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Abstract 

Background  Non-pharmaceutical interventions (NPIs) have been implemented worldwide to suppress the spread of 
coronavirus disease 2019 (COVID-19). However, few studies have evaluated the effect of NPIs on other infectious dis-
eases and none has assessed the avoided disease burden associated with NPIs. We aimed to assess the effect of NPIs 
on the incidence of infectious diseases during the COVID-19 pandemic in 2020 and evaluate the health economic 
benefits related to the reduction in the incidence of infectious diseases.

Methods  Data on 10 notifiable infectious diseases across China during 2010–2020 were extracted from the China 
Information System for Disease Control and Prevention. A two-stage controlled interrupted time-series design with a 
quasi-Poisson regression model was used to examine the impact of NPIs on the incidence of infectious diseases. The 
analysis was first performed at the provincial-level administrative divisions (PLADs) level in China, then the PLAD-
specific estimates were pooled using a random-effect meta-analysis.

Results  A total of 61,393,737 cases of 10 infectious diseases were identified. The implementation of NPIs was associ-
ated with 5.13 million (95% confidence interval [CI] 3.45‒7.42) avoided cases and USD 1.77 billion (95% CI 1.18‒2.57) 
avoided hospital expenditures in 2020. There were 4.52 million (95% CI 3.00‒6.63) avoided cases for children and 
adolescents, corresponding to 88.2% of total avoided cases. The top leading cause of avoided burden attributable to 
NPIs was influenza [avoided percentage (AP): 89.3%; 95% CI 84.5‒92.6]. Socioeconomic status and population density 
were effect modifiers.

Conclusions  NPIs for COVID-19 could effectively control the prevalence of infectious diseases, with patterns of risk 
varying by socioeconomic status. These findings have important implications for informing targeted strategies to 
prevent infectious diseases.
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Background
Following the pandemic of the new coronavirus-severe 
acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), non-pharmaceutical interventions (NPIs) have 
been widely implemented as part of the coronavirus 
disease 2019 (COVID-19) response to slow the 
transmission of the virus. These measures include a set 
of actions apart from getting a vaccination and taking 
medicine, such as social distancing, hand hygiene, 
mask-wearing, stay-at-home orders, and closing 
schools. Recent studies have shown that NPIs have 
had a large effect on controlling transmission of SARS-
CoV-2 [1]. Variations in disease severity and incidence 
of COVID-19 across countries could be attributed to 
different levels of public compliance with NPIs [2, 3]. 
For example, countries, where masks are required at 
the first wave of pandemic, showed a lower mortality 
rate compared with countries against widespread mask-
wearing by the public [3].

Infectious diseases have presented a major public 
health challenge [4, 5]. Despite the huge progress in 
disease control followed by a decline in mortality from 
infectious diseases [6], the pandemics of the severe acute 
respiratory syndrome (SARS), following the emergence 
of novel influenza A viruses (H5NA, H7N9, and H9N2), 
Zika virus, Ebola over the past few decades, highlight the 
substantial effect of infectious diseases on global health 
[7, 8]. In the past few decades, communicable diseases 
contributed to a large component of the disease burden, 
especially for children and adolescents [7, 9, 10]. Globally, 
it’s estimated that 145 thousand [95% uncertainty interval 
(UI): 99‒200] deaths in 2017 could be attributable to 
lower respiratory tract infections, with children and the 
elderly being the major contributors [10]. In many regions 
of the world, the observed increasing hospitalization rate 
for infectious diseases further emphasizes the need for 
cost-effective strategies against infectious diseases [11, 
12].

Given its feature of suppressing the spread of SARS-
CoV-2, NPIs may also curb the transmission of other 
contagious viruses with the same transmission route as 
SARS-CoV-2. For example, the transmission rate of hand, 
foot, and mouth disease (HFMD) and tuberculosis (TB) 
might be significantly reduced by mask-wearing, social 
distancing, and hand washing. Recent studies found 
a large and significant reduction in influenza activity 
during the COVID-19 pandemic [13]. However, whether 
the reduction is associated with the implementation of 
NPIs remains largely unknown. Knowing to what extent 
NPIs are effective in reducing infectious diseases is 
critical to policymakers, as most NPIs are easy to carry 
out and more cost-effective than immunization programs 
and disease surveillance.

To date, there are limited data that describe the impact 
of NPIs for COVID-19 on infectious disease incidence 
and related health economic burden. Previous studies 
examining the difference in the incidence of infectious 
diseases before and after NPIs implementation have 
mainly focused on influenza [13, 14], and few have 
estimated the impacts of NPIs. In this study, we aimed to 
evaluate the effect of NPIs on the incidence of infectious 
diseases during the COVID-19 pandemic in 2020 based 
on the nationwide dataset from 2010 to 2020 in China 
and calculate the health economic benefits related to the 
reduction in the incidence of infectious diseases.

Methods
Study design
A two-stage controlled interrupted time-series (CITS) 
design was applied to evaluate the association between 
NPIs during the COVID-19 pandemic in 2020 and the 
incidence of infectious diseases in China.

Data sources
Infectious diseases data
Data on 10 notifiable infectious diseases (seasonal 
influenza, TB, measles, scarlet fever, mumps, rubella, 
varicella, bacillary dysentery, infectious diarrhea, and 
HFMD) across China during 2010–2020 were extracted 
from the China Information System for Disease Control 
and Prevention (CISDCP). All cases were diagnosed 
by medical staff with a clinical diagnosis and laboratory 
tests based on national uniform standards [7]. Data were 
aggregated by provincial-level administrative divisions 
(PLADs) in sex- and age-specific (0–4 years, 5–19 years, 
20–24 years, …, ≥ 80 years) monthly time series.

Non‑pharmaceutical interventions data
In China, almost all PLADs started the NPIs (known 
as the public health emergency response in China) at 
the end of January 2020 to cope with COVID-19. NPIs 
include a series of measures, such as locked-down cities, 
canceled flights, closed public facilities, restricting 
residents from going out in public, and obliging citizens 
to wear masks. NPIs are classified into four levels (I, 
II, III, IV), with the severity decreasing from Level I to 
Level IV. Under the Level I response, the most intense 
NPIs were initiated, including stay-at-home orders, 
closure of nonessential businesses, restaurants, and 
hotels, prohibition on gatherings, and postponement 
of the reopening of schools and colleges. The Level II 
response marks the period during which normal work 
and production are allowed while working from home is 
encouraged. Communities with COVID cases are under 
closed-off management, banning outsiders from entering 
and allowing no one to leave. People are required to have 
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their temperature taken, register, and check the health 
codes from entering. Under the III or IV levels response, 
educational institutes and businesses reopen, but some 
major intervention events still remain, e.g., social 
distancing, wearing masks, and routine temperature 
monitoring. Timelines of NPIs for each PLAD in 2020 
were summarized in Additional file 1: Table S1.

Meteorological data
We collected hourly data on ambient temperature, 
ambient dew point temperature, and total precipitation 
(at 2 m above the land surface) for the study period from 
the fifth generation European Centre for Medium-Range 
Weather Forecasts (ECMWF) atmospheric reanalysis 
(ERA5) dataset (https://​www.​ecmwf.​int/​en/​forec​asts/​
datas​ets/​reana​lysis-​datas​ets/​era5) and transformed 
them into daily observations by averaging all hourly 
observations within each day. Daily mean relative 
humidity was calculated using daily mean temperature 
and daily mean dew point temperature. Daily data were 
then aggregated into monthly data. All meteorological 
data were linked to each PLAD by calculating the average 
value of all grids overlaying the area.

Socioeconomic indexes for areas
We collected three available PLAD-level socioeconomic 
indicators that potentially affect the prevalence of 
infectious diseases from the China Statistical Yearbook 
from 2010 to 2021, including urbanization rate (the 
proportion of the population living in urban areas), 
population density, and gross domestic product (GDP) 
per capita. The 31 PLADs were classified into four 
quartiles (Qs) groups (Q1–Q4: low, lower middle, higher 
middle, and high) for each indicator. All GDP data were 
adjusted to 2020 US dollars according to the Consumer 
Price Index (CPI) in China and average exchange rate 

between currencies of China and the United State in 
2020.

Health care expenditure data
We collected information on per-capita inpatient 
expenditure from the statistical yearbook of China’s 
health system. For diseases lack of expenditure data, we 
screened the literature and extracted data from the latest 
study in China. All expenditures were adjusted to 2020 
US dollars according to the CPI in China and average 
exchange rate between currencies of China and the 
United State in 2020 (Additional file 1: Table S2).

Statistical analysis
Two‑stage controlled interrupted time‑series analysis
For each infectious disease, a two-stage CITS analysis 
was applied to quantify the impacts of the NPIs on 
infectious diseases during the COVID-19 pandemic 
in 2020 [15]. This design is developed from the basic 
interrupted time-series (ITS) design that involves a 
before-after comparison in a single population exposed 
to the intervention between the observed change in 
the outcome of interest and the best approximation of 
the true counterfactual [16, 17]. To provide stronger 
evidence to support a causal effect of the intervention on 
the outcome of interest, CITS design includes a control 
series to exclude problems due to co-interventions or 
other events occurring around the time of intervention 
[16]. In this study, we compared the infectious disease 
incidence before the NPIs with the post-NPIs period. 
To build a self-controlling design, we selected the first 
month (January) of each year as the control series as 
NPIs were not introduced to the study population until 
the end of January, 2020 (Fig. 1).

Fig. 1  Timelines of COVID-19, non-pharmaceutical interventions during the study period, and the selection of control series

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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In the first stage, a quasi-Poisson time-series regression 
was applied in each PLAD [18, 19]. The PLAD-specific 
equation was as follows:

 where Yit denotes cases in PLAD i on month t ; αi is 
the intercept in PLAD i ; βi , γi , and δi represent the 
coefficients in PLAD i . NPIs is a binary variable to 
indicate the introduction of NPIs (coded 1) and without 
the NPIs (coded 0) in the model [20]. Group is a binary 
variable representing the intervention group (Group = 1, 
February to December) or control group (Group = 0, 
January). Trendsecular denotes a continuous term for 
time (months since the start of the study) to model the 
secular trend. Trendseason stands for an indicator for the 
month of the year to control for seasonality. ns Tempit  , 
ns(RHit) , and ns

(

Prepit
)

 are mean temperature, relative 
humidity, and precipitation controlled in the model using 
natural spline functions with 3 degrees of freedom (df s). 
Population was also included in the model as an offset 
term, log(POP) . VAR(Yit) and µ denote the variance and 
expectation of Yit , and θ is an over-dispersion parameter. 
As we only had the 1-year (year 2020) data after the 
intervention which couldn’t generate the slope of the 
post-intervention trend, we assumed a constant slope 
before and after the intervention. The effect of NPIs was 
expressed as the intercept change ( βi ). As the incidence 
of infectious diseases had seasonal trends that varied 
by year, we kept the month constant in different years 
(using the sixth month for each year) when estimating 
the secular trend and slope change before and after 
the intervention. The counterfactual incidence in 2020 
was predicted using the same model while we change 
the intervention term in the model (NPIs) from 1 to 0, 
assuming that there is no intervention in 2020.

In the second stage, we pooled the PLAD-specific 
estimates using a random-effect meta-analysis with 
restricted maximum likelihood estimation [21, 22]. The 
impacts of NPIs on infectious diseases’ incidence were 
expressed as the incidence rate ratio (IRR, calculated as the 
exponents of coefficients) and 95% confidence intervals 
(95% CI).

Yit ∼ Poisson(µ; θ)

E(Yit) = exp(αi + βiNPIs + ǫiGroup+ γ iTrendsecular

+δiTrendseason + ns
(

Tempit
)

+ ns(RHit)

+ ns
(

Prepit
)

+ log(POP))

VAR(Yit) = θµ

Estimation of avoided cases and hospital expenditures
PLAD-specific number of avoided cases (AC) associated 
with NPIs during the COVID-19 pandemic in 2020 was 
calculated using the following equation:

 where Ci is the number of observed cases for PLAD 
i during the COVID-19 pandemic in 2020, IRR is the 
pooled estimate in the second stage. We calculated the 
total number of AC by summing all the values of ACi . 
The avoided percentage of cases was then calculated at 
the PLAD level as well as the national level by dividing 
the total number of AC by the sum of the Ci and AC. 
We calculated 95% CI of AC ( AClow and AChigh ) using 
the 95% CI of IRR. Under the assumption that all cases 
were admitted to the hospital after being diagnosed, 
we estimated the avoided hospital expenditures during 
the COVID-19 pandemic in 2020 as AC× costpercapita 
( AClow × costpercapita to AChigh × costpercapita ), where 
costpercapita denotes the per-capita healthcare expenditure 
in 2020.

Stratification analyses
First, we performed stratified analyses by sex and 
age group (0–4 years, 5–19 years, and ≥ 20 years). 
Secondly, we repeated the analyses and pooled the 
PLAD-specific estimates in different socioeconomic 
groups (quartiles of urbanization rate, GDP per capita, 
and population density). Finally, stratified analysis 
was conducted by different levels of NPIs. Only three 
levels of NPIs (I, II, and III) were used as few PLADs 
downgraded their public health response to level IV. 
We used random effect meta-regression fitted by the 
maximum likelihood method to compare the effects 
estimated in different groups [23].

Sensitivity analyses
We conducted several sensitivity analyses to check the 
robustness of our results. Firstly, we repeated the analy-
ses using alternative df values (from 3 df to 4, 5, and 6 df) 
for mean temperature, relative humidity, and precipita-
tion. Secondly, we used alternative moving average lag 
structures for all meteorological factors: lag 0–1 (cur-
rent month and preceding 1 month) and lag 0–2 (cur-
rent month and preceding 2 months). Thirdly, we refitted 
the CITS models using data from 2017 to 2020 to avoid 
inconsistencies in trends between different periods. 
Finally, for diseases with adequate sample sizes with the 
elderly, we restricted analyses to people aged between 

ACi = Ci × (1− IRR)/IRR
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20 and 54 and people aged above 55, respectively. We 
used the statistical software R 4.0.1 (Lucent Technolo-
gies, Jasmine Mountain, USA) to perform all analyses. 
A two-sided P-value < 0.05 was considered statistically 
significant.

Results
A total of 61,393,737 cases of ten infectious diseases were 
identified, among which 59.8% were males. More than 
two-thirds of cases were children and adolescents. Sea-
sonal influenza, infectious diarrhea, and HFMD had high 
endemic levels (Additional file 1: Table S3). We observed 
a relatively high incidence of seasonal influenza and 
mumps in Middle China. TB, measles, and scarlet fever 
were more likely to be prevalent in Northwest China, 
while infectious diarrhea and HFMD showed higher inci-
dence in East and South China (Fig. 2, Additional file 1: 
Fig. S1). The maps in Fig. 2 and Additional file 1: Fig. S1 
showed a reduction in the monthly incidence of all dis-
eases after the introduction of NPIs for most PLADs. A 
higher reduction in incidence after the implementation of 
NPIs was observed for seasonal influenza in Beijing and 
Shaanxi; for varicella in Beijing; for mumps in Chongqing 

and Hunan; for infectious diarrhea in Beijing; for scar-
let fever and bacillary dysentery in Xinjiang; for rubella 
in Liaoning, Xizang and Chongqing; and for HFMD in 
Guangdong. Compared to surrounding PLADs, Hubei, 
the most affected PLAD by COVID-19, showed a higher 
reduction in the incidence of seasonal influenza and TB 
(Fig. 2, Additional file 1: Fig. S1).

Figure 3 shows the monthly incidence rates from 2010 
to 2020 and counterfactual prediction of incidence rates 
in 2020 without NPIs. Compared to counterfactual 
prediction of incidence in 2020, a reduction in observed 
incidence in 2020 is shown for most diseases, especially 
seasonal influenza, measles, and scarlet fever. The 
corresponding box plots were shown in Additional file 1: 
Fig. S2.

Associations between NPIs and infectious diseases’ 
incidence
There was a significant reduction in the incidence of all 
diseases after the NPIs implementation compared to 
counterfactual prediction of incidence in 2020 (exact val-
ues were shown in Additional file 1: Table S4). We esti-
mated an 89% (IRR: 0.11, 95% CI  0.07‒0.15) decrease 

Fig. 2  The average monthly incidence of infectious diseases in 31 PLADs of China. Pre COVID-19 period: non-pharmaceutical intervention months 
(February–December) from 2010–2019; COVID-19 period: non-pharmaceutical intervention months (February–December) in 2020
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Fig. 3  Observed monthly incidence during 2010–20 and predicted incidence without non-pharmaceutical interventions in 2020. Secular trends 
were estimated using the sixth month of each year to control for seasonality. The effects of non-pharmaceutical interventions were expressed 
as the slope change before and after the intervention. The number of rates is represented in log scale on the y-axis. Vertical line and shaded 
areas: introduction of non-pharmaceutical interventions. HFMD: Hand, foot, and mouth disease
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in the incidence rate of seasonal influenza compared to 
counterfactual scenario, which was the highest among 
all diseases, followed by measles (88%; IRR: 0.12, 95% 
CI  0.07‒0.20) and scarlet fever (86%; IRR: 0.14, 95% 
CI  0.11‒0.18). TB had the lowest but still significant 
reduction in incidence after NPIs implementation, 
with an IRR of 0.87 (95% CI 0.83‒0.91) (Fig. 4, Additional 
file 1: Table S4).

The reduction in incidence after the NPIs implementa-
tion varied by age group (Fig. 4). The effect of NPIs was 

more pronounced among children aged 5–19 years with 
scarlet fever and mumps; while less pronounced among 
children of the same age with infectious diarrhea. A 
larger decrease in the incidence of rubella associated with 
NPIs was found among those aged above 20 compared to 
those aged below 20 years.

Avoided cases and economic burden due to NPIs
Figure  5 shows the avoided disease burden due to 
NPIs during the COVID-19 pandemic in 2020. There 

Fig. 4  Pooled incidence rate ratio of infectious disease incidence associated with non-pharmaceutical interventions. The exact values can be found 
in Table S4. HFMD: Hand, foot, and mouth disease

Fig. 5  Percentage of cases avoided associated with non-pharmaceutical interventions during the COVID-19 pandemic in 2020. HFMD: Hand, foot, 
and mouth disease. Orange bars represent the top three diseases with the highest percentage of cases avoided
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were 5.13  million (95% CI  3.45‒7.42) avoided cases 
associated with NPIs for ten infectious diseases 
during the COVID-19 pandemic in 2020, including 
2.24  million HFMD cases, accounting for 75.2% (95% 
CI  66.2‒81.9) of total HFMD cases; 1.81  million 
seasonal influenza cases, accounting for 89.3% (95% 
CI  84.5‒92.6) of total seasonal influenza cases; 
0.44  million infectious diarrhea cases, accounting for 
31.9% (95% CI  25.1‒38.0) of total infectious diarrhea 
cases. Rubella had the lowest avoided cases (3318 
cases, 95% CI  981‒8276) due to NPIs, accounting for 
75.1% (95% CI 47.1‒88.2) of total rubella cases (Fig. 5; 
Table  1). The age- and sex-stratified percentages of 
cases avoided were shown in Additional file 1: Figs. S3, 
S4.

The reduction in incidence translates into a 
considerable economic benefit due to NPIs, avoiding 
USD 1.77 billion (95% CI 1.18‒2.57) hospital expenses 
in total. The highest avoided hospital expenses were 
observed for seasonal influenza (USD 826 million, 95% 
CI  542‒1237), followed by HFMD (USD 580  million, 
95% CI  374‒861), TB (USD 138  million, 95% 
CI 94‒183), and infectious diarrhea (USD 103 million, 
95% CI 74‒135) (Table 1).

The modification effect of socio‑economic status and levels 
of NPIs
Urbanization rate and population density are shown to 
significantly modify the incidence of seasonal influenza 
associated with NPIs. The lower the urbanization rate 
and population density levels, the higher effect of NPIs 
(Additional file  1: Tables S5, S6). As shown in Fig.  6, 
GDP per capita was identified as a significant modifier 
for most diseases, with a lower effect of NPIs in less-
developed PLADs for seasonal influenza, varicella, and 
infectious diarrhea, but a higher effect of NPIs in less-
developed PLADs for TB and mumps (Additional file 1: 
Table  S7). PLAD-specific effect estimates and GDP per 
capita level are shown in Additional file  1: Table  S8. 
Stratification analyses by different levels of NPIs showed 
that even the lowest level of NPIs could lead to a sig-
nificant reduction in incidence for all infectious dis-
eases (Fig. 6, Additional file 1: Table S9). For diseases like 
varicella, infectious diarrhea, and HFMD, the middle- 
and high-level NPIs could lead to a significantly higher 
reduction in incidence compared to low-level NPIs 
(Additional file 1: Table S9).

Table 1  Number of cases and health care expenditures avoided associated with non-pharmaceutical interventions

HFMD: Hand, foot, and mouth disease; CI: Confidential interval; USD: United States Dollars

Diseases Total Male Female 0‒4 years 5‒19 years ≥ 20 years

Number of cases avoided‒thousand (95% CI)

 Seasonal influenza 1807 (1185‒2705) 951 (626‒1419) 856 (558‒1289) 802 (521‒1214) 738 (467‒1153) 327 (215‒480)

 Tuberculosis 93 (64‒124) 70 (50‒91) 25 (15‒35) 0 (-0‒0) 6 (4‒9) 87 (59‒117)

 Measles 5 (3‒10) 3 (2‒6) 2 (1‒4) 2 (1‒4) 1 (0‒1) 2 (1‒4)

 Scarlet fever 66 (51‒85) 40 (31‒51) 27 (20‒35) 20 (16‒26) 46 (35‒60) 0 (0‒1)

 Mumps 65 (43‒91) 39 (26‒54) 26 (17‒37) 2 (-1‒5) 54 (35‒77) 7 (5‒9)

 Rubella 3 (1‒8) 2 (1‒6) 1 (0‒3) 0 (0‒0) 2 (0‒7) 1 (1‒2)

 Varicella 399 (330‒475) 211 (174‒250) 190 (156‒226) 65 (49‒83) 266 (217‒318) 83 (71‒96)

 Bacillary Dysentery 16 (11‒21) 8 (5‒11) 8 (5‒11) 6 (4‒8) 1 (0‒2) 8 (5‒11)

 Infectious diarrhea 441 (316‒578) 246 (179‒319) 197 (138‒262) 293 (217‒378) 9 (-2‒22) 128 (72‒190)

 HFMD 2235 (1441‒3320) 1309 (850‒1935) 923 (590‒1377) 1978 (1285‒2917) 232 (151‒343) 14 (8‒22)

Health care expenditures avoided‒million USD (95% CI)

 Seasonal influenza 826 (542‒1237) 435 (286‒649) 391 (255‒589) 367 (238‒555) 337 (214‒527) 149 (98‒219)

 Tuberculosis 138 (94‒183) 103 (73‒134) 36 (22‒52) 0 (− 0‒0) 10 (6‒13) 129 (87‒172)

 Measles 2 (1‒4) 1 (1‒3) 1 (1‒2) 1 (1‒2) 0 (0‒1) 1 (0‒2)

 Scarlet fever 24 (18‒31) 14 (11‒18) 10 (7‒12) 7 (6‒9) 17 (13‒22) 0 (0‒0)

 Mumps 21 (14‒30) 13 (8‒18) 9 (6‒12) 1 (-0‒2) 18 (11‒25) 2 (2‒3)

 Rubella 0 (0‒1) 0 (0‒0) 0 (0‒0) -0 (-0‒0) 0 (0‒0) 0 (0‒0)

 Varicella 68 (56‒80) 36 (29‒42) 32 (26‒38) 11 (8‒14) 45 (37‒54) 14 (12‒16)

 Bacillary Dysentery 8 (6‒11) 4 (3‒6) 4 (3‒6) 3 (2‒4) 1 (0‒1) 4 (3‒6)

 Infectious diarrhea 103 (74‒135) 58 (42‒75) 46 (32‒61) 69 (51‒89) 2 (-1‒5) 30 (17‒44)

HFMD 580 (374‒861) 340 (220‒502) 239 (153‒357) 513 (333‒757) 60 (39‒89) 4 (2‒6)
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Sensitivity analyses
Analyses of changes in model parameters and study 
periods show similar results to main analyses (Additional 
file 1: Tables S10, S11, S12, S13, S14 and Fig. S5). When 
we restricted the analysis to people aged between 20 
and 54 and people aged > 55, weaker effects of NPIs were 
identified with the increase in age (Additional file  1: 
Table S15).

Discussion
The introduction of NPIs during the COVID-19 
pandemic in 2020 led to a significant decrease in the 
incidence of infectious diseases, particularly seasonal 
influenza, measles, and scarlet fever. The impacts of 
NPIs could be significantly modified by demographical 
and socioeconomic indicators. Considerable healthcare 
expenditures were avoided with the adoption of NPIs.

Fig. 6  Pooled incidence rate ratio associated with non-pharmaceutical interventions stratified by socioeconomic and demographic indicators. The 
exact values can be found in  Additional file 1: Tables S5–S8. L: Low; LM: Lower middle; HM: Higher middle; H: High
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Our study showed that the implementation of NPIs 
could contribute to the reduction of the incidence of a set 
of infectious diseases with different transmission routes, 
such as seasonal influenza and infectious diarrhea. It has 
been proven to be effective in reducing the transmission 
of directly transmitted respiratory infections by apply-
ing NPIs [24, 25], which may take effect through directly 
cutting off the transmission route of respiratory patho-
gens. Besides, infectious diseases with other transmis-
sion modes could also be reduced by applying NPIs. It 
was observed that the incidence of norovirus outbreaks 
in nine US states showed a dramatic decline in April 2020 
[26]. Similarly, we also observed that over 30% of cases of 
infectious diarrheal were avoided in 2020 under the impli-
cation of NPIs. Thus, these findings imply that NPIs could 
reduce the incidence of infectious diseases by reducing 
human-to-human contact, frequent surface disinfection, 
and enhanced hand hygiene [26, 27].

The economic burden related to infectious diseases 
should not be neglected. Globally, it was projected that 
annual economic losses from the influenza pandemic 
would be about USD 500 billion, corresponding to 0.6% 
of global income [28]. The COVID-19 pandemic was 
estimated to threaten nearly 20% of the GDP and reduce 
the wage income by 16% in the US [29]. In the present 
study, we found considerable healthcare expenditures 
could be avoided with the introduction of NPIs. In addi-
tion to direct healthcare expenditures, the reduction 
of infectious diseases due to NPIs could help relieve 
overburdened healthcare facilities [30]. More impor-
tantly, infectious diseases are disproportionately affect-
ing low- and middle-income countries and populations 
with lower socioeconomic status, which may lead to 
a cycle of poverty [31]. Our findings from stratification 
analyses by different levels of NPIs indicate that it’s easy 
to achieve a satisfying effect with less stringent NPIs 
(low-level NPIs), simply by social distancing and wearing 
masks in public. These measures may be easily executed 
in counties or communities with weak health system 
infrastructure. High-level NPIs mean enforcing the most 
stringent actions by the government like travel restric-
tions, school closures, bans of small gatherings, or even 
stay-at-home orders. As reported in a recent study, nearly 
70% of countries across the globe had compulsory stay-
at-home orders at any point in time between the recogni-
tion of widespread COVID-19 and the end of April 2020 
[32]. Despite their efficacy in controlling the spread of 
COVID-19, these measures have resulted in an unprec-
edented economic decline [33], with a higher unemploy-
ment rate in many countries [34, 35]. As for endemic 
infectious diseases, there is a trade-off between economic 
development and the prevention of diseases. Further 
cost-benefit analyses for NPIs are warranted.

Children and adolescents remain vulnerable to 
most infectious diseases, especially respiratory and 
gastrointestinal infections [7, 36]. A study in China 
screened 44 notifiable infectious diseases among 
children and adolescents and identified mumps, seasonal 
influenza, infectious diarrhea, HFMD, and scarlet fever 
as the most common infections [7]. Our results showed 
that there were 4.52  million avoided cases due to NPIs 
in 2020 for children and adolescents, corresponding 
to 88.17% of total avoided cases during the COVID-19 
pandemic. For children aged below 4, 90% of avoided 
cases of seasonal influenza and 83% of avoided cases of 
scarlet fever were associated with NPIs; these figures 
reached 95% (seasonal influenza) and 88% (scarlet fever) 
for children aged between 5 and 19 years, respectively. 
Our findings highlight the effect of NPIs on infectious 
disease prevention among children and adolescents and 
suggest that children and adolescents could be the targets 
of NPIs to prevent infectious diseases.

This study benefits from the application of the CITS 
design with a control series that allowed us to obtain the 
effect of NPIs on infectious diseases excluding problems 
due to co-interventions or other events occurring around 
the time of NPIs. As the timeline of NPIs and factors 
affecting the transmission of infectious diseases may vary 
across PLADs, PLAD-specific analysis after adjustment 
of long-term trend, seasonality, and meteorological 
factors offered a fine characterization of the impact of 
NPIs.

Some limitations should be acknowledged. One limi-
tation of our study concerns the short duration of high-
level NPIs. As the COVID-19 pandemic was mostly 
controlled in China at the beginning of March, the most 
intense NPIs lasted for only 1 month for most PLADs, 
which may lead to an underestimation of the effect of 
high-level NPIs. We should also acknowledge that there 
might be uncertainties introduced by the change in 
health services utilization during the COVID-19 pan-
demic. Some studies observed a reduction in visits to 
medical centers in early 2020 due to general quarantine 
conditions or fear of hospital-acquired infections [37, 
38]. This might lead to the overestimation of our results. 
However, given that many infectious diseases share some 
of the same symptoms with COVID-19, like fever, cough, 
and severe acute respiratory distress syndrome, detec-
tion rates of these diseases should not be largely affected. 
In some areas of China, residents buying antipyretics, 
antivirals, and drugs that target coughs and sore throats 
must undergo COVID-19 testing to root out undetected 
virus infections. Another study found that the flu detec-
tion rate among Chinese children is stable during the 
COVID-19 pandemic compared to the same period 
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during 2018–19 despite the decrease in pediatric outpa-
tient visits [39].

The analysis was based on the monthly incidence of 
infectious diseases, so we were unable to apply further 
analyses on a shorter time scale due to the limitation of 
the dataset. This may be addressed when more detailed 
data were obtained. Besides, although all cases were 
diagnosed by medical staff and confirmed by laboratory 
tests, there exists the possibility of underestimating the 
incidence of infectious diseases because some health 
facilities at the township level in rural areas were not 
included in the CISDCP [40]. The low number of cases in 
the elderly prevents the ability to assess the differentiated 
effect of NPIs on infectious diseases across finer age 
groups. Finally, we should acknowledge that infections 
are not always required admission to the hospital, and 
avoided hospital expenditures could be overestimated.

Conclusions
Our study indicates that NPIs are an effective way to 
control the transmission of infectious diseases, with 
patterns of risk varying by age, socio-economic status, 
and levels of NPIs. These findings have important 
implications for informing targeted strategies to prevent 
infectious diseases.
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