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Polymorphism of the gene encoding mucin 1 (MUC1) is
associated with skeletal and dental phenotypes in human
genomic studies. Animals lacking MUC1 exhibit mild reduc-
tion in bone density. These phenotypes could be a consequence
of modulation of bodily Ca homeostasis by MUC1, as suggested
by the previous observation that MUC1 enhances cell surface
expression of the Ca2+-selective channel, TRPV5, in cultured
unpolarized cells. Using biotinylation of cell surface proteins,
we asked whether MUC1 influences endocytosis of TRPV5 and
another Ca2+-selective TRP channel, TRPV6, in cultured
polarized epithelial cells. Our results indicate that MUC1 re-
duces endocytosis of both channels, enhancing cell surface
expression. Further, we found that mice lacking MUC1 lose
apical localization of TRPV5 and TRPV6 in the renal tubular
and duodenal epithelium. Females, but not males, lacking
MUC1 exhibit reduced blood Ca2+. However, mice lacking
MUC1 exhibited no differences in basal urinary Ca excretion or
Ca retention in response to PTH receptor signaling, suggesting
compensation by transport mechanisms independent of
TRPV5 and TRPV6. Finally, humans with autosomal dominant
tubulointerstitial kidney disease due to frame-shift mutation of
MUC1 (ADTKD-MUC1) exhibit reduced plasma Ca concen-
trations compared to control individuals with mutations in the
gene encoding uromodulin (ADTKD-UMOD), consistent with
MUC1 haploinsufficiency causing reduced bodily Ca2+. In
summary, our results provide further insight into the role of
MUC1 in Ca2+-selective TRP channel endocytosis and the
overall effects on Ca concentrations.

Mucin 1 (MUC1) is a heavily glycosylated, single trans-
membrane protein, expressed at the apical surface of many
epithelial cells. Previous studies have demonstrated that
MUC1 enhances cell surface expression and electrical activity
of the Ca2+-selective channel, TRPV5, in vitro (1). In this
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article, we ask whether MUC1 influences subcellular locali-
zation of TRPV5 in vivo, whether MUC1 influences activity of
other Ca2+-selective ion channels (TRPV6), how MUC1 in-
fluences cellular trafficking of TRP channels, and whether
MUC1 deficiency exerts an in vivo influence on Ca2+

homeostasis.
Human observational studies suggest MUC1 could partici-

pate in Ca2+ homeostasis. Genetic analyses find an association
between MUC1 and numerous skeletal phenotypes including
heel bone mineral density (p = 1.4 × 10−13) (2), estimated bone
density from heel ultrasound (p = 1 × 3.9 × 10−11) (3), esti-
mated bone mineral density (2.1 × 10−6) (4), femoral neck bone
mineral density (1.5 × 10−4) (5), bone mineral density in older
people (4.8 × 10−4) (6), standing height (p = 1.5 × 10−7) (7),
childhood height (p = 1.6 × 10−4) (7), and need for dentures
(p = 4.2 × 10−10) (7). Urinary MUC1 excretion is associated
with the presence of hypercalciuria and calcium neph-
rolithiasis (1). Though these studies demonstrate an associa-
tion between MUC1 and traits that are influenced by Ca2+

homeostasis, this association does not explain how MUC1
could influence Ca2+ homeostasis.

One clue comes from the observation that MUC1 is
expressed in several epithelia that are specialized for trans-
cellular Ca2+ transport (8, 9). In the kidney, MUC1 is
expressed in the thick ascending limb, distal convoluted tu-
bule, connecting tubule, and collecting duct (10). The distal
convoluted tubule and connecting tubule participate in
transcellular Ca2+ absorption through the activity of transient
receptor potential cation channel subfamily V members 5 and
6 (TRPV5 and TRPV6, previously referred to as ECaC1 and
ECaC2, respectively). In the GI tract, TRPV6 and MUC1 are
coexpressed in duodenum, ileum, and colon, where trans-
cellular Ca2+ uptake also occurs (11, 12).

MUC1 physically interacts with TRPV5, as demonstrated by
the ability of these proteins to coimmunoprecipitate (1).
Furthermore, MUC1 enhances cell surface expression and
activity of TRPV5 in cultured fibroblasts. The ability of MUC1
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to increase cell surface expression of TRPV5 is dependent
upon a single N-glycan in TRPV5 (N358 in the human
ortholog) and upon expression of galectin-3, which is sug-
gested to physically mediate the interaction between MUC1
and TRPV5. The ability of MUC1 to enhance activity of
TRPV5 depends upon both dynamin and caveolin, suggesting
that MUC1 enhances cell surface expression of TRPV5 by
impairing endocytosis, at least in fibroblasts.

As the Asn residue in TRPV5 that is required for MUC1-
dependent upregulation of channel activity is conserved in
TRPV6, we also ask whether MUC1 influences subcellular
localization of TRPV6 in vivo. Further, does MUC1 influence
the rate of TRPV6 endocytosis in polarized epithelial cells
(Madin-Darby canine kidney cells, MDCK)?

We examine MUC1-deficient animals to determine whether
they exhibit altered Ca homeostasis. Finally, we evaluate Ca2+

levels in patients with MUC1 mutation causing autosomal
dominant, tubulointerstitial kidney disease (ADTKD-MUC1)
to determine whether MUC1 mutation results in hap-
loinsufficiency, causing reduced blood Ca2+ levels as compared
to control patients with autosomal dominant, tubulointerstitial
kidney disease due to mutation in UMOD, encoding uromo-
dulin (ADTKD-UMOD).
Results

MUC1 was previously shown to enhance cell surface
expression of TRPV5 in a dynamin and caveolin-1–dependent
fashion in fibroblasts, consistent with an influence on channel
endocytosis. We asked whether MUC1 enhances cell surface
expression of channels in polarized epithelial cells, using cell
surface biotinylation of proteins in MDCK cells with, and
without, stable overexpression of MUC1. We confirmed that
MUC1 enhances cell surface expression of TRPV5 in polarized
epithelial cells in culture (Fig. 1A). Stable expression of MUC1
in MDCK cells increased TRPV5 cell surface expression
(5.29 ± 0.71% with MUC1 versus 4.22 ± 0.45% without MUC1,
N = 4 for each, p < 0.05 by Student’s t test). The increase in
cell surface expression was associated with significantly
decreased rates of TRPV5 endocytosis in cells with MUC1
(p < 0.01 by two-way ANOVA).

The percentage of TRPV6 at the cell surface in the presence
of MUC1 (7.08 ± 2.89%, N = 10) was also significantly different
than in the absence of MUC1 (4.34 ± 2.18%, N = 8, p < 0.05 by
Student’s t test) (Fig. 1B). As with TRPV5, MUC1 significantly
retarded endocytosis of TRPV6 (p < 0.001 by two-way
ANOVA). In the presence of MUC1, endocytosis of these
channels resembles that of MUC1 itself. In contrast, MUC1
coexpression does not alter endocytosis rate of the endogenous
cell surface protein podocalyxin (Fig. 1C).

We used the patch-clamp technique in whole cell configu-
ration to evaluate the effect of MUC1 on TRPV6-mediated
currents. Calcium influx was detected by monitoring inward
currents at −80 mV during voltage ramps. Inwardly rectifying
currents were observed in TRPV6-expressing HEK293 cells in
the presence of 2 mM Ca2+ (Fig. 2), while no such currents
were detected in the absence of Ca2+ or in WT HEK293 cells
2 J. Biol. Chem. (2023) 299(3) 102925
(not shown). Consistent with the observed effect of MUC1 on
TRPV6 plasma membrane abundance, HEK293 cells coex-
pressing TRPV6 with MUC1 exhibited a 2.6-fold increase in
current density when compared with controls expressing
TRPV6 alone (p < 0.05 by Student’s t test).

Having confirmed thatMUC1slows endocytosis and enhances
cell surface expression of both TRPV5 and TRPV6 in polarized
cells in culture, we then asked whether MUC1 influences sub-
cellular localization of these channels in vivo. Kidney and duo-
denum sections from Muc1−/− or from Muc1+/+ littermate
control mice were immunostained for TRPV5 and TRPV6
(Fig. 3). In kidney, both TRPV5 and TRPV6 are redistributed
from the cell apex toward the cytoplasm in Muc1−/− mice (p <
0.0001 by Student’s t test for cytoplasm/apical staining for both
TRPV5 and TRPV6 in kidney). Similarly, in duodenum, apical
localization of TRPV6 is lost inMuc1−/− animals (p < 0.0001 by
Student’s t test for cytoplasm/apical staining).

TRPV5 and TRPV6 KO animals exhibit systemic Ca2+ deple-
tion as a consequence of impaired transcellular Ca2+ transport in
the intestine and kidney tubule (13, 14). We asked whether
Muc1−/− mice exhibit reduced whole blood concentrations of
Ca2+ and other electrolytes (Fig. 4 and Table 1). Blood Ca2+ levels
were significantly lower in female Muc1−/− mice (1.17 ± 0.06,
N = 6) than in Muc1+/+ females (1.23 ± 0.03, N = 10; p < 0.05).
Male mice had similar blood Ca2+ in Muc1+/+ (1.20 ± 0.03,
N = 13) versusMuc1−/− animals (1.20 ± 0.06, N = 12; p = NS).

To examine whether MUC1 deficiency causes urinary
wasting of Ca, we measured urinary Ca excretion (UCa

_V) of
mice in metabolic cages (Fig. 4). Over 3.5 h, Muc1+/+ mice
excreted 0.87 ± 0.35 μg/h/g body weight (N = 31) compared to
0.71 ± 0.27 (N = 27) in Muc1−/− mice (p = NS). No differences
were observed when mice were stratified on the basis of
sex: male WT littermates excreted 0.77 ± 0.27 (N = 18) and
Muc1−/− males excreted 0.73 ± 0.32 (N = 16, p = NS); female
WT littermates excreted 1.0 ± 0.41 (N = 13) and female
Muc1−/− mice excreted 0.67 ± 0.18 (N = 11, p = NS) μg/h/g
body weight. There were also no differences in urinary Na or K
excretion (not shown).

To examine whether Muc1−/− mice compensated for
reduced transcellular transport by upregulating active vitamin
D or parathyroid hormone (PTH) production, plasma
1,25(OH)2 vitamin D and PTH were measured in Muc1−/−

mice and in Muc1+/+ littermates. Plasma levels of 1,25(OH)2
Vitamin D did not differ in Muc1+/+ (103 ± 13 pg/ml, N = 16)
versus Muc1−/− mice (105 ± 17, N = 20; p = NS). No differ-
ences were observed after stratification of mice by sex. In
males, WT littermates exhibited plasma 1,25(OH)2 Vitamin D
of 108 ± 14 pg/ml (N = 8) compared to 114 ± 17 (N = 11; p =
NS). In females, levels in WT littermates were 98 ± 11 (N = 8)
compared to 95 ± 10 pg/ml (N = 9; p = NS). PTH levels were
not different in Muc1−/− versus littermate control mice.
Overall, PTH levels were 228 ± 86 pg/ml in littermate control
animals (N = 30) and 193 ± 33 in Muc1−/− animals (N = 24, p =
NS). In males, these were 250 ± 108 (N = 16) in littermates and
193 ± 33 (N = 15, p = NS) in Muc1−/− mice. In females, these
were 202 ± 41 (N = 14) and 193 ± 34 (N = 9, p = NS) in lit-
termates and Muc1−/− mice, respectively.
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Figure 1. MUC1 increases cell surface expression and decreases rates of endocytosis selectively for TRPV5 and TRPV6 in polarized epithelial cells.
A, cell surface expression and endocytosis of TRPV5 were examined. MDCK cells with, or without, stable expression of MUC1 were transiently transfected
with TRPV5-GFP. Cell surface proteins were labeled with membrane-impermeant sulfo-NHS-SS-biotin on ice and moved to a circulating water bath at 37 �C
for 0, 10, or 20 min. Cells were returned to ice, and surface biotin was stripped with MESNA. Cell lysates were incubated overnight at 4 �C with neutravidin-
conjugated beads. Beads were washed and proteins eluted in sample buffer with β-mercaptoethanol at 60 �C for 5 min before SDS-PAGE and
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currents were evoked by linear ramps from −100 to 70 mV from a holding
potential of −10 mV as described in Experimental procedures. B, typical
current traces are shown after maximal activation for HEK293 cells trans-
fected with TRPV6 or cells cotransfected with TRPV6 and MUC1. The dashed
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mediated whole cell currents measured at −80 mV. Cotransfection of
MUC1 resulted in increased TRPV6 current density (−63 ± 13 pA/pF, n = 6,
compared with controls expressing TRPV6 alone (−24 ± 4 pA/pF, n = 7)).
Data are presented as means ± SEM (*p < 0.05 by Student’s t test).

MUC1, TRPV5/V6, and calcium homeostasis
PTH upregulates TRPV5 cell surface expression by reducing
caveolin-1–mediated endocytosis of the channel (15). Because
MUC1 modulates endocytosis of TRPV5 and TRPV6 in
cultured cells, responsiveness ofMuc1−/− mice to a stable PTH
analog (teriparatide, TPT) as compared to vehicle (normal
saline solution, NSS) was examined (Fig. 5.) In both genotypes,
TPT accelerated urinary phosphorus excretion (UPhos

_V, p <
0.0001) while delaying urinary Ca excretion (UCa

_V, p <
0.0001) compared to excretion rates following NSS alone. The
genotype-treatment interaction term was not significant by
mixed effects modeling (p = NS). TPT acutely increases blood
Ca2+, predominantly by increasing bone turn-over (16). Dif-
ferences in blood Ca2+ could influence Ca2+ filtration and
UCa

_V. Additional mice were treated with TPT and sacrificed to
confirm that TPT had similar effects on blood Ca2+ inMuc1+/+

and Muc1−/− mice. Blood Ca2+ was similar in TPT-treated
Muc1+/+ (1.35 ± 0.05 mmol/l; N = 19) and Muc1−/− (1.38 ±
0.06 mmol/l; N = 12; p = NS) mice.

To examine whether MUC1 influences Ca homeostasis in
humans, plasma Ca was assessed in individuals with one
working copy of MUC1. Autosomal dominant tubulointer-
stitial kidney disease can occur as a consequence of a frame-
shift mutation in MUC1 (ADTKD-MUC1) or mutation in
the gene encoding uromodulin (UMOD, ADTKD-UMOD)
(17). Both result in the slow progression of interstitial
fibrosis, with indolent loss of glomerular filtration with mean
age of end stage kidney disease in the fifth decade of life.
immunoblotting for either TRPV5 with anti-GFP antibodies or for MUC1 with an
of TRPV5-GFP were the result of the overnight incubation at 4 �C and not indica
included for the quantification of TRPV5-GFP. Time 0 represents basal cell surfa
*p < 0.05 by Student’s t test). Endocytosis time-courses (N = 3) show that MUC1
TRPV5 in the presence of MUC1 did not differ significantly from that of MU
expression and endocytosis time-course of TRPV6 with, and without, coexpres
anti-TRPV6 or anti-MUC1 cytoplasmic tail antibodies. Time 0–biotinylated TRPV
(63%, *p < 0.05 by Student’s t test). MUC1 coexpression significantly reduced T
the presence of MUC1 did not differ significantly from that of MUC1 itself
endogenous protein, podocalyxin, in MDCK cells is no different in the presence
blots are shown for each analysis. Error bars represent SD of the mean. MDCK
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Plasma total Ca levels (ionized Ca2+ plus nonionized, as is
commonly measured in clinical laboratories) were compared
from individuals genetically determined to have either
ADTKD-MUC1 or ADTKD-UMOD. Only individuals with a
glomerular filtration rate of at least 60 ml/min were examined.
Overall, plasma Ca was lower in individuals with ADTKD-
MUC1 than with ADTKD-UMOD (Fig. 6). ADTKD-UMOD
patients exhibited Ca of 9.58 ± 0.38 mg/dl (N = 72),
compared to 9.41 ± 0.40 in ADTKD-MUC1 patients (N = 73;
p < 0.01 by Student’s t test). After stratification on the basis of
sex, lower serum Ca concentrations remained significant in
women but not men. Men with ADTKD-UMOD exhibited Ca
of 9.70 ± 0.43 (N = 27), compared to men with ADTKD-
MUC1, who had Ca of 9.50 ± 0.40 (N = 33; p = NS). In
women, those with ADTKD-UMOD had Ca of 9.51 ± 0.32
(N = 45) as compared to 9.34 ± 0.40 in those with ADTKD-
MUC1 (N = 40; p < 0.05).
Discussion

Findings presented above add to evidence demonstrating a
role for MUC1 in Ca2+ homeostasis. (i) Muc1−/− mice exhibit
reduced apical localization of both TRPV5 and TRPV6, which
are critical for transcellular Ca2+ absorption in renal tubules
and intestines. (ii) Muc1−/− mice exhibit lower blood Ca2+.
Interestingly, Muc1−/− mice exhibited no difference in urinary
Ca2+ excretion. This could reflect a state of Ca homeostasis,
albeit with lower systemic Ca stores. (iii) A previous study
found mild reduction in bone density in Muc1−/− mice (18).
Osteoblast and osteoclast function appeared normal in
Muc1−/− mice, and no compelling mechanism for the bone
phenotype was described. Altered Ca2+ handling was not
examined but provides a good explanation for the observed
bone phenotype. (iv) A common MUC1 polymorphism
(rs4072037) is associated with altered bone density in humans
(19, 20). (v) Patients with ADTKD-MUC1, who have a frame-
shift–inducing mutation in MUC1, exhibit lower levels of
circulating Ca2+ than individuals with ADTKD-UMOD. This
is somewhat surprising, given that UMOD contributes to
mineral transport in the thick ascending limb, including
through support of NKCC2 activity (21). Because pharmaco-
logic impairment of NKCC2 activity induces urinary Ca2+

wasting (22, 23), reduced NKCC2 activity in ADTKD-UMOD
might be expected to reduce blood Ca2+. The observation that
blood Ca2+ levels in ADTKD-MUC1 are lower is consistent
with Ca2+ depletion through reduced cell surface localization
of Ca2+-selective channels, though other mechanisms could
contribute. The difference in blood Ca2+ observed in these
ti-cytoplasmic tail (CT2) antibodies. Differences in the oligomerization state
tive of changes in situ (see Fig. S1). Therefore, all oligomerization states were
ce expression of TRPV5. MUC1 increased TRPV5 cell surface expression (28%,
reduces TRPV5 endocytosis (**p < 0.01 by two-way ANOVA). Endocytosis of
C1 itself. Representative blots are shown for each analysis. B, cell surface
sion with MUC1 were examined as in (A). Blots were developed with rabbit
6 demonstrated increased basal cell surface TRPV6 in the presence of MUC1
RPV6 endocytosis (***p = 0.001 by two-way ANOVA). Endocytosis of TRPV6 in
. Representative blots are shown for each analysis. C, endocytosis of an
or absence of MUC1 expression (p = NS by two-way ANOVA). Representative
, Madin-Darby canine kidney.
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patients is mild, and hypocalcemia is not a recognized feature
of ADTKD-MUC1. No published data address whether pa-
tients with ADTKD-MUC1 are at increased risk of bone dis-
ease associated with their chronic kidney disease.

Given the robust difference in TRP channel localization
observed in vivo in kidney and duodenum, it is surprising that
the measured parameters of Ca homeostasis—blood Ca2+,
urine Ca excretion, PTH, and 1,25 (OH)2 vitamin D—are not
more dramatically altered. Even the decrement in bone
represents 95% confidence interval of line scans (N = 3 animals per genoty
divergence of line scans within the cytoplasmic region, indicating more TRPV
cytoplasm/apical staining intensity, as calculated from arbitrarily chosen cytoso
Muc1−/− mice (N = 3 animals per genotype, n = 147 cells for Muc1+/+ mice; n
subcellular localization in mouse kidney. Red represents TRPV6 staining. Pane
staining intensity is shifted away from the cell apex, toward cytoplasm (N = 3 an
mice). Adjacent panel shows cytoplasm/apical TRPV6 staining in tubular epithe
animals per genotype, n = 184 cells for Muc1+/+ mice; n = 270 cells for Muc1−

staining is also shifted toward cytoplasm in Muc1−/− mice. Line scans and cyto
individual villi per duodenum from a total of three mice from each genotype
cytoplasm/apical staining both show a shift of TRPV6 staining away from cell
test). In all images, gray scale bars represent 10 μm. Error bars represent SD o
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mineralization previously observed in Muc1−/− mice is rela-
tively minor compared to the decrease in bone density that is
observed in TRPV5−/− or TRPV6−/− mice as a consequence of
systemic Ca depletion (13, 14, 18). There is also no evident
divergence in bone density in Muc1−/− mice compared with
controls, as a function of age (18). All this suggests compen-
satory measures independent of these Ca2+-selective channels.
It is possible that dietary stressors, such as prolonged Ca
depletion, could reveal a more significant phenotype.
pe; n = 251 cells for Muc1+/+ mice; n = 332 cells for Muc1−/− mice). Note,
5 staining in the cytosol in Muc1−/− mice. Second panel represents mean
lic and apical cell regions. Cytoplasm/cell apex staining of TRPV5 is greater in
= 192 cells for Muc1−/− mice; ****p < 0.0001 by Student’s t test). B, TRPV6
l below shows the mean of line scans of TRPV6 staining intensity. TRPV6
imals per genotype, n = 180 cells for Muc1+/+ mice; n = 380 cells for Muc1−/−

lial cells. Cytoplasm/apical TRPV6 staining is greater in Muc1−/− mice (N = 3
/− mice; ****p < 0.0001 by Student’s t test). C, duodenal epithelium TRPV6
plasm/apical staining were examined from 5 to 10 cells per villus in 9 to 10
(n = 45 cells for Muc1+/+ mice; n = 48 for Muc1−/− mice). Line scans and

apex, toward the cytoplasm in Muc1−/− mice (****p < 0.0001 by Student’s t
f the mean. DCT, distal convoluted tubule.



Table 1
Blood electrolytes

Sex All Male Female

Genotype +/+ −/− +/+ −/− +/+ −/−

Na+ 145 ± 1 (23) 145 ± 2 (17) 146 ± 1 (14) 145 ± 2 (11) 145 ± 2 (9) 145 ± 2 (6)
K+ 4.6 ± 0.6 (23) 4.6 ± 0.2 (17) 4.7 ± 0.5 (14) 4.7 ± 0.2 (11) 4.5 ± 0.6 (9) 4.6 ± 0.3 (6)
Cl− 112 ± 2 (17) 112 ± 2 (17) 112 ± 3 (8) 111 ± 2 (11) 113 ± 2 (9) 113 ± 2 (6)
BUN 28 ± 4 (17) 27 ± 5 (17) 28 ± 3 (8) 27 ± 6 (11) 29 ± 4 (9) 26 ± 5 (6)

Cells show mean values (N). Na, K, and Cl units are in mmol/l. BUN: blood urea nitrogen, in mg/dl. No pairwise Muc1+/+ versus Muc1−/− comparisons were statistically significant
by Student’s t test.

MUC1, TRPV5/V6, and calcium homeostasis
These data support a model in which transcellular Ca2+

transport is modulated by an extracellular protein lattice
including MUC1, galectins, and ion channels that promotes
cell surface expression of ion channels by opposing endocy-
tosis. MUC1 enhances cell surface expression of TRPV5 in
polarized epithelial cells in culture and increases apical
expression of TRPV5 in vivo, consistent with previous findings
that MUC1 promotes cell surface expression of the channel in
fibroblasts (1). TRPV5 and its more broadly expressed ho-
molog, TRPV6, share a conserved extracellular Asn residue
(N438 in human TRPV5) that is N-glycosylated and is
necessary for binding to galectin-3. TRPV5 exhibits galectin-
binding selectivity, interacting with galectin-3, but not
galectin-1. TRPV6 also depends upon MUC1 in vivo for apical
expression. Galectin-3, through its pentameric C-terminal
carbohydrate recognition domains, binds to extracellular gly-
cans on numerous extracellular proteins (24). Among these are
MUC1 and MUC2 (25). For its part, MUC1 function is also
selective. It binds preferentially with galectin-3 and galectin-9
but less to galectin-1, -4, -7, or -8 (26). This specificity is
underscored by the finding that MUC1 selectively reduces
endocytosis of TRPV5 and TRPV6, while exerting no influence
on podocalyxin. Podocalyxin (gp135) is a cell surface protein
that interacts with galectin 8, but not galectin-1, -3, or -9 (27).
Like MUC1, uromodulin promotes cell surface expression of
TRPV5 by opposing channel endocytosis, through mecha-
nisms that may resemble those seen for MUC1 and TRPV5
(28). All of these observations suggest that an extracellular
lattice including MUC1, galectin-3, and TRPV5 and TRPV6
contributes to transcellular calcium transport.
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The importance of this network in mammalian physiology is
suggested by the observation that multiple genetic compo-
nents originated in concert as mammals diverged from their
ancestors. Mucins originated in early metazoans (29), but
MUC1 arose in the earliest mammals from a precursor similar
to MUC5 (30). TRPV5 and V6 arose when a common ancestral
gene underwent duplication, also with the earliest mammals
(31). Thus, it appears that these proteins play an important
role in mammalian Ca physiology.

In what ways this extracellular glycoprotein network may be
regulated to maintain Ca2+ balance remains a significant
question. PTH enhances cell surface expression of TRPV5 by
inhibiting its caveolin-1–mediated endocytosis (15). Because
MUC1 also influences endocytosis of the channel, we pre-
dicted that Muc1−/− mice would exhibit diminished Ca2+

retention in response to PTH receptor activation. However,
this was not observed, perhaps because other Ca2+ handling
effects, such as paracellular Ca2+ reabsorption, predominated
over the short course of this experiment.

In summary, the mucin MUC1 reduces endocytosis of the
Ca-selective TRP channels TRPV5 and TRPV6 and promotes
cell surface localization of these channels in vivo, contributing
positively to Ca2+ homeostasis.
Experimental procedures

Endocytosis assays

MDCK (MDCK 2001) cells were obtained from Kai Simons
in the European Molecular Biology Laboratory in Heidelberg.
Cells were grown in Dulbecco’s modified Eagle’s medium-
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tubulointerstitial kidney disease due toMUC1mutation (ADTKD-MUC1)
than in control individuals with autosomal dominant tubulointerstitial
kidney disease due to UMOD mutation (ADTKD-UMOD). Violin plots
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Nutrient Mixture F-12 (D6421) supplemented with 5% fetal
bovine serum (Gibco/Thermo Fisher Scientific) and maintained
at 37 �C in 5% CO2. Preparation of the MDCK cell line stably
transfected with human MUC1 with 22 tandem repeats
(MDCK-MUC1) was previously described (32). MDCK-MUC1
cells or nontransfected MDCK cells were plated at confluency
on 12-well plastic dishes and transfected with EGFP-TRPV5 or
TRPV6-Flag the following day using Lipofectamine 2000
(Invitrogen, Thermo Fisher Scientific). Plasmids encoding GFP-
TRPV5 (rabbit) and TRPV6-Flag (human) were kindly provided
by Chou-Long Huang (University of Iowa) and Ji-Bin Peng
(University of Alabama at Birmingham), respectively. The
TRPV6 cDNA was subsequently moved to pCDNA3 (Sigma-
Aldrich). Endocytosis of proteins in MDCK cells was carried
out as previously described (33). Briefly, cells were treated with
membrane-impermeant sulfo-NHS-SS-biotin on ice and moved
to a circulating water bath at 37 �C for 0, 10, or 20 min. Cells
were returned to ice and surface biotin was stripped with
MESNA. Cells were scraped and extracted in detergent with
protease inhibitors and phosphatase inhibitors and incubated
overnight at 4 �C with neutravidin-conjugated beads. Beads
were washed and proteins eluted in sample buffer with
β-mercaptoethanol at 60 �C for 5 min before SDS-PAGE and
Table 2
Antibodies used

Experiment Antigen Conjugation Anim

Immunoblotting GFP Rabb
TRPV6 Rabb
MUC1 C-terminus (CT2) Arm
podocalyxin Mou

Immunofluorescence
microscopy

TRPV5 Rabb

Rabbit IgG Cy3 Goat
Parvalbumin Guin
Guinea Pig IgG Alexa-488 Goat
TRPV6 Rabb

8 J. Biol. Chem. (2023) 299(3) 102925
immunoblotting for either TRPV5, TRPV6, MUC1, or endog-
enous podocalyxin (see Table 2). Rabbit anti-GFP antibody
(Invitrogen) was used for GFP-TRPV5 (dilution 1:4000). Rabbit
anti-TRPV6 antibody was from Alomone Labs (dilution
1:1000). Armenian hamster anti-MUC1 cytoplasmic tail anti-
body CT2 was a gift from Sandra J. Gendler at Mayo Clinic
(dilution 1:1000) (34). Mouse anti-podocalyxin antibodies 3F2/
D8 (cell culture supernatant) were from Developmental Studies
Hybridoma Bank (dilution 1:33). Secondary HRP-tagged anti-
bodies were from Jackson Labs (dilution 1:10,000). Blots were
developed using Bio-Rad Clarity ECL reagent (3 min) and a Bio-
Rad Chemidoc. Data were quantified with Quantity One 4.6.6
software (https://www.bio-rad.com/en-us/product/quantity-
one-1-d-analysis-software?ID=1de9eb3a-1eb5-4edb-82d2-68
b91bf360fb).
Patch-clamp electrophysiology

HEK293-H cells were cultured with 5% CO2 at 37 �C in
Dulbecco’s modified Eagle’s Medium supplemented with 10%
fetal calf serum, 1% penicillin/streptomycin, and 1% minimal
essential medium nonessential amino acids. They were seeded
on 8-mm-diameter round glass cover slips coated with poly-L-
lysine and transfected using lipofectamine 2000 (Invitrogen),
with 2 μg of TRPV6 and 2 μg of pIRES empty vector [GFP
alone], or with 2 μg of TRPV6, 1 μg of pIRES empty vector, and
1 μg of MUC1. The total amount of plasmid DNA was held
constant at 4 μg. The following day, cells were transferred to a
chamber mounted on the stage of a Nikon inverted micro-
scope equipped with light-emitting diodes (Thorlabs) for
identification of GFP-expressing cells. Voltage clamp experi-
ments were performed with a PC-505B patch-clamp amplifier
(Warner Instruments), as described previously (35–38). Mi-
cropipettes were pulled from borosilicate glass capillary tubes
(Warner Instruments) with a PP-830 puller (Narishige). Fire-
polished micropipettes with a tip resistance of 1.5 to 3 MΩ
were used for patch-clamp recordings. Command protocols
and data acquisition were controlled by pClamp 10 (Molecular
Devices). Signals were low-pass filtered at 1 kHz (4-pole Bessel
filter) and digitized with a Digidata 1440A interface at 5 kHz
(Molecular Devices). Whole cell recordings from HEK293-H
cells were obtained at room temperature by mechanical
rupture of the cell membrane in the cell-attached mode.
Capacitance of the cell membrane was measured using the cell
test in pClamp 10. The whole cell capacitance was then
al of origen Source Catalog no. Dilution

it Invitrogen A11122 1:4000
it Alomone ACC-036 1:1000
enian hamster Sandra J. Gendler (15) 1:2000
se DSHB 3F2/D8 1:33
it Alomone ACC-035 1:50

1:800
ea Pig 1:100

1:400
it Alomone Labs Cat #: ACC-036 1:50

https://www.bio-rad.com/en-us/product/quantity-one-1-d-analysis-software?ID=1de9eb3a-1eb5-4edb-82d2-68b91bf360fb
https://www.bio-rad.com/en-us/product/quantity-one-1-d-analysis-software?ID=1de9eb3a-1eb5-4edb-82d2-68b91bf360fb
https://www.bio-rad.com/en-us/product/quantity-one-1-d-analysis-software?ID=1de9eb3a-1eb5-4edb-82d2-68b91bf360fb
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compensated with the amplifier. Patch pipette filling solution
contained (in mM) 140 NMDG, 1 MgCl2, 20 EGTA, and 10
Hepes, adjusted to pH 7.2 with HCl. The standard bath solu-
tion was composed of (in mM) 138 NaCl, 5 KCl, 1 MgCl2, 2
CaCl2, and 10 Hepes, adjusted to pH 7.4 with NaOH. Divalent
cation-free (DVF) solution contained (in mM) 147 NMDG, 15
D-glucose, 10 Hepes, adjusted to pH 7.4 with HCl. After whole
cell configuration was obtained in standard solution, cells were
initially bathed in DVF solution for 5 min to allow proper
dialysis of the cell interior. During recordings, the bath solu-
tion was replaced by a DVF solution supplemented with 2 mM
CaCl2. Solutions were delivered by continuous perfusion with
a gravity-fed delivery system. Currents were monitored using
ramp commands (−110 mV to +70 mV in 500 ms) applied
every 5 s at a holding potential of −10 mV between ramps. All
reported currents were normalized by cell capacitance and
expressed as current density (pA/pF).

Animal care

Mice were housed at the University of Pittsburgh Depart-
ment of Laboratory Animals. Experimental procedures were
approved by the University of Pittsburgh Institutional Animal
Care and Use Committee. Mice were propagated in the C57Bl/
6J background. All experimental mice were the product of
crosses between male and female Muc1+/− mice. Genotyping
was performed as previously described (39). All Muc1+/+

(control) mice were littermate controls. Mice were fed Prolab
Isopro RMH 3000, LabDiet chow (1.09% Ca2+, 0.24% Mg2+,
0.94% K+, and 0.23% Na+) and water purified by reverse
osmosis. They were maintained on a 12 h/12 h light/dark cycle.

Urine collection was performed as follows: to ensure voiding
and to prevent volume depletion, animals were first injected
with 7.5% (volume/body weight) sterile NSS and then placed in
a metabolic cage. Urine voided in the first 30 min was dis-
carded. Urine was then collected over the next 3.5 h. Animals
were sacrificed, and bladder urine was aspirated and combined
with urine collected in metabolic cages.

At time of sacrifice, mice underwent nonsurvival surgery
under isoflurane anesthesia to collect blood, kidney, and du-
odenum specimens.

To examine urinary response to PTH receptor activation,
mice were injected with the stable PTH analog, TPT. Mice
were given an injection of vehicle alone (5% volume/body
weight NSS, i.p.), and urine was collected in metabolic cages as
six 1-h fractions. Two days later, mice were again injected with
5% body weight NSS, this time with 150 μg/kg TPT. Urine was
again collected in metabolic cages as six 1-h fractions to assess
urinary excretion of Na, phosphorus, and Ca.

Immunofluorescence confocal microscopy

Kidney or duodenum was placed in 4% paraformaldehyde in
PBS for 16 h at 4 �C. After cryoprotecting the slices by im-
mersion in 30% sucrose in PBS-0.02% azide, 5 μm thick cry-
osections were prepared as described previously (40, 41).
Immunofluorescence labeling was subsequently performed
using rabbit TRPV5 or TRPV6 antibody, followed by a
secondary goat anti-rabbit antibody coupled to Cy3 (Table 2).
Immunolabeled tissues were mounted in VECTASHIELD
mounting medium (Vector Laboratories) and imaged in a
confocal laser scanning microscope (Leica TCS SP5, Model
upright DM 6000S, Leica Microsystems Inc) using a 63×
objective with identical laser settings for all samples. Immu-
nofluorescence images were analyzed using Fiji (https://imagej.
net/software/fiji/downloads), by investigators blinded to ge-
notype (42). Signal intensity was measured along the length of
lines drawn from the tubular or intestinal lumen, across the
cell surface and into the cytoplasmic space (avoiding nuclei).
Resulting line scans were normalized to maximum height and
then averaged for comparison between genotypes using Igor
Pro software (Wavemetrics, Inc; wavemetrics.com). Direct
comparison of cytoplasmic/apical staining intensity was per-
formed in Fiji by drawing boxes of arbitrary size within the
cytoplasmic space and across the region of peak staining in-
tensity at the cell apex.

Metabolite measurement

Whole blood electrolytes were measured using an iSTAT
blood analyzer (Abbott). Plasma 1,25(OH)2 vitamin D was
measured through the Charles and Jane Pak Center for Min-
eral Metabolism and Clinical Research at UT Southwestern
Medical Center. PTH was measured from plasma separated
from whole blood by centrifugation at 4 �C in EDTA-
containing tubes, flash-frozen in liquid nitrogen, and stored
at −80 �C. Plasmas were thawed on ice, and PTH levels were
measured in plasma diluted 1:5 using a mouse PTH ELISA
(MyBioSource). Urine Na, Ca, and phosphorus were measured
in samples diluted in 2% nitric acid using a PerkinElmer
NeXION 300× inductively coupled mass spectrometer. Stool
Ca2+ measurement was performed by ICP-MS following mi-
crowave assisted extraction in 6% nitric acid (Center for
Applied Isotope Studies, University of GA).

Human subjects

Human data for the current study were provided by the
Wake Forest Rare Inherited Kidney Disease Registry, as
approved by the Wake Forest School of Medicine Institutional
Review Board, in adherence with the Declaration of Helsinki
(15). MUC1 sequencing was performed either at the Broad
Institute using mass spectrometry–based probe extension (16)
or at the Charles University, using Illumina and SMRT
methods (17). Plasma creatinine and total Ca levels were
measured using standard clinical methods at the Wake Forest
Baptist Health clinical pathology laboratory. For each indi-
vidual, an average Ca and eGFR value was calculated based on
the first three available measurements. Individuals were
excluded if they had mean eGFR less than 60 ml/min or had
nonphysiologic eGFR (greater than 200 ml/min) or Ca2+

(greater than 12 mg/dl or less than 8 mg/dl).

Statistics

Statistical comparisons were performed in GraphPad Prism,
version 9.4.0 (graphpad.com). Outliers were identified using
J. Biol. Chem. (2023) 299(3) 102925 9
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the ROUT method (Q = 1%) and excluded prior to statistical
analysis. Specific statistical tests used are described in figure
legends.
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