadebeck et al (2021) N/A
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Methods and Protocols

Media preparation
Middlebrook 7H11 agar and Middlebrook 7H9 broth containing 5%

(vol/vol) oleic acid-albumin-dextrose-catalase enrichment medium

supplement (OADC) and 0.5% (vol/vol) glycerol were used to grow

cultures from frozen stocks and for counting the numbers of cultur-

able bacteria in chemostat samples. Brain heart infusion agar was

used to assess culture purity. For cultivation of M. bovis BCG in the

bioreactor, roisins minimal medium with composition- KH2PO4,

1 g l−1; Na2HPO4, 2.5 g l−1; NH4Cl, 5.9 g l−1; K2SO4, 2 g l−1; ZnCl2,

0.08 mg l−1; FeCl3, 0.4 mg l−1; CuCl2, 0.02 mg l−1; MnCl2,

0.02 mg l−1; Na2B4O7, 0.02 mg l−1; NH4MoO4, 0.02 mg l−1; MgCl2,

0.0476 g l−1; CaCl2, 0.055 g l−1; Tyloxapol, 01% (v/v); Glycerol,

0.5% (v/v).

Isotopic labeling of M. bovis BCG batch cultures
We performed single- and co-labeling (with two isotopic substrates)

of M. bovis BCG batch cultures with (a) [13C3] glycerol

(12.5%) + unlabeled NH4Cl, (b) unlabeled glycerol + [15N1] NH4Cl

(20%), and (c) [13C3] glycerol (12.5%) + [15N1] NH4Cl (20%) sub-

strates. Samples for mass isotopomer analysis were harvested at

approximately same time points in the late exponential growth

phase. Mass isotopomers were corrected for natural abundance of

unlabeled atoms. Univariate C and N, as well as multivariate CN

mass isotopomer data of selected proteinogenic amino acids are

shown in Appendix Fig S8.

M. bovis chemostat cultures in the bioreactor
Mycobacterium bovis BCG strain was cultured in a 2 liter bioreactor

under growth conditions (Table EV1). Cultures were grown as batch

for 7 days. Continuous cultures were grown under chemostat condi-

tions at a growth rate of 0.03 h−1 maintained by the media flow rate

(Beste et al, 2011). Media was pumped into the chemostat using a

peristaltic pump. Cultures were grown for 3–4 volume changes in

the unlabeled media to assure a metabolic steady-state before intro-

ducing isotopically labeled media. [13C3] glycerol (12.5%) and

[15N1] NH4Cl (20%) were the carbon and nitrogen isotopically

labeled substrates in the media. Isotopic stationary state was

assessed by measuring % label in the proteinogenic amino acids

of cultures drawn at different times during label feed

(Appendix Fig S2C).

Chemostat measurements and culture analyses
Cultures were monitored every day to check for contamination by

plating on BHI agar media and ziehl neelsen stain. Cultures from

chemostat were regularly sampled for measuring OD and colony

forming units (Beste et al, 2011). Carbon-di-oxide production from

the cultures was monitored using Gas analyzer. The supernatant

was collected, filtered using 0.22 μm unit filters and used for sub-

strate consumption and product excretion analyses. To measure the

glycerol uptake, the amounts of glycerol in the supernatant and

fresh medium was measured using glycerol assay kit by a coupled

enzyme assay involving glycerol kinase and glycerol phosphate oxi-

dase, resulting in a colorimetric (570 nm) product, proportional to

the glycerol present. To measure NH4Cl uptake, the amounts of

NH4Cl were measured using ammonia assay kit by reaction of

ammonia present in the samples involving L-glutamate

dehydrogenase activity. Dry weight of the cells was measured by

centrifuging cultures, drying the cell pellet using freeze dryer and

weighing the cells. The dried pellet was used for protein analysis

using Bicinchoninic Acid Kit for Protein Determination.

Metabolite extraction
Labeled chemostat cultures were quenched using methanol:chloro-

form:water (2:1:2) extraction. Briefly, cultures were filtered using

membrane Filter, 0.22 μm pore size, filter apparatus and the filter

was immersed into methanol:chloroform, mixed, incubated on ice

for 30 min and water was added, followed by centrifuging at room

temperature for triphasic metabolite separation. The upper phase

was collected separately and dried and used for mass spectrometry

analysis. The lower and intermediate phase were mixed into one

phase by addition of one more volume of methanol and chloroform

and centrifuged for 30 min at room temperature. Supernatant was

discarded, the pellet was hydrolyzed in 6 M hydrochloric acid for

24 h at 100°C and the hydrolysate was dried for mass spectrometry

analysis.

Mass spectrometry analysis of amino acids
Dried upper phase was derivatized using N-Methyl-N-

(trimethylsilyl)trifluoroacetamide, MSTFA and dried hydrolysate

were derivatized using tert-Butyldimethylsilyl chloride (TBDMSCl)

were analyzed using GC–MS (7890-5795 system; Borah et al, 2019).

Mass spectra were baseline corrected using MetAlign and mass iso-

topomer distribution (MID) data were extracted using the chemsta-

tion software. Identification of metabolites was done using NIST

databases, literatures, and qualifier masses. Average 13C15N frac-

tional abundances were calculated from two independent chemostat

cultivations (three- or four technical replicates each) and quantita-

tion of metabolite pool sizes was done using calibration curves

(Borah et al, 2019). Further confirmation of 13C and 15N dual label-

ing in the amino acids were done using LC–MS orbitrap

(Appendix Fig S9), and, in addition, 13C, 15N and 13C15N batch label-

ing experiments (Appendix Fig S8). Briefly, hydrophilic interaction

liquid chromatography (HILIC) was carried out on a Dionex Ulti-

Mate 3000 RSLC system using a C18 and ZIC-pHILIC column

(150 mm × 4.6 mm, 5 μm column). The column was maintained at

30°C and samples were eluted with a linear gradient (20 mM ammo-

nium carbonate in water, A and acetonitrile, B) over 26 min at a

flow rate of 0.3 ml/min. The injection volume was 10 μl and

samples were maintained at 4°C prior to injection. For the MS analy-

sis, a Thermo Orbitrap Q Exactive Plus was operated in polarity

switching mode and the MS settings were used with resolution

70000, AGC 106, m/z range 70–1,400, sheath gas 40, Auxiliary gas

5, sweep gas 1, probe temperature 150°C and capillary temperature

275°C. For positive mode ionization: source voltage +4.5 kV, capil-

lary voltage +50 V, tube voltage +70 kV, skimmer voltage +20 V.

For negative mode ionization: source voltage-3.5 kV, capillary

voltage-50 V, tube voltage-70 V, skimmer voltage-20 V. The data

shown in Appendix Fig S9 is a mass spectrum showing the multi-

variate 13C and 15N species identification for alanine.

13C15N-Metabolic flux analysis
Metabolic network model: The metabolic model M. bovis BCG used

for the analysis was constructed using the network editor Omix

v.2.0.7 (Omix Visualization GmbH & Co. KG, Lennestadt/Germany;
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Droste et al, 2013), according to the protocol described in Nöh

et al (2015), based on the GSMN-TB genome-scale model of M.

tuberculosis (Beste et al, 2007). The constructed model includes

reactions of glycolysis, the PPP, the TCA cycle, anaplerosis,

nucleotide and amino acid biosynthesis (Fig 1). Uptake reactions

were considered for GLYC and ammonium chloride (NH4Cl). All

biosynthesis pathway fluxes relevant for growth of M. bovis are

modeled as effluxes, whose values represent their share in the

biomass composition (Beste et al, 2005). Reactions were classified

to be unidirectional (labeling exchange flux = 0), bidirectional (la-

beling exchange flux > 0) or unknown, that is, potentially bidirec-

tional (labeling exchange flux ≥ 0). Here, all reactions are

considered potentially bidirectional, unless evidence was available

that the reactions operate close or far from thermodynamic equi-

librium under in vivo conditions (Table EV2). In particular,

transaminases are modeled potentially bidirectional. Each poten-

tially bidirectional reaction is given a 50:50 probability to be uni-

directional or bidirectional, giving rise to combinatorially many

structurally different model variants. The probabilistic view

enables inference of the probability for a reaction being uni- or

bidirectional from the given data. Each metabolic reaction was

supplemented with carbon and nitrogen atom transitions, follow-

ing the InChI atom enumeration scheme (Heller et al, 2013). Car-

bon symmetries of succinate (SUCC), fumarate (FUM), and

diaminopimelic acid (DAP) were accounted for by the formulation

appropriate label scrambling reactions. In total, the M. bovis BCG

model consists of 248 metabolites (121 balanced intracellular and

127 unbalanced extracellular pools) and 184 metabolic reactions

(149 unidirectional, 35 bidirectional). The most comprehensive

model in the model set has 71 independent flux parameters (36

net and 35 exchange fluxes). The corresponding CN atom transi-

tion network model is formulated in the standardized document

format for isotope-based MFA, FluxML v3 (Beyß et al, 2019), and

is also found in Table EV2.

Measurement models: In total 30 biomass effluxes were consid-

ered as measurements that were either obtained from biomass

hydrolysates or calculated from intermediates (Beste et al, 2011)

and supplied with Gaussian error of 5%. Uptake rates for glycerol

and NH4Cl were fixed for the analysis. Labeling measurements of 15

amino acids, were corrected for the effect of natural abundant iso-

topes (Millard et al, 2012), adding up to 109 univariate MIDs

(Table EV3). The associated measurement errors were derived from

up to 8 replicates (two independent chemostats, each with two-four

replicate measurements). The complete measurement specification

is given in the FluxML model file (Table EV1).

Labeling system & simulation: The 13C-MFA high-performance

simulator 13CFLUX2 v2.2 (Weitzel et al, 2013) was extended to sim-

ulate 13C15N isotopologues. Briefly, the essential cumomer frame-

work (Weitzel et al, 2007) was generalized from single-atom to

multi-atom species labeling systems. The resulting balance equations

consist of a set of sparse linear equation systems that were solved

sequentially with on-the-fly algebraic simplification guaranteeing

numerical stability, accuracy, and efficiency. The resulting reduced

co-labeling system has a state-space dimension of 471 (a reduction

of a factor of 2,563 compared to the full co-labeling system).

Flux inference with Bayesian Model Averaging: Instead of con-

ventional optimization-based single-model flux inference, in this

work metabolic fluxes were estimated using a Bayesian multi-model

approach. More precisely, net fluxes and reaction bidirectionalities

were inferred simultaneously by employing BMA, implemented

using a tailored MCMC approach (Theorell & Nöh, 2020). Herein,

13CFLUX2 was used for likelihood computation. For speed,

sampling algorithms implemented in the C++ library HOPS v2.0.0

(Jadebeck et al, 2021) were employed after suitable preprocessing

using Polyround v0.1.8 (Theorell et al, 2022). The code to reproduce

the analysis is available at https://github.com/JuBiotech/

Supplement-to_Borah-et-al.-MSB-2023 (https://doi.org/10.5281/zenodo.

7506282). Parallel tempering with dynamic temperature selection

was applied to sample from potentially multi-modal distributions. In

total, 10 parallel chains were run from independent starting points,

where per chain 15 × 106 forward simulations were performed. For

each chain, the first 5 × 106 samples were discarded (burn-in).

Proper convergence of the MCMC runs was diagnosed by measuring

the Potential Scale Reduction Factor (PSRF; Gelman & Rubin, 1992)

on a subset of samples, where all but every 2,000th sample was dis-

regarded (thinning). Computations were run on a workstation with

dual Intel(R) Xeon(R) Gold CPU (61300 @ 2.8 GHz). PSRF, mixing

plots in parameter as well as model spaces are provided in

Table EV4, Appendix Figs S10 and S11.

Statistical evaluation: From the MCMC results, posterior proba-

bility distributions p vjDð Þ for the net fluxes v were derived, accord-

ing to (Equation 1). Formally, the posterior probability of a model

Mi out of the model set Mij i ¼ 1; . . . ;Nf g is given by

p MijDð Þ ¼ p DjMið Þ∙p Mið Þ
∑N

k¼1p DjMkð Þ∙p Mkð Þ (2)

where p Mið Þ, the prior knowledge about model Mi, is considered

equal for all models. p DjMið Þ represents the high dimensional

marginalization integral over all possible fluxes the model Mi can

take. 95% CrIs were determined for each net flux (i.e., the range

that contains the flux with a probability of 95% in view of the

data), discarding the upper and lower 2.5% of the values. In addi-

tion, as point estimator, the expected value for the net flux is

reported. The marginal distributions for the net fluxes are provided

in Appendix Fig S3. For each reversible reaction, the posterior

probability of the reaction being bidirectional was determined,

according to (Equation 2), as ratio of models sampled with the

reaction set bidirectional divided by the total number of sampled

models (Appendix Fig S7). The 2D credible regions were deter-

mined using the plot_kde method of arviz (Kumar et al, 2019).

Prediction of labeling data: A calibrated 13C15N model is useful to

predict labeling data that could have been observed in isotopic

labeling experiments. The Bayesian formulation facilitates the con-

struction of posterior predictive mass isotopomers, where the

inferred net fluxes v are provided by the posterior distribution

p vjDð Þ. To this end, in total 50,000 representative samples for the

fluxes were taken from t p vjDð Þ and mass isotopomer data mimick-

ing two single (12% [13C3] glycerol +0% [15N1] ammonium chlo-

ride, 0% [13C3] glycerol +12% [15N1] ammonium chloride), and

the co-labeling (12% [13C3] glycerol +12% [15N1] ammonium chlo-

ride) experiments were simulated. Results are shown in

Appendix Fig S12. 15N1 ammonium chloride labeling strategy is

uninformative about the fluxes, as it is solely determined by the

applied N labeling percentage. For the co-labeling experiment with

dual species 13C and 15N labeling, simulations and experimental
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data are comparable, implying that inferences are plausible with

respect to the fluxes.

Statistical analysis
Students t-test, analysis of variance (ANOVA), and linear regression

analyses were performed in GraphPad Prism 8.0.

Data availability

13C-15N atom transition model and 13C-15N mass spectrometry

dataset from the chemostat experiments are provided in Tables EV2

and EV3.

Random seeds and scripts for reproduction of BMA-based flux

inferences are available at https://github.com/JuBiotech/

Supplement-to_Borah-et-al.-MSB-2023 and are also archived on

Zenodo (https://doi.org/10.5281/zenodo.7506282). This repository

contains: compiled BMA extension to 13CFLUX2 (ver >= 2.3), script

with the used parameters for x3cflux-bma (as used in the study), ran-

dom seeds for the MCMC chains (for reproduction of results),

FluxML model file of M. bovis BCG containing reactions, CN transi-

tions, constraints, and data.

Expanded View for this article is available online.

Acknowledgements
We are grateful to VIB - Vlaams Instituut voor Biotechnologie for providing us

M. bovis BCG gltBD transposon mutant (BCG_3922c TnInsertion-8654). The

authors are thankful to Wolfgang Wiechert for excellent working conditions at

the IBG-1. This study was supported by Biotechnology and Biological Sciences

Research Council (BBSRC) grants BB/L022869/1 and BB/V010611/1, VALIDATE

network training grant 2019 Ref T022 and the Electronics and Physical

Sciences Research Council grants EP/R031118/1 and EP/P001440/1, United

Kingdom.

Author contributions
Khushboo Borah Slater: Formal analysis; funding acquisition; investigation;

visualization; methodology; writing – original draft; writing – review and

editing. Martin Beyß: Software; formal analysis; investigation; visualization;

methodology; writing – original draft; writing – review and editing. Ye Xu:

Writing – review and editing. Jim Barber: Writing – review and editing.

Catia Costa: Writing – review and editing. Jane Newcombe: Writing –
review and editing. Axel Theorell: Software; writing – review and editing.

Melanie J Bailey: Resources; funding acquisition; writing – review and

editing. Dany J V Beste: Writing – review and editing. Johnjoe McFadden:

Conceptualization; resources; supervision; funding acquisition; investigation;

writing – original draft; writing – review and editing. Katharina Nöh:

Conceptualization; resources; software; supervision; investigation;

methodology; writing – original draft; writing – review and editing.

Disclosure and competing interests statement
The authors declare that they have no conflict of interest.

References

Basu P, Sandhu N, Bhatt A, Singh A, Balhana R, Gobe I, Crowhurst NA,

Mendum TA, Gao L, Ward JL et al (2018) The anaplerotic node is essential

for the intracellular survival of mycobacterium tuberculosis. J Biol Chem

293: 5695–5704
Beau J, Webber W (2013) A Bi-symmetric log transformation for wide-range

data. Meas Sci Technol 24: 027001

Beste DJV, Peters J, Hooper T, Avignone C, Bushell ME, Mcfadden J (2005)

Compiling a molecular inventory for Mycobacterium bovis BCG at two

growth rates: evidence for growth rate-mediated regulation of ribosome

biosynthesis and lipid metabolism. J Bacteriol 187: 1677–1684
Beste DJV, Hooper T, Stewart G, Bonde B, Avignone-Rossa C, Bushell ME,

Wheeler P, Klamt S, Kierzek AM, McFadden J (2007) GSMN-TB: a web-

based genome-scale network model of mycobacterium tuberculosis

metabolism. Genome Biol 8: R89

Beste DJV, Bonde B, Hawkins N, Ward JL, Beale MH, Noack S, Nöh K, Kruger NJ,

Ratcliffe RG, McFadden J (2011) 13C metabolic flux analysis identifies an

unusual route for pyruvate dissimilation in mycobacteria which requires

isocitrate lyase and carbon dioxide fixation. PLoS Pathog 7: e1002091

Beste DJV, Nöh K, Niedenführ S, Mendum TA, Hawkins ND, Ward JL, Beale

MH, Wiechert W, McFadden J (2013) 13C-flux spectral analysis of host-

pathogen metabolism reveals a mixed diet for intracellular Mycobacterium

tuberculosis. Chem Biol 20: 1012–1021
Beyß M, Azzouzi S, Weitzel M, Wiechert W, Nöh K (2019) The design of

FluxML: a universal modeling language for 13C metabolic flux analysis.

Front Microbiol 10: 1022

Bi J, Wang Y, Yu H, Qian X, Wang H, Liu J, Zhang X (2017) Modulation of

central carbon metabolism by acetylation of Isocitrate Lyase in

Mycobacterium tuberculosis. Sci Rep 7: 44826

Blank LM, Desphande RR, Schmid A, Hayen H (2012) Analysis of carbon and

nitrogen co-metabolism in yeast by ultrahigh-resolution mass

spectrometry applying 13C- and 15N-labeled substrates simultaneously.

Anal Bioanal Chem 403: 2291–2305
Borah K, Beyß M, Theorell A, Wu H, Basu P, Mendum TA, Nöh K, Beste DJV,

McFadden J (2019) Intracellular Mycobacterium tuberculosis exploits

multiple host nitrogen sources during growth in human macrophages.

Cell Rep 29: 3580–3591
Borah K, Mendum TA, Hawkins ND, Ward JL, Beale MH, Larrouy-Maumus G,

Bhatt A, Moulin M, Haertlein M, Strohmeier G et al (2021) Metabolic fluxes for

nutritional flexibility of mycobacterium tuberculosis.Mol Syst Biol 17: e10280

Borkum MI, Reardon PN, Taylor RC, Isern NG (2017) Modeling framework for

isotopic labeling of heteronuclear moieties. J Chem 9: 14

Bottai D, Levillain F, Dumas A, Gouzy A, de Chastellier C, Wu T, Poincloux R,

Brosch R, Schnappinger D, So LP et al (2014) Mycobacterium tuberculosis

exploits asparagine to assimilate nitrogen and resist acid stress during

infection. PLoS Pathog 10: e1003928

Buescher JM, Antoniewicz MR, Boros LG, Burgess SC, Brunengraber H, Clish

CB, DeBerardinis RJ, Feron O, Frezza C, Ghesquiere B et al (2015) A

roadmap for interpreting (13)C metabolite labeling patterns from cells.

Curr Opin Biotechnol 34: 189–201
de Carvalho LPS, Fischer SM, Marrero J, Nathan C, Ehrt S, Rhee KY (2010)

Metabolomics of Mycobacterium tuberculosis reveals compartmentalized

co-catabolism of carbon substrates. Chem Biol 17: 1122–1131
Chubukov V, Gerosa L, Kochanowski K, Sauer U (2014) Coordination of

microbial metabolism. Nat Rev Microbiol 12: 327–340
Droste P, Nöh K, Wiechert W (2013) Omix – a visualization tool for metabolic

networks with highest usability and customizability in focus. Chem Ing

Tech 85: 849–862
Eoh H, Rhee KY (2014) Methylcitrate cycle defines the bactericidal

essentiality of isocitrate lyase for survival of Mycobacterium tuberculosis

on fatty acids. Proc Natl Acad Sci U S A 111: 4976–4981

16 of 18 Molecular Systems Biology 19: e11099 | 2023 � 2023 The Authors

Molecular Systems Biology Khushboo Borah Slater et al

https://github.com/JuBiotech/Supplement-to_Borah-et-al.-MSB-2023
https://github.com/JuBiotech/Supplement-to_Borah-et-al.-MSB-2023
https://doi.org/10.5281/zenodo.7506282
https://doi.org/10.15252/msb.202211099


Gallant JL, Viljoen AJ, van Helden PD, Wiid IJF (2016) Glutamate

dehydrogenase is required by Mycobacterium bovis BCG for resistance to

cellular stress. PLoS One 11: e0147706

Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple

sequences. Stat Sci 7: 457–472
Gilks WR, Richardson S, Spiegelhalter D (1995) Markov chain Monte Carlo in

practice: interdisciplinary statistics in Chapman & Hall/CRC interdisciplinary

statistics series, 1st edn. Boca Raton, FL: Chapman & Hall/CRC

Goel P, Bhuria M, Kaushal M, Singh AK (2016) Carbon: nitrogen interaction

regulates expression of genes involved in N-uptake and assimilation in

Brassica juncea L. PLoS One 11: e0163061

Gouzy A, Larrouy-Maumus G, di Wu T, Peixoto A, Levillain F, Lugo-Villarino G,

Gerquin-Kern JL, de Carvalho LPS, Poquet Y, Neyrolles O (2013)

Mycobacterium tuberculosis nitrogen assimilation and host colonization

require aspartate. Nat Chem Biol 9: 674–676
Grotkjær T,�Akesson M, Christensen B, Gombert AK, Nielsen J (2004) Impact of

transamination reactions and protein turnover on labeling dynamics in
13C-labeling experiments. Biotechnol Bioeng 86: 209–216

Heller S, McNaught A, Stein S, Tchekhovskoi D, Pletnev I (2013) InChI – the

worldwide chemical structure identifier standard. J Chem 5: 7

Hoeting JA, Madigan D, Raftery AE, Volinsky CT (1999) Bayesian model

averaging: a tutorial. Stat Sci 14: 382–417
Jadebeck JF, Theorell A, Leweke S, Nöh K (2021) HOPS: high-performance

library for (non-) uniform sampling of convex-constrained models.

Bioinformatics 37: 1776–1777
Kappelmann J, Wiechert W, Noack S (2016) Cutting the Gordian knot:

identifiability of Anaplerotic reactions in Corynebacterium glutamicum by

means of 13C-metabolic flux analysis. Biotechnol Bioeng 113: 661–674
Kappelmann J, Klein B, Geilenkirchen P, Noack S (2017) Comprehensive and

accurate tracking of carbon origin of LC-tandem mass spectrometry

collisional fragments for 13C-MFA. Anal Bioanal Chem 409: 2309–2326
Kappelmann J, Beyß M, Nöh K, Noack S (2019) Separation of 13C- and 15N-

Isotopologues of amino acids with a primary amine without mass

resolution by means of O-Phthalaldehyde derivatization and collision

induced dissociation. Anal Chem 91: 13407–13417
Kohlstedt M, Wittmann C (2019) GC-MS-based 13 C metabolic flux analysis

resolves the parallel and cyclic glucose metabolism of Pseudomonas putida

KT2440 and Pseudomonas aeruginosa PAO1. Metab Eng 54: 35–53
Kumar R, Carroll C, Hartikainen A, Martin O (2019) ArviZ a unified library for

exploratory analysis of Bayesian models in python. J Open Source Softw 4:

1143

Kurmi K, Haigis MC (2020) Nitrogen metabolism in cancer and immunity.

Trends Cell Biol 30: 408–424
Kurz SG, Furin JJ, Bark CM (2016) Drug-resistant tuberculosis: challenges and

progress. Infect Dis Clin North Am 30: 509–522
L�opez-Agudelo VA, Mendum TA, Laing E, Wu HH, Baena A, Barrera LF, Beste

DJV, Rios-Estepa R (2020) A systematic evaluation of mycobacterium

tuberculosis genome-scale metabolic networks. PLoS Comput Biol 16:

e1007533

Millard P, Letisse F, Sokol S, Portais JC (2012) IsoCor: correcting MS data in

isotope labeling experiments. Bioinformatics 28: 1294–1296
Naliwajski MR, Skłodowska M (2018) The relationship between carbon and

nitrogen metabolism in cucumber leaves acclimated to salt stress. PeerJ 6:

e6043

Niedenführ S, Wiechert W, Nöh K (2015) How to measure metabolic fluxes: a

taxonomic guide for 13C fluxomics. Curr Opin Biotechnol 34: 82–90
Nielsen J (2003) It is all about metabolic fluxes. J Bacteriol 185: 7031–7035

Nilsson R, Jain M (2016) Simultaneous tracing of carbon and nitrogen

isotopes in human cells. Mol BioSyst 12: 1929–1937
Nöh K, Wiechert W (2011) The benefits of being transient: isotope-based

metabolic flux analysis at the short time scale. Appl Microbiol Biotechnol

91: 1247–1265
Nöh K, Droste P, Wiechert W (2015) Visual workflows for 13C-metabolic flux

analysis. Bioinformatics 31: 346–354
Palomino JC, Martin A (2014) Drug resistance mechanisms in Mycobacterium

tuberculosis. Antibiotics 3: 317–340
Pandey AK, Sassetti CM (2008) Mycobacterial persistence requires the

utilization of host cholesterol. Proc Natl Acad Sci U S A 105: 4376–4380
Pietersen RD, du Preez I, Loots DT, van Reenen M, Beukes D, Leisching G,

Baker B (2020) Tween 80 induces a carbon flux rerouting in

Mycobacterium tuberculosis. J Microbiol Methods 170: 105795

Rhee KY, de Carvalho LPS, Bryk R, Ehrt S, Marrero J, Park SW, Schnappinger D,

Venugopal A, Nathan C (2011) Central carbon metabolism in

Mycobacterium tuberculosis: an unexpected frontier. Trends Microbiol 19:

307–314
Rizvi A, Shankar A, Chatterjee A, More TH, Bose T, Gomez-casati DF (2019)

Rewiring of metabolic network in mycobacterium tuberculosis during

adaptation to different stresses. Front Microbiol 10: 1–16
Romagnoli G, Verhoeven MD, Mans R, Fleury Rey Y, Bel-Rhlid R, van den

Broek M, Maleki Seifar R, ten Pierick A, Thompson M, Müller V et al (2014)

An alternative, arginase-independent pathway for arginine metabolism in

Kluyveromyces lactis involves guanidinobutyrase as a key enzyme. Mol

Microbiol 93: 369–389
Serafini A, Tan L, Horswell S, Howell S, Greenwood DJ, Hunt DM, Phan MD,

Schembri M, Monteleone M, Montague CR et al (2019) Mycobacterium

tuberculosis requires glyoxylate shunt and reverse methylcitrate cycle for

lactate and pyruvate metabolism. Mol Microbiol 112: 1284–1307
Sonntag K, Eggeling L, de Graaf AA (1993) Flux partitioning in the split

pathway of lysine synthesis in Corynebacterium glutamicum quantification

by 13C-and ’H-NMR spectroscopy. Eur J Biochem 213: 1325–1331
Sundqvist N, Grankvist N, Watrous J, Mohit J, Nilsson R, Cedersund G (2022)

Validation-based model selection for 13C metabolic flux analysis with

uncertain measurement errors. PLoS Comput Biol 18: e1009999

Tan MP, Sequeira P, Lin WW, Phong WY, Cliff P, Ng SH, Lee BH, Camacho L,

Schnappinger D, Ehrt S et al (2010) Nitrate respiration protects hypoxic

mycobacterium tuberculosis against acid- and reactive nitrogen species

stresses. PLoS One 5: e13356

Tesch M, de Graaf AA, Sahm H (1999) In vivo fluxes in the ammonium-

assimilatory pathways in Corynebacterium glutamicum studied by 15N

nuclear magnetic resonance. Appl Environ Microbiol 65: 1099–1109
Theorell A, Nöh K (2020) Reversible jump MCMC for multi-model inference in

metabolic flux analysis. Bioinformatics 36: 232–240
Theorell A, Jadebeck JF, Nöh K, Stelling J (2022) PolyRound: polytope rounding

for random sampling in metabolic networks. Bioinformatics 38: 566–567
Viljoen AJ, Kirsten CJ, Baker B, van Helden PD, Wiid IJF (2013) The role of

glutamine oxoglutarate aminotransferase and glutamate dehydrogenase

in nitrogen metabolism in Mycobacterium bovis BCG. PLoS One 8: e84452

Wahrheit J, Niklas J, Heinzle E (2014) Metabolic control at the cytosol-

mitochondria interface in different growth phases of CHO cells. Metab Eng

23: 9–21
Wang Y, Wondisford FE, Song C, Zhang T, Su X (2020) Metabolic flux analysis

—linking isotope labeling and metabolic fluxes. Metabolites 10: 1–21
Weitzel M, Wiechert W, Nöh K (2007) The topology of metabolic isotope

labeling networks. BMC Bioinformatics 8: 315

� 2023 The Authors Molecular Systems Biology 19: e11099 | 2023 17 of 18

Khushboo Borah Slater et al Molecular Systems Biology



Weitzel M, Nöh K, Dalman T, Niedenführ S, Stute B, Wiechert W (2013)

13CFLUX2 – high-performance software suite for 13C-metabolic flux

analysis. Bioinformatics 29: 143–145
Wiechert W (2001) Metabolic flux analysis. Metab Eng 3: 195–206
Wiechert W (2007) The thermodynamic meaning of metabolic exchange

fluxes. Biophys J 93: 2255–2264
Wiechert W, de Graaf AA (1997) Bidirectional reaction steps in metabolic

networks: I. modeling and simulation of carbon isotope labeling

experiments. Biotechnol Bioeng 55: 101–117
Wiechert W, Nöh K (2013) Isotopically non-stationary metabolic flux

analysis: complex yet highly informative. Curr Opin Biotechnol 24:

979–986

Wiechert W, Nöh K (2021) Quantitative metabolic flux analysis based on

isotope labeling. Weinheim: WILEY-VCH GmbH

World Health Organization (2020) Global tuberculosis report 2020. Geneva:

World Health Organization

Zamboni N, Fendt S-M, Rühl M, Sauer U (2009) 13C-based metabolic flux

analysis. Nat Protoc 4: 878–892

License: This is an open access article under the

terms of the Creative Commons Attribution License,

which permits use, distribution and reproduction in

any medium, provided the original work is properly

cited.

18 of 18 Molecular Systems Biology 19: e11099 | 2023 � 2023 The Authors

Molecular Systems Biology Khushboo Borah Slater et al

http://creativecommons.org/licenses/by/4.0/

	 Abstract
	 Intro�duc�tion
	 Results
	 Roadmap for Bayesian mul�ti-model 13C15N-metabolic flux anal�y�sis
	 BMA-based 13C15N-MFA val�i�dates and refines car�bon fluxes in mycobac�te�ria and reveals new insights into the anaplerotic node
	 13C15N-MFA quan�ti�fies C and N-fluxes
	 Bayesian mul�ti-model 13C15N-MFA uncov�ers reversibil�ity of glycine biosyn�the�sis and uni�di�rec�tion�al�ity of leucine and isoleucine biosyn�the�sis

	 Dis�cus�sion
	 Mate�ri�als and Meth�ods
	 Reagents and Tools table
	 Meth�ods and Pro�to�cols
	 Media prepa�ra�tion
	 Iso�topic label�ing of M. bovis BCG batch cul�tures
	 M. bovis chemostat cul�tures in the biore�ac�tor
	 Che�mostat mea�sure�ments and cul�ture anal�y�ses
	 Metabo�lite extrac�tion
	 Mass spec�trom�e�try anal�y�sis of amino acids
	 13C15N-Metabolic flux anal�y�sis
	 Sta�tis�ti�cal anal�y�sis


	 Data avail�abil�ity
	 Acknowl�edge�ments
	 Author contributions
	 Dis�clo�sure and com�pet�ing inter�ests state�ment
	 Ref�er�ences
	msb202211099-bib-0001
	msb202211099-bib-0002
	msb202211099-bib-0003
	msb202211099-bib-0004
	msb202211099-bib-0005
	msb202211099-bib-0006
	msb202211099-bib-0007
	msb202211099-bib-0008
	msb202211099-bib-0009
	msb202211099-bib-0010
	msb202211099-bib-0011
	msb202211099-bib-0012
	msb202211099-bib-0013
	msb202211099-bib-0014
	msb202211099-bib-0015
	msb202211099-bib-0016
	msb202211099-bib-0017
	msb202211099-bib-0018
	msb202211099-bib-0019
	msb202211099-bib-0020
	msb202211099-bib-0021
	msb202211099-bib-0022
	msb202211099-bib-0023
	msb202211099-bib-0024
	msb202211099-bib-0025
	msb202211099-bib-0026
	msb202211099-bib-0027
	msb202211099-bib-0028
	msb202211099-bib-0029
	msb202211099-bib-0030
	msb202211099-bib-0031
	msb202211099-bib-0032
	msb202211099-bib-0033
	msb202211099-bib-0034
	msb202211099-bib-0035
	msb202211099-bib-0036
	msb202211099-bib-0037
	msb202211099-bib-0038
	msb202211099-bib-0039
	msb202211099-bib-0040
	msb202211099-bib-0041
	msb202211099-bib-0042
	msb202211099-bib-0043
	msb202211099-bib-0044
	msb202211099-bib-0045
	msb202211099-bib-0046
	msb202211099-bib-0047
	msb202211099-bib-0048
	msb202211099-bib-0049
	msb202211099-bib-0050
	msb202211099-bib-0051
	msb202211099-bib-0052
	msb202211099-bib-0053
	msb202211099-bib-0054
	msb202211099-bib-0055
	msb202211099-bib-0056
	msb202211099-bib-0057
	msb202211099-bib-0058
	msb202211099-bib-0059
	msb202211099-bib-0060
	msb202211099-bib-0061
	msb202211099-bib-0062
	msb202211099-bib-0063
	msb202211099-bib-0064
	msb202211099-bib-0065
	msb202211099-bib-0066
	msb202211099-bib-0067


