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Abstract

Metabolism and inflammation have been viewed as two separate processes with distinct 

but critical functions for our survival: metabolism regulates the utilization of nutrients, 

and inflammation is responsible for defense and repair. Both respond to an organism’s 

stressors to restore homeostasis. The interplay between metabolic status and immune response 

(immunometabolism) plays an important role in maintaining health or promoting disease 

development. Understanding these interactions is critical in developing tools for facilitating novel 

preventative and therapeutic approaches for diseases, including cancer. This trans—National 

Institutes of Health workshop brought together basic scientists, technology developers, and 
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clinicians to discuss state-of-the-art, innovative approaches, challenges, and opportunities to 

understand and harness immunometabolism in modulating inflammation and its resolution.

The “Metabolic Regulation of Inflammation and Its Resolution” 

virtual meeting (https://www.eventbrite.com/e/metabolic-regulation-of-inflammation-and-

its-resolution-tickets-141464507149), organized by the Trans-NIH (National Institutes of 

Health) Chronic Inflammation Working Group, was held on June 2830, 2021. Metabolic 

changes in the immune system play a central role in multiple diseases. In obesity, 

nutrient overload activates inflammatory responses in adipose tissue, skeletal muscles, 

and other organs, contributing to systemic insulin resistance and diabetes (1). Interest in 

immunometabolism as a source of new cancer therapeutics has exploded recently, largely 

fueled by studies of tryptophan catabolism mediated by indoleamine-2,3-dioxygenase and 

tryptophan-2,3-dioxygenase enzymes and their roles in immunosuppression. Data suggest 

indoximod (an indoleamine-2,3-dioxygenase/tryptophan-2,3-dioxygenase inhibitor) safely 

enhances chemotherapy, chemoradiotherapy, immune checkpoint therapy, and vaccines (2). 

During the workshop, participants addressed major questions in the field by providing their 

research insights, and they identified common gaps and challenges to advance the field.

Trained immunity and chronic inflammation

George Hajishengallis opened the meeting with a keynote on trained immunity. Growing 

evidence supports the concept of long-term, innate immune memory during which an 

inflammatory challenge elicits an enhanced response upon a secondary challenge. Such 

responses have been observed in invertebrates and plants that lack adaptive immunity. 

Innate memory is associated with changes in intracellular metabolism and the epigenetic 

landscape (3). However, the short life span of circulatory myeloid cells presents a paradox 

in that it appears to be inconsistent with the long-term effects of trained immunity on 

circulating myeloid cells. Although trained immunity includes multiple beneficial outcomes, 

the increased production of myeloid cells with robust immune responsiveness may enhance 

inflammation and exacerbate diseases (4) in response to high-fat diets (5) and periodontitis-

associated comorbidities (3).

Metabolic effects on immune cells

Metabolic modulation can affect phenotypes and functions of immune cells. Partha Biswas 

explained that neutrophils are critical for antifungal immunity, and neutropenia is a 

significant risk factor for disseminated candidiasis, a common hospital-acquired infection 

in patients with kidney disease (6). Neutrophils are metabolically unique, short-lived, 

and terminally differentiated. They rely on glycolysis and pentose phosphate pathways 

for their function. Neutrophil glycolysis is disrupted under uremic conditions, leading 

to lower cellular production of nicotinamide adenine dinucleotide phosphate (NADPH), 

disrupting their reactive oxygen species (ROS) production and fungicidal activities in 

kidneys. Neutrophil function can be restored using lithium chloride, a glycogen synthetase 

kinase 3b inhibitor that allows for ROS production (6). Bart Everts described how dendritic 

cell (DC) activation and T cell priming require a switch from catabolic to anabolic states. 

Glycolysis supports the anabolic demands of proinflammatory DC function (7), which is 
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required for potent T cell priming; DC catabolism is linked to priming of regulatory T 

cells. Key upstream regulators of DC metabolism are mammalian target of rapamycin and 

AMP-activated protein kinase, which promote anabolism and catabolism, respectively (8). 

Munir Akkaya explained how the metabolic clock controls B cell function in balancing its 

defensive versus self-preservation act. B cells play a critical role in producing protective 

Abs. When challenged by Ags binding to BCR, B cells activate a metabolic program 

that leads to mitochondrial dysfunction and cell death. Increased glucose import and 

oxygen consumption rate are critical in supporting B cell activation (9); however, the 

precise mechanism by which these metabolic pathways influence B cell stimulation remains 

unknown (10). Jan Van den Bossche investigated how metabolic reprogramming regulates 

macrophages in pathological conditions. Metabolic enzymes such as ATP citrate lyase 

(ACLY) link carbohydrates to lipid metabolism and are essential regulators of macrophages 

during atherosclerosis and inflammation (11). Mice with ACLY-deficient myeloid cells 

develop a more stable atherosclerotic plaque, and targeting ACLY in macrophages may have 

therapeutic potential for cardiovascular diseases (CVDs) (12).

Metabolic effects on inflammatory pathways

Speakers highlighted how metabolic modulation in inflammation can affect signaling 

pathways associated with and responsible for disease progression and treatment response. 

Jennifer Estall reported the impact of mitochondrial dysfunction on metabolic disease 

via organ cross-talk. Transcriptional coactivator peroxisome proliferator-activated receptor-

γ coactivator-1α is the master regulator of mitochondrial biogenesis and function, 

coordinating the balance between metabolism and apoptosis during hepatic inflammation. 

Peroxisome proliferator activated receptor-γ coactivator-1α controls nutrient metabolism 

gene programs and mitochondrial biology and attenuates hepatocyte apoptosis in response to 

TNF-α or LPS (13). Santosh Vardhana examined the relationship between T cell exhaustion 

and metabolic stress. He noted that metabolites regulate immune cell homeostasis within the 

tumor microenvironment (14). Overstimulation by pathogens or malignant tumors renders 

exhausted T cells unable to clear infections or tumors. Changes in T cell metabolism in the 

tumor microenvironment reverse T cell exhaustion (15). Heather Francis described how mast 

cells may promote nonalcoholic fatty liver disease (NAFLD), a disease that increases risks 

for nonalcoholic steatohepatitis (NASH). Mast cells infiltrate the liver during cholestatic 

injury and cause liver damage, leading to increased serum histamine levels in patients 

with NAFLD or NASH. miR-144–3p/ALDH1A3 might be responsible for transition of 

NAFLD to NASH (16). Juhi Bagaitkar presented how leukocyte NADPH oxidases regulate 

neutrophilic inflammation at the oral mucosal barrier (17). NADPH oxidase deficiency 

promotes G-CSF–regulated neutrophilic responses and prolonged inflammation, whereas 

NADPH-derived ROS are essential in regulating various aspects of neutrophil functions 

(18).

Role of immunometabolism in disease

Keynote speaker Gokhan Hotamisligil opened the second day by discussing the role of 

immunometabolism in disease and how common metabolic mechanisms may determine 

outcomes of obesity, diabetes, fatty liver disease, CVDs, and some cancers. Homeostasis 
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is the result of highly integrated interactions between metabolic and immune responses, 

and maladaptation of these responses results in disease. In 1983, Pekala et al. (19) 

connected inflammatory cytokines with insulin resistance and showed that products of 

activated macrophages blocked insulin action. Genetic models of obesity reveal that 

blocking inflammatory cytokines inhibits inflammatory responses and restores insulin 

action in tissues. Macrophages in adipose tissue of obese animals produce TNF-α and 

other inflammatory mediators, leading to insulin resistance. TNF-α contributes to insulin 

resistance by inducing phosphorylation of the insulin receptor substrate 1, which converts 

insulin receptor substrate 1 into an insulin receptor inhibitor. TLR and cytokine receptor 

signaling induce stress signals that interfere with insulin action (20).

Nutrient overload and excess cholesterol induce stress in the endoplasmic reticulum (ER), 

the immunometabolic hub of the cell (20). Failure of the ER’s adaptive capacity causes 

activation of the unfolded protein response, which induces an inflammatory cycle resulting 

in organelle failure during diabetes and NAFLD/NASH. Other specialized molecules in 

the ER are dedicated to organelle metabolic homeostasis. Nrf1, a transcriptional mediator, 

protects the ER against intracellular cholesterol accumulation by sensing and binding 

to excess cholesterol in the liver and brown adipose tissue, and pathway dysfunction 

leads to metabolic deterioration and disease (21, 22). Obesity and stress disrupt cellular 

architecture because chronic excess of nutrients leads to abnormal ER morphology and 

organization in tissues. The ER functional disruption centers around calcium homeostasis. 

These molecular mechanisms at the interface of immune response and adaptive metabolism 

may be targeted for prevention and treatment approaches for obesity, diabetes, and related 

metabolic diseases.

Novel immunometabolic approaches in combating coronavirus disease 

2019

This session focused on the roles of metabolic and inflammatory pathways in coronavirus 

disease 2019 (COVID-19) pathogenesis and explored potential interventional and 

therapeutic strategies. Gary Patti described a metabolic signature of blood biomarkers 

from patients with early COVID-19 that could be better predictive markers than body 

mass index and age for development of serious illness. Using untargeted metabolomics 

analysis of plasma samples from hundreds of patients over the course of their illness, 

combined with machine learning tools, Patti found that a group of 25 lysophosphatidyl 

cholines could predict the probability of a patient’s admission to the intensive care unit 

(23). Similarly, Bruce Hammock (24) used metabolomic analysis to study lipids in the 

arachidonic acid cascade with roles in the initiation and resolution of inflammation in 

blood samples from patients with COVID-19. He stated that although the cyclooxygenase 

and lipoxygenase pathways and their mediators are proinflammatory, the P450 pathway 

produces anti-inflammatory mediators that might be therapeutic targets (24). Monitoring 

lipid mediators, chemokines, and cytokines closely associated with the development of 

adult respiratory distress syndrome in the blood of patients with COVID-19, Hammock and 

colleagues (25) identified a signature of four highly elevated molecules: two leukotoxins 

and two regioisomeric leukotoxin diols of linoleic acid. Detecting plasma linoleate diols 
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identified patients with COVID-19 at high risk for early adult respiratory distress syndrome 

(26). Reducing diols by reducing linoleate in the diet or by blocking the epoxide hydrolase 

enzyme that forms inflammatory leukotoxin diols might have therapeutic value. Anne Marie 

Schmidt described how the receptor for advanced glycation end products (RAGE) pathway 

may explain increased COVID-19 severity among patients with obesity, patients with 

diabetes, and elderly patients. High levels of a soluble form of RAGE in plasma of patients 

with COVID-19 correlates with severe lung injury and decreased survival (27) and could 

be a therapeutic target (28). RAGE is expressed on macrophages and type 1 lung epithelial 

cells and is elevated in adipocytes and vascular tissues by obesity. Deletion of the Ager gene 

coding for RAGE protects mice from weight gain, insulin intolerance, and inflammation 

when exposed to a high-fat diet (29) and accelerates regression of atherosclerosis in Ldlr 

null mice, potentially via reduced expression of IRF7 in macrophages (30). RAGE is 

involved in both metabolism and the innate trained immune response. RAGE signaling is 

initiated via binding to Diaphanous 1 (31), which can be blocked with newly developed 

small molecules, a strategy being tested for treating patients with COVID-19. Marvin 

Slepian focused on the importance of thromboemboli in causing COVID-19related tissue 

ischemia, infarction, morbidity, and mortality. In patients with COVID-19, there is extensive 

local and systemic inflammation with tissue damage and release of prothrombotic mediators 

and hypercoagulability, leading to reduced blood flow and embolism. Around 20–30% of 

patients with COVID-19 experience development of clinically important thrombosis causing 

damage in many tissues (32). Platelets release cytokines that lead to a spiral of immune 

activation and cytokine storm (33, 34) and fuel the nucleotide-binding oligomerization 

domain, leucine-rich repeat and pyrin domain (NLRP) inflammasome activation of innate 

immune cells and IFNs, central to the response to severe acute respiratory syndrome 

coronavirus 2 (35).

Therapeutic and clinical implications of immunometabolism

Speakers shared their research findings illustrating how tissue microenvironment, nutrition, 

and lipid metabolism modulate immune cell behaviors and may be potential therapeutic 

targets. Greg Delgoffe described the metabolic profile of tumor-infiltrating T lymphocytes 

(TILs) and strategies for improving antitumor immunity. The metabolic landscape of 

the tumor microenvironment is a barrier to immunotherapy and causes TIL exhaustion. 

TILs experience overwhelming metabolic deficiencies, such as insufficient oxygen, when 

stimulated by persistent Ag in solid tumors (36, 37).

Naomi Taylor discussed metabolic regulation of T cell effector function and hematopoietic 

stem cell differentiation. Hematopoietic cells can acquire energy from different fuels, 

such as glucose or glutamine, with shifts in metabolites regulating the differentiation of 

erythroblasts and T cells. Inhibiting the alanine serine cysteine transporter 2 (ASCT2) 

glutamine transporter or downstream glutaminolysis diverts erythropoietin-signaled human 

hematopoietic stem cells to a myeloid cell fate (38, 39). T cell effector function and 

differentiation are regulated by nutrient transporters and utilization, allowing lymphocytes to 

meet increased energetic and biosynthetic demands (40).
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Ira Goldberg discussed the role of blood lipids in heart metabolism, with triglycerides (TGs) 

being the primary fuel for the heart. A human heart obtains most of its energy from the 

oxidation of long-chain fatty acids (FAs) from the hydrolysis of TG-rich lipoproteins via 

lipoprotein lipase and via uptake of albumin-bound FAs that originated from adipose TG 

stores. FAs derived from lipoprotein TGs are essential for cardiac lipid metabolism and gene 

regulation (41, 42).

Lev Becker discussed metabolic-epigenetic regulation of macrophage function through 

histone lactylation. Inflammation is needed for resolution of pathogen infection but must 

be resolved for homeostasis; otherwise, it leads to chronic inflammation. Early in the 

inflammatory process, proinflammatory M1-type macrophages are activated, and later, anti-

inflammatory M2 macrophages promote tolerance and tissue regeneration. M1 macrophages 

perform glycolysis that results in lactate accumulation. Lactate plays a crucial role in gene 

transcription and cell function in immune cells and modifies histones to directly influence 

gene transcription from chromatin during infection. Lactate production during M1 activation 

promotes a transition to the M2 phenotype and helps limit the duration of the M1 state. 

Defects in this “lactate clock” may promote the transition to chronic inflammation. Histone 

lactylation represents an opportunity to improve our understanding of the role of lactate in 

diverse pathophysiological conditions and translate it in developing therapeutics across a 

spectrum of human disease (43).

Harnessing immunometabolic checkpoints of inflammation

Vishwa Deep Dixit, the third keynote speaker, discussed the concept of harnessing 

immunometabolic checkpoints of inflammation and aging. Visceral or ectopic fat that 

accumulates (despite a normal body mass index) in aging is associated with a cluster 

of cardiometabolic risk factors and chronic inflammation (inflammaging). In diet-induced 

obesity, adipose B cells in visceral fat promote inflammation and insulin resistance. Aging 

adipose B cell expansion and fat-associated lymphoid clusters formation are controlled by 

NLRP3 inflammasomes. Inhibiting NLRP3-dependent adipose B cell accumulation may 

reverse age-related metabolic impairment (44, 45). Although obesity and aging induce 

distinct adipose immune responses, both increase inflammation and decrease thermogenesis 

(45). Dietary or pharmacological approaches to lower NLRP3 may reduce multiple chronic 

diseases. Ketone bodies inhibit NLRP3, which may have clinical implications as mice 

under ketogenic diet show inhibition of aging-induced exacerbation of COVID-19 infection 

(46). Calorie restriction increases the life span in multiple species perhaps through reduced 

inflammaging (47). These examples suggest immunological-metabolic interactions may 

reveal targets to reduce inflammation and enhance life span.

Metabolic biomarkers

Maxim Artyomov discussed macrophage activation and itaconate as a possible biomarker 

of metabolic reprogramming during innate immune responses. Itaconate is an endogenous 

regulatory metabolite in macrophages that indirectly limits NLRP3 activation via caspase-1 

after prolonged stimulation (48). Frank Hu discussed epidemiological studies identifying 

blood biomarkers of inflammation that improved prediction of CVD combined with 
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traditional risk factors (49). In addition, Hu described a system to measure dietary 

inflammatory potential with a food-based empirical dietary inflammatory pattern (EDIP) 

score determined from levels of systemic inflammatory biomarkers and food intake. High 

EDIP scores and a Mediterranean diet were significantly associated with increased and 

decreased risk for CVD, respectively (50, 51). Hu suggested that diets with high EDIP 

scores promote serum inflammatory biomarkers or gut microbial metabolism, resulting 

in increased CVD risk. Multiomics platforms and machine learning can facilitate the 

identification of robust inflammatory markers/ metabolic signatures of inflammation, diet, 

and CVD risk. Ronald Summers described using automated computerized tomography 

(CT)-based algorithms and radiological imaging to supplement clinical biomarkers to 

provide accurate information about body composition for diagnosing metabolic syndrome in 

clinically asymptomatic individuals. Automated CT image analysis permits measurement of 

five biomarkers of body composition and related pathology: bone mineral densitometry, 

muscle, adipose tissue, liver fat, and abdominal aortic atherosclerotic plaque (52). 

Combinations of these metrics and others improve diagnostic prediction in metabolic 

syndrome (53). Similar techniques can be used to screen for other diseases and conditions 

at a reasonable cost (54, 55). Melissa Skala showed how dynamic and quantitative imaging 

with cellular-level resolution can identify abnormal cellular metabolism, while labelfree 

optical imaging technologies and quantitative analysis tools can be used to study metabolic 

heterogeneity in cancer, stem cell function, and immune cell behavior. Fluorophores such 

as NADPH and flavin adenine dinucleotide already present in the cells can be used to 

monitor metabolism with single-cell resolution. These metabolic imaging tools allow rapid 

cellular-level assessment of metabolic phenotypes in tumors and immune cells, permitting 

examination of cellular metabolic heterogeneity and its effects on patient outcomes (56, 57).

Tools for interrogating immunometabolism

Russell Jones presented in vivo studies on cellular metabolism modulated by environmental 

factors and how whole-body metabolism filters down to cellular levels. He described a 

technique combining stable isotope labeling of carbons, cell sorting, and mass spectrometry 

for metabolomic analysis to trace the metabolic activities in cells (58). Jones showed 

that activated lymphocytes engage in metabolic reprogramming to support growth and 

proliferation independent of serine metabolism (58). Josh Mattila investigated glucose 

metabolism in granulomas associated with tuberculosis (TB) as an indicator of response 

to therapy. Elevated glucose metabolism caused by the presence of Mycobacterium 
tuberculosis resulted in increased uptake of [18F]-FDG and elevated positron-emission 

tomography (PET) imaging signals. A cynomolgus macaque model of TB with serial 

PET imaging of [18F]-FDG uptake showed dynamic changes in granuloma inflammatory 

profiles over time with each TB granuloma having its own trajectory (59). Damian Tyler 

described a hyperpolarized magnetic resonance imaging tool to study metabolism in vivo 

with significantly increased magnetic resonance signals from metabolites for a better 

understanding of the inflammatory response after myocardial infarction. Hyperpolarized 

magnetic resonance imaging also was used to assess physiological and pathological changes 

in cardiac metabolism (pyruvate dehydrogenase) in human type 2 diabetic hearts (60). 

Kylie Kavanagh focused on radiation-induced immunometabolic dysfunction in nonhuman 
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primates (NHPs). NHPs that received irradiation exhibited metabolic changes consistent 

with diabetes (61). Although the exact changes were unclear, it was thought that radiation 

exposure might epigenetically remodel fibroblasts, similar to that seen with aging and 

overnutrition, increasing risk for type 2 diabetes. These irradiated NHPs also had adipocyte 

hypertrophy, with large adipocytes and more macrophages in the fat without being obese 

(62).

Future directions

Metabolic modulation occurs in immune cells at all stages of inflammation depending on 

the immune cell type. Metabolic cellular changes do not follow a typical inflammatory 

time frame and can occur early in the cell cycle and lead to longer-term consequences. 

Although acute inflammation is typically protective early, targeting metabolic changes in 

chronic inflammation requires consideration of steady-state maintenance and the return 

to homeostasis from the chronic inflammatory state. Speakers discussed the cross-talk of 

metabolism and immunity among different levels of metabolic and signaling pathways 

across disease conditions, such as obesity, diabetes, CVDs, cancer, and COVID-19. Some of 

the main concepts from the workshop discussion are summarized in the following section.

Metabolic biomarkers of inflammation and immunometabolism-based 

therapeutic strategies have clinical potential

From a preclinical perspective, the discovery and utility of inflammatory or metabolic 

biomarkers will depend on the model system and intended use. Metabolic by-products, 

such as trimethylamine N-oxide and ceramides, are independent predictors of diabetes 

and CVD but are difficult to study clinically because of lack of assay standardization. 

Importantly, one needs to consider what the biomarker is intended to “mark”: is it a 

marker of disease, predictor of risk for development of a disease, indicator of a patient’s 

prognosis, predictor of treatment effects, and/or indicator of biological activity? For 

instance, ceramide accumulation resulting from cellular death could activate macrophages, 

potentially making ceramides an indicator of biological activity along with a marker of 

disease. Other metabolites of interest, including arginine, glutamine, pyruvate, lactate, and 

lipid mediators, affect immune cell functions, cardiac cell recovery, and tumor progression. 

Imaging metabolic changes using CT and PET scans has potential in clinical practice. 

However, there must be a balance between biomarkers and imaging, with both approaches 

being useful in different circumstances.

Many immunometabolism-based therapeutic studies at the preclinical stage show 

promise. Pilot studies using nanoparticles to deliver immunometabolism-modulating agents 

preferentially to bone marrow cells of atherosclerotic patients result in resolution of chronic 

inflammation via downregulating trained immunity. Many over-the-counter medications, 

such as antihistamine and immunomodulatory drugs, have been used to treat chronic 

inflammation and autoimmune conditions, highlighting the promise of repurposing drugs 

to address chronic inflammation. Immunomodulation of the metabolome by harnessing 

microbial metabolites is another avenue with a bright future.
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Challenges in studying immunometabolism

The main challenges identified during the discussion sessions involved identifying how 

findings in vitro may be applicable in vivo. Novel tools, approaches, and technologies 

for examining metabolism and inflammation in in vivo–like systems such as organoids, 

single cells from freshly isolated tissues, among others, are needed. Furthermore, standard 

operating procedures are needed to improve reproducibility and accuracy. Metabolic changes 

occur faster than current technologies can discern. Mass spectrometry using fresh-frozen 

tissue to get special cellular resolution of metabolites is improving our resolution to studying 

these rapid changes. As an alternative and complementary approach, single-cell analyses 

may be useful given the complexity of cell types and metabolites that are involved.

Some of the other challenges identified include development of metabolic biomarkers and 

blood tests, machine learning algorithms, and quantitative matrices to adopt in clinical 

evaluation. In addition, tools are needed to facilitate the translation of imaging and 

biomarker results into information for patients. There is a critical need for databases that 

include imaging data, along with other associated data (epidemiological, clinical, -omics, 

etc.). Such databases would allow improving specificities of immunometabolic biomarker 

detection and clinical diagnoses.

Lastly, aging should be an important consideration when designing animal-, clinical-, 

or population-based immunometabolism studies with the caveat that biological and 

chronological age are different. Accessible technologies for assessing metabolites and 

inflammation are needed. The interplay between metabolism and inflammation affects the 

whole body, and it is important not to keep clinical practices in silos and train medical 

students to be thinking about the big picture.
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COVID-19 coronavirus disease 2019

CT computerized tomography

CVD cardiovascular disease

DC dendritic cell

ER endoplasmic reticulum

FA fatty acid

NADPH nicotinamide adenine dinucleotide phosphate

NAFLD nonalcoholic fatty liver disease

NASH nonalcoholic steatohepatitis

NHP nonhuman primate

NIH National Institutes of Health

NLRP nucleotide-binding oligomerization domain, leucine-rich repeat and 

pyrin domain

PET positron-emission tomography

RAGE receptor for advanced glycation end product

ROS reactive oxygen species

TB tuberculosis

TG triglyceride

TIL tumor-infiltrating T lymphocyte
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