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Abstract: Inducible genetic switches based on tyrosine recombinase-based DNA excision are a promising platform for the
regulation and control of chimeric antigen receptor (CAR) T cell activity in cancer immunotherapy. These switches exploit the
increased stability of DNA excision in tyrosine recombinases through an inversion–excision circuit design. Here, the authors
develop the first mechanistic mathematical model of switching dynamics in tyrosine recombinases and validate it against
experimental data through both global optimisation and statistical approximation approaches. Analysis of this model provides
guidelines regarding which system parameters are best suited to experimental tuning in order to establish optimal switch
performance in vivo. In particular, they find that the switching response can be made significantly faster by increasing the
concentration of the inducer drug 4-OHT and/or by using promoters generating higher expression levels of the FlpO
recombinase.

1 Introduction
Cell-based therapies that employ engineered T cells expressing
chimeric antigen receptors (CARs) to target cancer cells have
demonstrated promising responses in recent clinical trials,
especially with regard to B cell cancers [1–4]. T cell
immunotherapy involves extracting T cells from a patient's blood,
engineering the cells to improve their ability to detect and target
tumour cells, and reintroducing them back into the patient.
Synthetic CARs are integrated into the cells which enable them to
recognise specific tumour-associated antigens. There are, however,
a number of significant safety and efficacy concerns that have
arisen regarding T cell therapies. Success against solid tumours has
been limited due to difficulties relating to autoreactive ‘on-target,
off-tumour’ responses as well as cytokine release syndrome, a
response to antigen stimulation that accelerates the immune
response to potentially fatal levels. Strategies such as kill switches,
designed to terminate the T cell response in cases of high toxicity,
terminate the entire therapy which often leads to the continuation
of tumour development. Reliable modulation of the therapy is
therefore of great importance and has prompted research in the
development of switching and control circuitry to enable the
regulation of engineered T cell responses [5–17].

A promising approach for the creation of such circuitry is the
use of site-specific recombinases (SSRs), which are capable of
precise DNA manipulation in mammalian cells [18–20], and can be
used to engineer synthetic biological circuits capable of performing
user-defined functions that are programmed into the cellular DNA
[21, 22]. Moreover, SSR-based gene switches elicit permanent
alterations to the DNA and thus possess a built-in memory
property. As such, SSR-based gene switches are capable of stable
changes in gene expression after transient exposure to drug
inducer. This memory property could simplify the implementation
of such circuitry in gene therapy or cellular immunotherapy, where
continuous drug dosing to control transgene expression in patients
presents a logistic challenge.

SSRs belong to two main families, the serine and tyrosine
recombinases. The former mediate unidirectional (irreversible)

recombination events that produce stable genetic states [23, 24],
however, the reversal of recombination events via serine integrases
is typically dependent on a recombination directionality factor
(RDF) [25–28], which can compromise their efficiency [29, 30].
Consequently, serine recombinase-based circuit designs attempt to
exploit unidirectional recombination events that are, therefore,
unable to facilitate transitioning back to prior system states [31].
Recent mathematical modelling studies regarding serine integrases
and their RDFs have revealed that computational models are
capable of quantitative replication of the observed in vitro
dynamics [30, 32] and can aid the examination of the practical
viability of novel synthetic circuits that combine multiple
biological elements [30, 33]. Here we seek to develop the first
equivalent model for tyrosine recombinase-based circuitry and
explore its use in determining key experimental parameters that
govern the performance of a CAR T cell switching circuit.

Tyrosine recombinases elicit a primary inversion event in an
identical manner to that of serine integrases. The secondary
inversion event, however, can also be mediated by the same
tyrosine recombinase without any additional cofactors or RDFs,
which causes bidirectionality (reversibility) (Fig. 1a) [34, 35]. 
Tyrosine recombinase binding interactions exhibit positive
cooperativity [19, 36, 37] and comprise a series of sequential single
strand exchanges known as a Holliday junction [38, 39]. Deletion
and insertion events mediated by tyrosine recombinases also mirror
that of their serine cousins, with the exception of bidirectionality
(Fig. 1b). Hence, adopting an elementary inversion switch design is
not viable, since inversion events are susceptible to natural
reversibility, which compromises the efficiency of the desired
transcriptional response (Fig. 1c). Reversibility is theoretically
more prominent in inversion events compared to deletion and
insertion events. This is because the deletion of a genetic sequence
forms a loop of DNA that dissociates from its original strand, and
therefore presents additional spatial disparity to overcome in a
subsequent insertion event, compared to successive inversions of
the same genetic sequence. Consequently, DNA excision has
emerged as a viable method for developing tyrosine recombinase-
based circuitry [40, 41]. The inducible control over gene
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expression afforded by SSRs has the potential to significantly
improve the efficacy of engineered T cells. Recombinase-based
genetic switches represent the most versatile switches in T cells,
which have the potential to enable optimal T cell activity that can
be tuned via drug dosage and duration, whilst retaining the memory
of transient stimuli.

Mathematical models have been used to elucidate a wide
variety of synthetic biological circuits. These include gene
regulatory networks [42, 43], tuneable oscillators [44], and genetic
counters [21]. Problems that arise as a side effect of assembling
synthetic biological circuits can also be addressed using
mathematical models such as the burden placed on cell growth due
to the introduction of synthetic constructs [45]. At the very least, in
silico simulation of a given circuit can test hypotheses relating to
its dynamic performance in a fraction of the time taken to carry out
the equivalent experimental study. The development of new
models, therefore, has the potential to create a host of valuable
tools for synthetic biologists looking to design and implement
novel circuitry in vivo [46]. In this study, we present a mechanistic
mathematical model of an inversion–excision switch based on our
knowledge of the underlying molecular interactions associated with
tyrosine recombinases. The model is formulated through the
application of mass action kinetics, thus providing a deterministic
output via numerical simulation. The model is validated through
two separate data-fitting procedures. The first is a global
optimisation technique that minimises error through a ‘survival of
the fittest’ procedure. The second is a statistical technique that
employs Bayes’ theorem to infer the parameterisation most likely
to have produced the data. Our validated model is used to
demonstrate an inverse proportionality between 4-OHT
concentration and switch response time and identify which model

parameters are most sensitive to perturbations and are hence best
suited to experimental tuning in vivo.

2 Results and discussion
2.1 Mechanistic model of a tyrosine recombinase inversion–
excision switch

The tyrosine recombinase genetic switch developed in [41] exploits
the increased stability of DNA excision through a gated inversion–
excision circuit design (Fig. 2). The input to this circuit is the
flippase O (FlpO) recombinase, an optimised variant of flippase
(Flp) with increased efficiency within mammalian cells [47]. A
metabolite of the Food and Drug Administration-approved drug
tamoxifen, known as 4-OHT, is used to activate the FlpO before it
can enter the nucleus and mediate the necessary DNA
recombination events. FlpO is expressed constitutively in the
cytosol until the advent of 4-OHT causes activation and transport
into the nucleus. Leaky nuclear localisation of FlpO can also occur
in the absence of 4-OHT, resulting in basal switch activity.

The full network of molecular interactions underlying the
switch is shown in Fig. 2, and consists of each DNA:protein and
Holliday junction complex arising from FlpO binding interactions.
The initial system state (State 1) consists of a blank sequence
flanked by antiparallel FRT sites and an inverted CAR gene
flanked by parallel FRT sites. This setup does not provide any
CAR expression since the non-expressing blank sequence is
positioned immediately downstream of the promoter and the CAR
gene is not suitably oriented for transcription. FlpO expression
elicits inversion of either FRT site pair to produce two transient
genetic states. The first sees inversion of both genes, resulting in
the CAR expression due to the now suitably oriented CAR gene

Fig. 1  Schematic diagrams of DNA recombination events mediated by tyrosine recombinases
(a) Antiparallel FRT sites result in reversible DNA inversion results, (b) Parallel FRT sites result in reversible DNA excision with increased stability, (c) Elementary inversion-based
tyrosine recombinase circuit design is not viable for reliable control over gene expression
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immediately downstream of the promoter. The second sees the
inversion of the CAR gene downstream of the blank sequence
which also results in CAR expression. Both transient states consist
of the blank sequence flanked by parallel FRT sites, and
subsequent FlpO binding, therefore, elicits excision events that
delete this sequence. Excision results in a shortened DNA sequence
that consists of the CAR gene downstream of the promoter, which
therefore provides CAR expression (State 2). In summary, State 1
provides no gene expression, the transient states both provide CAR
expression and State 2 also provides CAR expression.

There are four molecular reaction networks comprising the
inversion–excision switch system; two unstable inversion networks
that detail the transition from State 1 to the two transient genetic
states (i1, i2), and two stable excision networks that detail the
transition from the transient genetic states to State 2 (e1, e2). The
inversion reaction network is symmetrical due to the fact that
successive inversion events are identical. Free DNA is bound by
monomeric FlpO until two monomers associate with each of the
corresponding attachment sites whereby inversion is initiated. We
account for the cooperativity of monomer binding by modelling

two distinct DNA:protein complexes with one FlpO monomer
bound at each attachment site (DSp

in/emF1, 1) and two monomers bound

at one site (DSp
in/emF2, 0). Details of the mathematical representation of

cooperativity in our model can be found in Section 3. Our model
consists of five intermediate Holliday junction complexes
describing the inversion/excision of the DNA sequence. FlpO
dissociates from the resultant composite attachment sites to give
free, genetically differentiated DNA. The excision reaction is not
symmetrical, due to the spatial disparity of its products. Again, two
FlpO monomers bound at each corresponding FRT site is sufficient
to facilitate the excision event, and Holliday junction formation is
identical to that of the inversion reaction. FlpO dissociation
produces free disparate genetic products: the excised sequence of
DNA whose exposed ends are ligated to form a loop, and the
shortened DNA strand that remains. Transition to prior genetic
states is made possible by the reversibility of the molecular
reactions, however, spatial localisation is required for maximum
efficiency in the case of transitioning back to State 1 from State 2
(not relevant for the applications presented here).

Fig. 2  Schematic diagram of a tyrosine recombinase-based inversion–excision switch. FlpO recombinase in its activated form targets orthogonal pairs of
FRT attachment sites in transitioning the switch from State 1 to State 2 via two transient intermediate genetic states. FRT sites are depicted as purple and
green triangles with different shades used to illustrate the result of recombination events. Clear and red pointed boxes depict the blank sequence and CAR
gene, respectively. Black arrows depict DNA:protein binding reactions comprising unstable inversion and stable excision events. The rate of unactivated FlpO
expression is denoted by αa; the rate of expression of activated FlpO that leaks into the nucleus is denoted by αb; the concentration of 4-OHT in the system is
modelled as an expression rate denoted by αd and is an initial condition of the model. The rate of degradation of the recombinase protein is denoted by βp; the
rate of degradation of drug inducer is denoted by βd. The rate of FlpO activation and nuclear localisation is denoted by Ka; the rate of leaky FlpO nuclear
localisation is denoted by Kb. The rate of a FlpO monomer binding reversibly to free FRT sites is denoted by k1, k−1; due to the cooperativity of FlpO
monomer binding, we denote the rate of a FlpO monomer binding reversibly to an occupied FRT site by k2, k−2. The parameters k1, k−1, k2, k−2 are equal for
each pair of recombination events involving the same pair of attachment sites, i.e. the i1 and e2 parameters are equal and the i2 and e1 parameters are equal.
The rate of Holliday junction formation is denoted by k3, k−3 for the inversions reactions, and by k3, k−3, k8, k−8 for the excision reactions. Each of the five
Holliday junction strand exchanges is denoted by k4, k−4, k5, k−5, k6, k−6, k7, k−7, respectively. The rate of dilution of the excised DNA (SX) due to cell
division is denoted by δ. The empty set symbol is used to depict expression and degradation reactions
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Although this circuit resembles biological logic gate circuitry in
the literature, it has just one input and its only desired function is to
implement an efficient ON switch from State 1 to State 2. The ON
switch is designed to allow the activation of the CAR T cells to be
delayed until an appropriate time point, based on the requirements
of individual patients. The OFF switch can be considered as a
separate circuit in which the initial positions of the blank sequence
and CAR gene are swapped, and thereby only State 1 provides
CAR expression. The OFF switch is designed to provide controlled
cessation of an initial ON state as an alternative to more traditional
kill switches that terminate the therapy completely. Both the ON
and OFF switches are induced in the same manner, through 4-OHT
activation of the FlpO recombinase which then performs the
necessary DNA recombination.

Based on a detailed analysis of the underlying reactions, we
developed a set of biochemical equations representing the
molecular interaction network shown in Fig. 2 (see supplementary
material, Table S1). Our mechanistic model is derived through the
application of mass action kinetics to these biochemical equations.
The result is a system of ordinary differential equations (ODEs)
that describes the rate of change in concentration of each molecular
entity with respect to time (see supplementary material, Table S2).
Since we are interested in the dynamical response of the system
over time and have time course data with which to validate the
model, this modelling approach provides suitable approximations
to the time-dependent fluctuations in the concentration of model
variables in the ON state (the percentage of cells ON). The
deterministic output provides an approximation to the average of
an ensemble of stochastic simulations without the increased
computational workload necessary for such probabilistic
approaches.

To simulate the time course concentration dynamics of the
genetic states of interest, we compute the total concentration of the
system in these states by summing all ODEs describing molecular
entities in the same state. Hence, we can derive the following two
equations that capture the time course evolution of State 1 and
State 2:

dS1

dt = k3 DtS1
i1 F4 + DtS2

i2 F4 − k−3 H5
i1 + H5

i2 , (1)

dS2

dt = k−3 H5
i1 + H5

i2 − k3 DtS1
i1 F4 + DtS2

i2 F4

+ k8

2 DS2
e1F2 ⋅ DSX

e1 F2 + DS2
e2F2 ⋅ DSX

e2 F2

− k−8

2 H5
e1 + H5

e2 ,

(2)

where S1, tS1, S2, tS2 and SX denote State 1, transient State 1, State 2,
transient State 2 and the deleted DNA state respectively; D, H and
F denote DNA, Holliday junction complexes and FlpO,
respectively; i1, i2 and e1, e2 denote each of the two inversion and
excision reactions, respectively. Numerical subscripts for H and F
denote the relevant Holliday junction complex (out of five) and the
number of monomers, respectively. The numerical solutions to (1)
and (2) constitute the outputs of our model simulations. The factor
of half in the latter two terms in (2) is important for preserving the
conservation of concentration (mass) in the model. A description of
how this factor arises mathematically, using a simplified example,
is provided in Supplementary Material, Section S1.

2.2 Model accurately predicts circuit switching efficiency and
dynamics

Our experimental data on the performance of the inversion–
excision switch consists of four time-course datasets that record the
percentage CAR expression of both the ON switch and OFF switch
over a ten-day period subject to 0 and 1 μM 4-OHT dosages (see
Section 3).

We employed two separate methods to fit the model to our time
course data, due to the lack of experimental data regarding the
values of our model parameters. The first method employs global

optimisation using a genetic algorithm (GA). The GA mimics
natural selection by evolving an initial population of randomly
generated solutions over a large number of generations until it
converges to a near global minimum within the allocated parameter
space (see Section 3). Such algorithms have been widely used in
mathematical model inference research relating to, e.g. synthetic
oscillators and gene regulatory networks [48–50].

The second data fitting method is a statistical approach known
as approximate Bayesian computation (ABC). This is implemented
using ABC-SysBio, a Python software package designed
specifically for statistical parameter inference in biological systems
research [51–53]. The programme employs sequential Monte Carlo
(SMC) simulations to construct an accurate approximation to the
posterior probability distribution defined by Bayes’ theorem:

P A B = P B A P A
P B , P B > 0.

Monte Carlo approaches involve computational simulations to
generate random candidate solutions, testing their fitness against
the desired output and repeating until a viable solution can be
identified (see Section 3). ABC establishes distributions on each
parameter value in order to infer the parameterisation most likely
to have produced the data. In contrast, the GA identifies a single
model parameterisation that provides minimal error between the
associated in silico simulation and experimental data. However, a
single parameterisation provides no information on the extent of
uncertainty in the optimal values and is thus more susceptible to
overfitting the data. Consequently, we seek maximum reliability in
our results by initially performing global optimisation, then
verifying this result by examining the likelihood of the existence of
better solutions using ABC.

Global optimisation data fitting results confirm that the
mechanistic model is capable of replicating time course percentage
CAR expression for both ON and OFF switches over the ten-day
period recorded experimentally (Fig. 3, solid lines). The optimal
parameter values identified by the GA are listed in supplementary
material, Table S3. The error function used to assess the fitness of
each solution calculates the absolute error across all four datasets.
The optimal parameterisation provides an error of 28.15, which
enables us to inform the selection of the sequence of error
thresholds, ϵi, for the subsequent ABC parameter inference. In this
case, we set the penultimate error threshold, ϵ9, at 29 and the final
threshold, ϵ10, at 28.15 under the assumption that solutions
providing an error below 29 are sufficiently similar to our global
optimal solution, and that convergence to the final threshold will
present solutions superior to that of the GA. ABC parameter
inference results reveal that a population of 100 parameterisations
met the penultimate error threshold, but that convergence to the
final threshold did not occur within a feasible time frame (Table 1). 
This provides strong evidence that the parameterisation identified
by the GA is indeed near the global optimal solution since we are
unable to statistically verify the existence of other solutions
capable of providing a smaller error. Furthermore, our ABC
approach provides distributions of each parameter value for
accepted solutions at each error threshold. These distributions are
non-uniform and hence it is unlikely that multiple distinct
parameterisations are capable of providing the same optimal model
output. This also suggests that our model is identifiable; at least
within a finite region of the parameter space.

In order to clarify the key mechanistic features of the system,
we conducted a sensitivity analysis to identify whether, and how,
the model could be simplified without compromising performance
(supplementary material, Fig. S1). Parameters are varied by up to
two orders of magnitude above and below their optimal values.
Sensitivity is examined with respect to response time, which is
measured as the time taken for the ON switch to reach 90% of its
maximum percentage CAR expression, and the time taken for the
OFF switch to reach 90% of its total decrease in percentage CAR
expression.

All parameters describing FlpO expression/degradation
mechanisms within the system (αa, αb, βp, βd, Ka, Kb) showed high
sensitivity, and are therefore retained in the simplified model. The
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parameters describing Holliday junction formation (k4, k−4, k5, k−5,
k6, k−6, k7, k−7) showed relatively low sensitivity and are removed.
The parameters describing cooperative FlpO monomer binding
showed a high sensitivity for one pair of attachment sites (i2, e1: k1,
k−1, k2, k−2), but comparatively low sensitivity for the other pair (i1,
e2: k1, k−1, k2, k−2). Since each of the two pathways from State 1 to
State 2 features recombination events involving each pair of
attachment sites, we remove cooperative monomer binding and
describe each recombination event as a single reversible reaction.
The reduced model retains the four state variables relating to FlpO
expression, activation, and degradation in the mechanistic model,
but consists of just five DNA state variables compared to 63, while
the number of parameters is reduced from 27 to 12 (Fig. 4). 
Applying mass action kinetics to the biochemical reactions
depicted in Fig. 4 gives the following system of nine ODEs:

d F
dt = KaV̄ 4OHT Fa + KbV̄ Fb − βp F − k1 F DS1

−kr F DtS1 − k2 F DS1 − kr F DtS2

−k3 F DtS1 − k4 F DtS2 ,

(3)

d 4OHT
dt = αd − βd 4OHT − Ka 4OHT Fa , (4)

d Fa
dt = αa − βp Fa − Ka 4OHT Fa , (5)

d Fb
dt = αb − βp Fb − Kb Fb , (6)

d DS1

dt = kr F DtS1 − k1 F DS1 + kr F DtS2

−k2 F DS1 ,
(7)

d DtS1

dt = k1 F DS1 − kr F DtS1 − k3 F DtS1

+kr DSX DS2 ,
(8)

d DtS2

dt = k2 F DS1 − kr F DtS2 − k4 F DtS2

+kr DSX DS2 ,
(9)

d DSX

dt = k3 F DtS1 − kr DSX DS2 + k4 F DtS2

−kr DSX DS2 − δ DSX ,
(10)

Each population of accepted particles is formed by assessing the
error provided by each particle. If the error is less than the
threshold for that population the particle is accepted if not, the
particle is rejected. Our inference required that 100 particles be
accepted before progression to the next population and error
threshold. The final error threshold, ɛ10, was chosen based on our
GA optimisation result and ABC-SysBio was unable to identify a
population of particles that provide less error than this result

d DS2

dt = k3 F DtS1 − kr DSX DS2 + k4 F DtS2

−kr DSX DS2 .
(11)

To assess the performance of the simplified model in reproducing
the experimental data we again implemented global optimisation.
GA data fitting results reveal that the simplified model is capable
of matching the minimal error provided by the optimal mechanistic

Fig. 3  Data fitting results. The model is optimised against four time course datasets simultaneously: the ON and OFF switch responses to
(a) +4-OHT (1 μM 4-OHT) and (b) −4-OHT (0 μM 4-OHT). Red and blue lines depict ON and OFF switch model simulations corresponding to red and blue circles depicting ON
and OFF switch experimental data, respectively. Solid lines depict mechanistic model simulations. Dashed lines depict simplified model simulations

 
Table 1 ABC-SysBio parameter inference results
Error thresholds Particles

assessed
Particles

accepted, %
Time, s

ɛ1 = 500 100 100.00 227
ɛ2 = 250 100 100.00 236
ɛ3 = 100 647 15.46 1674
ɛ4 = 50 2019 4.95 9031
ɛ5 = 45 2736 3.65 12,040
ɛ6 = 40 3873 2.58 16,821
ɛ7 = 35 8755 1.14 38,438
ɛ8 = 30 57,151 0.17 248,534
ɛ9 = 29 104,289 0.096 456,383
ɛ10 = 28.15 — — —
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model parameterisation (Fig. 3, dashed lines). The optimal
parameterisation for the reduced model provides an error of 28.39,
a negligible increase on the 28.15 provided by the mechanistic
model. The optimal parameter values for the reduced model are
listed in supplementary material, Table S4. Further attempts to
simplify the model by removing other features resulted in large
increases in the fitting error, providing strong evidence that this
model represents the simplest possible mechanistic representation
of the system. All results described hereafter were derived from
this simplified model of the system.

2.3 Switching response times are inversely proportional to
the concentration of inducer drug

Response time is the key performance characteristic of the switch
since ultimately it will need to function reliably in mammalian
cells within time frames that are appropriate to the condition of
individual patients. By identifying parameters that are both
influential over system output and experimentally tuneable, we can
establish guidelines to optimise the functioning of the switch in
different application scenarios. Model simulations reveal that there
is an inverse proportionality between drug concentration and
switching response time (Fig. 5). The response time of both
switches is significantly decreased when induced by 4-OHT
concentrations in the range 10−1–101 μM. Therefore the 1 μM 4-

Fig. 4  Schematic diagram of the reduced tyrosine recombinase-based inversion–excision switch. FlpO recombinase, in both activated (FlpO) and inactivated
(FlpOa, FlpOb) forms, targets gated FRT sites (purple and green triangles) in transitioning the switch from State 1 to State 2 via two transient intermediate
genetic states. Clear and red pentagons depict the blank sequence and CAR gene respectively. Black arrows depict DNA:protein binding reactions comprising
unstable inversion and stable excision events. Reaction rate constants are denoted by the corresponding numbered k. The parameter kr denotes the rate of the
reverse reaction for each recombination which enables further reduction of the number of model parameters

 

Fig. 5  Model predictions of drug dosage dependency. Optimised reduced model simulations of response time as a function of 4-OHT concentration for both
the ON switch (red line) and OFF switch (blue line). Response time is measured as the time taken for the ON switch to reach 90% of its maximum percentage
CAR expression, and the time taken for the OFF switch to reach 90% of its total decrease in percentage CAR expression
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OHT concentration used experimentally may require an increase of
up to 10 μM to deliver improved response times. The concentration
of 4-OHT used to induce the switch is important as it has
implications regarding the cost of the treatment. Identifying key
operational factors through model simulations ultimately informs
the direction of confirmatory experimental work and presents new
avenues of investigation in a time efficient manner. Given that the
treatment is likely to benefit from minimising the concentration of
the inducer drug, the model can be utilised to identify alternative
parameters that have the potential to improve switch response time.

2.4 Increasing Flp0 expression can provide faster switching

Sensitivity analysis of the reduced model parameters
(supplementary material, Fig. S2) identifies the most sensitive to be
αa, βp, βd, and Ka. Of these, the rates of protein and drug
degradation, βp and βd, and the rate of FlpO nuclear localisation
through 4-OHT activation, Ka, are challenging candidates for
experimental tuning. However, the rate of FlpO expression in the
system, αa and αb is potentially tuneable through appropriate
choice of the cognate promoter strength. Model simulations reveal
faster response times for both the ON and OFF switches as the
values of αa and αb are increased two- and five-fold (Fig. 6), with a
significant reduction in switch response time for even a two-fold
increase in FlpO expression. Recent work on engineering Jurkat T
cells with inducible promoters of varying strengths illustrates the
potential to provide the required increase in FlpO expression.
However, the model predicts that increased FlpO expression also
results in a decreased percentage of CAR expression over time
with respect to the ON switch (Figs. 6a and b). For example, a
five-fold increase in FlpO expression is predicted to provide >75%
cells expressing CAR within a relatively small time frame (∼1
day), but this reduces to ∼55% after 2 days. Therefore, unless the
action of the CAR T cells is as effective as to provide significant
therapeutic benefit over small time periods, these dynamics are
unlikely to be advantageous. By contrast, the performance of the
OFF switch improves uniformly as FlpO expression increases.

The model also predicts that increased FlpO expression causes
increased basal switching responses from both switches (Figs. 6c
and d) that could potentially compromise the efficacy of the

therapy altogether, regardless of which switch was considered to be
most viable. Hence, attempts to improve the efficiency of the
switch through increased FlpO expression would not be suitable for
applications in which tight regulation of the initial state in the
absence of induction is required.

2.5 Optimal switch performance presents a trade-off between
4-OHT concentration and FlpO expression

Investigating the effects of simultaneously modifying the
expression of FlpO and the concentration of 4-OHT reveals that
improved switch response times are possible for relatively large
doses of 4-OHT if FlpO expression is unaltered, and for relatively
low doses of 4-OHT if FlpO expression is increased ∼10-fold
(Fig. 7). The model predicts that increasing FlpO expression ∼2-
fold and using a 4-OHT dosage of ∼3 μM can provide a notable
improvement in response times for both the ON and OFF switches.
Although this demonstrates an advantageous reduction in the
magnitude of the required fold change in FlpO expression for a
relatively small increase in drug dosage, the resulting basal activity
increases to potentially problematic levels, suggesting that tuning
inducer concentration/dosage may be a more viable method for
improving switch efficiency.

3 Materials and methods
3.1 Experimental procedure

Primary CD4 + T cells were harvested from blood obtained from
the Boston Children's Hospital using the STEMCELL CD4 + 
enriched cocktail and RosetteSep system. T cells were maintained
in X-VIVO 15 media (Lonza) supplemented with 5% AB Serum
(Valley Biomedical), 10 mM N-acetyl L-cystein (Sigma), 55 µM 2-
mercaptoethanol (Gibco), and 50–100 units/ml recombinant
interleukin-2 (IL-2) (Tecin, NCI BRB Preclinical Repository).

Lentivirus containing either the inducible FlpO or stable
inversion switch was produced via polyethylenimine transfection
of the human embryonic kidney 293 FT cells and collected 3 and 4
days post-transfection. The concentrated virus was produced via
ultracentrifugation with 20% sucrose (Sigma) for 2 h at 4°C and
22,000 g. T cells were activated with CD3/CD28 Dynabeads
(Gibco), and then spinfected with a virus one day later. Using half

Fig. 6  Model predictions of the effect of tuning FlpO expression on switch response times. Model simulations of ON switch and OFF switch time course
responses for the optimal values of αa and αb subject to fold changes of one, two and five
(a) ON switch + 4-OHT (1 μM), (b) ON switch − 4-OHT (0 μM), (c) OFF switch + 4-OHT (1 μM), (d) OFF switch − 4-OHT (0 μM)
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of the concentrated virus, both inducible recombinase and stable
inversion switch viruses were spun onto the well a six-well
retronectin (Clontech)-coated plate for 90 min at 1200 g and
activated CD4 + T cells were then spun on to the virus plates for
60 min at 1200 g. T cells were sorted using the SH800 Cell Sorter
(Sony, BFP-FL1 channel) for FlpOERT2 expression using a BFP
marker expressed in the FlpOERT2 cassette via a T2a ribosomal
skip sequence.

Cells were induced with 1 µM 4-hydroxytamoxifen (4-OHT,
Sigma) in methanol solution except for dose response experiments.
Cells were induced at a starting concentration of 200,000 cells/ml
and maintained between 200,000–1200,000 cells/ml with media
containing 4-OHT. Uninduced cells were also plated and
maintained at the same cell concentrations in inducer-free media.
CAR expression was observed via phycoerythrin (PE)-conjugated
antibody staining (R&D Systems IC3696P) for a human myc
epitope tag expressed in the extracellular portion of the CAR,
which was then quantified via flow cytometry (Attune NxT Flow
Cytometer).

The percentage switching efficiency is thought to reflect the
efficiency of integrating both the FlpO-producing component and
the switch itself into the T cells. Given that successful integration
is not guaranteed for every cell, there are four possible outcomes:
R−/FS− (no components), R+/FS− (recombinase only), R−/FS+
(switch only) and R+/FS+ (recombinase and switch). Only cells
that have acquired the requisite components (R+/FS+) can provide
the desired function, and hence we convert our data to represent
percentage CAR expression with respect to the global maximum
data value to focus our analysis purely on the R+/FS+ cells in the
population. We assume that integration efficiency does not vary
significantly across experimental trials, allowing us to use the
global maximum data value as a metric for functionally viable T
cell populations.

All cells are thought to possess an initial volumetric ratio (the
ratio of the volume of the cytoplasm to the volume of the nucleus,
VC:VN) of ∼4:1 that changes with cell growth, becoming 2:1 or
1:1. However, lymphocytes such as T cells have not been found to
demonstrate these growth related adaptations, maintaining a ratio
between 4:1 and 3:1. Hence, the parameter V̄ , equal to the quotient
VC/VN, is fixed at 0.3 in our model.

We imposed the conditions k1 < k2 and k−1 > k−2 to account for
cooperative FlpO monomeric binding to DNA, whereby the
binding affinity of a FlpO monomer to an attachment site already

bound by another monomer is greater than that of a monomer to a
free site. This involves setting k1 = k2 and k−1 = k−2 and introducing
the multipliers 0 < m1 < 1 and 0 < m2 < 1 such that m1 multiplies
k1 and m2 multiplies k−2, hence ensuring that k1/k−1 < k2/k−2 in our
parameter inference.

3.2 Model parameter inference and simulation

3.2.1 Global optimisation: We employed the built-in GA function
in MATLAB for parameter inference purposes. The GA proceeds
by initially generating a population of solutions at random within
the predefined parameter space. The initial solutions are then
scored based on their fitness. This is typically calculated by virtue
of an error function that determines how well each solution is able
to match the relevant experimental data. The best solutions are
selected as parents that will produce the best offspring to populate
the next generation of solutions. Parents produce offspring through
crossover, whereby a random place in their binary genotype is
selected and the information beyond that point is swapped over.
The mutation is also incorporated, whereby single point alterations
in the offspring's genotype are imposed to increase diversity within
the population. This procedure is repeated indefinitely until a
predefined termination criterion is reached; typically, the scores are
unchanged over a specified number of generations, the algorithm
reaches a specified number of generations, or a specified solution
score is established. Parallelisation of the MATLAB code enabled
us to run the GA with a large search population for many
generations; this significantly increases the likelihood of
establishing the global optimal solution. Given the lack of available
data regarding the relevant reaction rate constants in the literature,
we require a parameter space large enough to locate optimal
solutions, but not so big that convergence timescales become
impractical. A large parameter space increases the time taken to
produce the next generation of solutions however, this can also
decrease the overall number of generations required for
convergence, since more solutions are inspected in each case.
Large parameter spaces also increase the risk of incurring problems
with stiff model simulations that may cause the GA to fail, hence
multiple trials are often required to determine effective
performance criteria. Hence, the search interval imposed on all
model parameters is [0, 1]. We ran the GA over 1000 generations
with a population size of at least 1000 in order to maximise the
likelihood of convergence and the identification of the global

Fig. 7  Model predictions of parameter tuning trade-offs
(a) Model simulations of ON switch response time for the optimal values of αa and αb subject to fold changes of one order of magnitude above and below the optimal values, and for

4-OHT concentrations between 10−1 and 101 μM, (b) Model simulations of OFF switch response time for the optimal values of αa and αb subject to fold changes of one order of

magnitude above and below the optimal values, and for 4-OHT concentrations between 10−1 and 101 μM. Response time is measured as the time taken for the ON switch to reach
90% of its maximum percentage CAR expression, and the time taken for the OFF switch to reach 90% of its total decrease in percentage CAR expression. The colour gradient ranges
from dark blue (0 days) to dark red (10 days)
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optimum solution. We define the error function that calculates the
mean absolute error between the four time-course datasets and their
corresponding model simulations such that

d = 1
10 ∑

i = 1

40
xi − yi ,

where xi and yi are corresponding elements of the experimental
data and model simulation vectors, respectively. Each of the four
time-course datasets consists of ten values and our distance
function calculates the mean absolute error across all four datasets.

3.2.2 Approximate Bayesian computation (ABC): The ABC–
SMC procedure implemented by ABC-SysBio proceeds in the
following manner: an initial population of solutions (particles) is
randomly generated in accordance with the prior distributions
imposed on the model parameters. Each particle provides a
simulated dataset, D⋆, which is compared to the fixed experimental
dataset, D, by an appropriate distance (error) function and its
fitness is scored accordingly. This error score determines the
acceptance of a particle, dependent on a decreasing sequence of
error thresholds, ϵ, set to correspond with each population, i.e.

d D⋆, D < ϵi,

where ε1 > ε2 > … > εn and d is the distance function. We define
our distance function as the mean absolute error between model
simulations and experimental data in the same way as the GA
approach. Subsequent populations are obtained by perturbing
particles from the previous population in accordance with a
predetermined perturbation kernel, proceeding until the model is
unable to produce particles of sufficient fitness to satisfy the
immediate threshold.

An array of model-specific criteria are required to allow the
ABC-SysBio package to run efficiently: the sequence of decreasing
error thresholds, ϵ, must be provided whereby only the particles
capable of providing error less than that of the threshold will be
accepted by the algorithm. Each ϵ must be satisfied in succession
until the particles are unable to satisfy the next threshold. The
satisfaction of an individual threshold is dependent on the number
of particles accepted; the number of acceptable particles required
before passage to the next threshold must also be predetermined.
The larger the number of particles, the higher probability of
reliable inference results and the longer the time taken by the
algorithm to converge. Each individual parameter subject to
inference requires a prior probability distribution in order to
establish the parameter space within which to locate acceptable
particles. We allocate the same parameter space used in GA
parameter inference to facilitate direct comparisons of the results.
Hence, the prior distributions imposed on all model parameters are
uniform distributions on the interval [0, 1]. The convergence of the
algorithm is dependent on all of the aforementioned factors and
hence it may require several trials to establish the appropriate
performance criteria. To achieve credible results, it is advised that
parameter inference and model selection tasks are repeated
multiple times due to the random nature of the Monte Carlo
simulations that drive the algorithm.

4 Conclusion
Mathematical models of synthetic circuits that are based strictly on
underlying biological mechanisms can be used as design tools to
reduce development times, lower the risk of circuit failure, and
identify key parameters determining circuit performance. We have
developed the first mechanistic mathematical model of a tyrosine
recombinase-based inversion–excision switch and validated it
against dynamic data on CAR expression using both global
optimisation and statistical approaches. A sensitivity analysis of
this model revealed key mechanistic features that allowed the
construction of a significantly simplified model that yielded
equivalent data fitting results. Analysis of this model revealed that
the response time of the switch can be modulated experimentally

by tuning the concentration of the inducer drug and/or by choosing
promoters that increase the level of expression of the FlpO
recombinase. However, both of these solutions also have potential
drawbacks in terms of increasing basal expression activity,
indicating that the successful clinical deployment of this and other
novel recombinase-based circuits might be dependent on the
development of new mechanisms for minimising or even nullifying
basal recombinase expression.
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